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Abstract. This paper exploits the different properties between the local
neighborhood of global optimum and those of local optima in image reg-
istration optimization. Namely, a global optimum has a larger capture
neighborhood, in which from any location a monotonic path exists to
reach this optimum, than any other local optima. With these properties,
we propose a simple and computationally efficient technique using trans-
formation disturbance to assist an optimization algorithm to avoid local
optima, and hence to achieve a robust optimization. We demonstrate
our method on 3D rigid registrations by using mutual information as
similarity measure, and we adopt quaternions to represent rotations for
the purpose of the unique and order-independent expression. Random-
ized registration experiments on four clinical CT and MR-T1 datasets
show that the proposed method consistently gives much higher success
rates than the conventional multi-resolution mutual information based
method. The accuracy of our method is also high.

1 Introduction

An important component in the medical imaging field is multi-modal image reg-
istration, which can integrate complementary image information acquired from
different modalities. The task of image registration is to reliably identify a geo-
metric transformation to accurately align two images. General promising results
have shown that mutual information (MI) as a voxel intensity-based similar-
ity measure is well-suited for multi-modal image registration [8, 14]. However, it
has been suggested that the conventional mutual information based registration
method can result in misalignment for some cases [9, 11]. One possible causation
is that the mutual information based method can get trapped into local maxima
during transformation optimization process. Most of the existed optimization
methods, e.g. Powell’s method, simplex methods, gradient descent and so on
[12], are only suitable for local optimization. Several attempts have been made
to improve the optimization performance, such as multi-resolution approaches
[2], extension and combination of different optimization methods [10, 5]. However
there is still no guarantee to find the global solution in general. On the other
hand, global stochastic optimization methods, e.g. Simulated Annealing [4], need
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to take a large number of iterations to converge, which limit their application in
image registration.

In this paper, in an attempt to obtain a robust optimization result, a simple
and computationally efficient technique is proposed to assist an optimization
method to avoid local optima. The technique is based on the different properties
between the local neighborhood of global optimum and those of local optima.
Specifically, the global optimum has a larger capture neighborhood, in which from
any location a monotonic path exists to reach this optimum, than any other local
optima. When an optimization procedure gets trapped into a local optimum, a
proper disturbance on the obtained transformation can pull it out of the un-
desirable location and consequently provide a further chance for a following up
optimization to achieve the global optimum. The proposed method is demon-
strated on 3D rigid registrations. We adopt quaternions to represent rotations
for the purpose of the unique and order-independent expression. Based on the
randomized registration experiments on four clinical 3D CT and MR-T1 image
volumes, it is demonstrated that the new method consistently gives much higher
successful registration rates than the conventional multi-resolution mutual in-
formation based method. The results also implies that our method can obtain
acceptably high registration accuracy.

2 Methods

2.1 Mutual Information as Similarity Measure

Mutual information (MI) is an useful concept from information theory [3] and
measures the amount of information shared between two random variables.
Specifically, mutual information quantifies the Kullback-Leibler distance [7] be-
tween the joint distribution of two random variables, A and B, and the product
of their marginal distributions, that is

MI(A, B) =
∑

a,b

p(a, b) log
p(a, b)

p(a) · p(b)
, (1)

where p(a, b) is the joint distribution of A and B, and p(a) and p(b) are the
individual marginal distributions respectively.

Mutual information was proposed independently as similarity measure for
3D rigid registration of medical images by Wells et al. [14] and Maes et al. [8].
To utilize mutual information, the intensity values of the corresponding voxel
pair in the two images to be registered are considered as random variables,
and the joint and marginal distributions can be the normalization of the joint
and marginal histograms of the sampling set. The mutual information of two
images measures the amount of information conveyed by one image that is shared
by the other image, and it is assumed to be maximum when the images are
aligned. Therefore, the mutual information based registration method identifies
a geometrical transformation T̂ as follows,

T̂ = arg max
T

MI(T) = argmax
T

MI(T(If ), Ir),
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where Ir and If are the intensity domains for the reference and floating images
respectively.

2.2 Robust Optimization Using Transformation Disturbance

General promising results have shown that the mutual information based regis-
tration method works well on multi-modal images [8, 14]. However, it has been
suggested that it can result in misalignment for some cases [9, 11]. One possible
causation is that mutual information based method can get trapped into local
maxima during transformation optimization process. This motivates us to pro-
pose a technique to assist an optimization method to avoid those local maxima.

From any initial transformation T0, it is obvious that there exists a mono-
tonic path,

−−−−−−−−→
T0T1 · · ·Tl, to a local (or global) maximum Tl, such that MI(T0) ≤

MI(T1) ≤ · · · ≤ MI(Tl). Then, the capture neighborhood of an arbitrary local
(or global) maximum Tli , NTli

, can be defined as a maximum local neighbor-
hood in which any transformation has such a monotonic path to reach Tli .
Alternatively, NTli

can be expressed as follows,

NTli
= {T | ∃ −−−−−→

T · · ·Tli , such that MI(T) ≤ · · · ≤ MI(Tli)},

and its radius is given by

RTli
= max

T∈NTli

d(T,Tli ),

with d(·) being the distance of two locations. With this definition, the whole
transformation space can be treated as the union of all such capture neighbor-
hoods, i.e.

⋃
i NTli

.
The foundation of the proposed method is an observation that the radius of

the capture neighborhood of an arbitrary local maximum Tli is much smaller
than that of the global maximum To, i.e. RTli

� RTo , ∀ Tli �= To. Thus, if
an optimization procedure gets trapped into Tli �= To, a relatively small offset
added on the obtained transformation can pull it out of NTli

, and then a further
chance for a following up optimization to converge to To is given. On the other
hand, when an optimization procedure achieves To, the same offset will not pull
it out of NTo , and thus a following up optimization process still achieves To.
Practically, when an optimization procedure converges, in order to pull it out
of NTli

(Tli �= To), or to validate whether it reaches To or not, we propose to
randomly add an reasonable disturbance (e.g. larger than RTli

and much less
than RTo) on the obtained transformation and resume the optimization process.
(For the determination of the range of disturbance, please refer to Section 3.)
As a consequence, the potentiality of obtaining a robust optimization result
increases. This process iterates until the change of obtained transformations at
two successive iterations becomes sufficiently small.

2.3 Rotation Representation

The technique proposed in Section 2.2 is demonstrated on 3D rigid registration.
We use quaternion algebra to represent 3D rotations in rigid transformations.
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This is because any rotation can be uniquely represented by quaternion as a
complex number:

q = a + ib + jc + kd

= cos(
α

2
) + i(x sin(

α

2
)) + j(y sin(

α

2
)) + k(z sin(

α

2
)), (2)

where (x, y, z)T is an unit vector representing the axis of rotation, α is the
angle of rotation. Note that other rotation representations may have ambiguity
in some cases, e.g. Euler angle representation has ambiguity when the attitude
(or elevation) is equal to ±π

2 . Moreover, quaternion has another advantage of
encoding rotation in an order-independent manner.

In addition, in Equation 2, we have a2 + b2 + c2 +d2 = 1. In order to decrease
the degree of freedom of quaternion for optimization, Equation 2 is revised as
follows,

q = 1 + ib̃ + jc̃ + kd̃ = 1 + i
b

a
+ j

c

a
+ k

d

a

= 1 + i(x tan(
α

2
)) + j(y tan(

α

2
)) + k(z tan(

α

2
)).

Furthermore, during optimizations of brain image registrations, large rota-
tions from optimal position, e.g. ≥ π

2 and ≤ −π
2 , are fatal and most likely

to invert brains in floating images. To avoid this, a hard constraint, namely
b̃2 + c̃2 + d̃2 < 1, may be added to limit the search space of rotation angle to
α ∈ (−π

2 , π
2 ).

3 Implementation Details

In our implementation, in order to accelerate the registration process, a multi-
resolution approach based on the Gaussian Pyramid representation [1, 14, 2] is
exploited. Four resolution levels are used and the definition of resolution levels in
the Gaussian Pyramid representation follows the same convention as in [1], i.e.
Level 0 image represents the highest and original resolution and Level 3 image
represents the lowest resolution. Smoothing is performed via the binomial filter
with coefficients [1, 4, 6, 4, 1] [14]. For the ease of implementation, all voxels in
the downsampled floating volumes are used at Levels 1 – 3. At Level 0, 1/4
(25%) of all voxels are sampled (one voxel randomly picked from every 2 × 2
matrix in each slice). To construct the joint and marginal histograms, the image
intensity values are linearly scaled to 64 bins, which have been commonly used in
the mutual information based registrations. For optimization at each resolution,
we use the Powell’s direction set method [12] with Brent’s 1D line minimization,
where the fractional precision convergence parameters are set to 10−4 and 10−3

respectively.
The transformation disturbance across progressive optimizations as discussed

in Section 2.2 is only performed at Level 3 for reasons of speed, since the com-
putational burden at higher levels can be more significant. On the other hand,
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it is empirically observed that, although from large initial misalignments, the
majority of optimization results can converge close to the ground truth at Level
3, with the help of transformation disturbance. (Please refer to Section 4.2 for
details.) For an optimization at Level 3, a disturbance, which consists of 3 dis-
turbances for translational parameters and 3 disturbances for quaternion param-
eters, is randomly generated based on Gaussian distributions with zero means.
To determine the standard deviations of these Gaussian distributions, a set of
experiments with different standard deviation values have been performed. Em-
pirical results suggest that a relative high success rate is given by the following
set of standard deviation values: for translation, they are equal to 1/16 of image
dimension sizes (in millimeter), and for quaternion, they are equal to tan(π/16).
The convergence criterion is that, at two successive iterations, the change of
obtained transformations for an individual degree of freedom is less than 1/5 of
the corresponding standard deviation.

4 Experimental Results

4.1 Image Datasets and Ground Truth

In the experiments described below, we used a set of real CT – T1 data ob-
tained from the Retrospective Image Registration Evaluation (RIRE) project1.
Note that all the T1 images have been rectified for intensity inhomogeneity and
scaling. In general, the size of a CT image volume is 512 × 512 × 34 voxels and
the voxel size is 0.65 × 0.65 × 4mm3, and a T1 image contains 256 × 256 × 26
voxels of dimensions 1.25 × 1.25 × 4mm3.

With regard to the data, we determined the “ground truth” for registration
experiments as follows. First, the multi-resolution mutual information based and
normalized mutual information (NMI) [13] based methods were used to register
the image pairs. The evaluations of accuracy were obtained from the RIRE
project. By examining the median errors, four datasets (Datasets pt-001, pt-
003, pt-005 and pt-007) with less than 1mm registration error were selected and
used in the experiments. Then the corresponding optimal transformations, whose
median errors were 0.5077 (for pt-001), 0.7200 (for pt-003), 0.7807 (for pt-005)
and 0.6179 (for pt-007) respectively, were used as the ground truth registrations.

4.2 Justification and Determination of Disturbance

In order to justify the capability of the proposed transformation disturbance on
helping optimization to avoid local maxima, especially at Level 3, randomized ex-
periments were performed for the mutual information based registration method
with disturbance and quaternion (hereafter referred to as MI-d), and also for the
conventional mutual information based registration method (hereafter referred

1 Images were provided as part of the project, “Evaluation of Retrospective Image Reg-
istration”, National Institutes of Health, Project Number 8R01EB002124-03, Prin-
ciple Investigator, J. Michael Fitzpatrick, Vanderbilt University, Nashville, TN.
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to as MI) as a comparison. The testing image pair was the aforementioned pt-
001 CT – T1 dataset and the experiment for either method took 100 trials. At
each trial, the ground truth registration parameters of pt-001 were perturbed
by six uniformly distributed random offsets for all translational and rotational
axes. The perturbed parameters were then treated as the starting alignment. In
order to show the high optimization capability of MI-d with respect to initial
alignment, random offsets for X and Y translational axes were drawn between
around [-150, 150]mm and those for Z translational axis were drawn between
around [-70, 70]mm. (Note that these ranges were set so that two brains in CT
and T1 images have at least 10% overlapping region.) While, random offsets
for each rotational axis were respectively drawn between [-0.52, 0.52] radians,
i.e. [-30, 30] degrees. (The perturbed rotations were first converted to quater-
nions prior to MI-d.) As a fair comparison, the same set of randomized starting
alignments was used for MI and MI-d.

In addition, as mentioned in Section 3, in order to determine a suitable
setting for generating random disturbances, we have tested several different
sets of standard deviation values for the Gaussian distributions: 1/n of image
dimension sizes (in millimeter) for translation, and tan(π/n) for quaternion,
n ∈ {8, 16, 32, 64}. Then, we selected the one set, which produced the most
successful results, for further experiments. Since the registrations were only per-
formed to the downsampled image pair at Level 3, an optimization result was
judged to be successful when the individual translational errors w.r.t. the ground
truth were less than 10mm and the individual rotational errors (measured by
Euler angles) were less than 5◦. Such thresholds were selected because, based
on our empirical experiences, a starting alignment within them definitely can be
fine-tuned to converge to the ground truth.

Table 1 presents the number of successful optimization results for MI and MI-
d with different sets of standard deviations (i.e. MI-d-8, MI-d-16, MI-d-32, MI-
d-64) on pt-001 dataset at Level 3. In the ”# Success” column, it is suggested
that, as compared with MI, MI-d with different sets of standard deviations can
give much more successful optimization results at Level 3. It is also noted that,
amongst the four different sets, MI-d-16 has the best performance and thus we
determine to adopt it for further experiments. The average running time at each
trail for each method is also listed in the table. Obviously, all MI-d methods take

Table 1. The number of successful optimization results and the average processing
time (in seconds) of MI, MI-d with different sets of standard deviations on pt-001 CT
– T1 dataset at Level 3

# success Time (sec)
MI 47 28

MI-d-8 90 227
MI-d-16 96 193
MI-d-32 83 311
MI-d-64 81 321
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relatively longer time to converge than MI. However, as we do not perform trans-
formation disturbance at higher levels (i.e. Levels 0 – 2), where the computational
burden of conventional MI is already significant, the difference between the overall
processing time of MI-d and MI will be much less than that at Level 3.

4.3 Performance Comparisons on Robustness and Accuracy

In this section, we further study and compare the registration performance (w.r.t.
robustness and accuracy) of MI-d-16 and MI. A series of similar randomized
experiments as described in Section 4.2 was performed on the aforementioned
four clinical CT – T1 image pairs (i.e. pt-001, pt-003, pt-005 and pt-007) with all
four resolution levels. Therefore, for either method, an experiment with 100 trials
was performed on each dataset with a set of randomized starting alignments
generated as described in Section 4.2.

To evaluate each derived registration with respect to the corresponding ground
truth registration, similar to [8, 6], a tight bounding box was fitted around the
brain for each T1 images. For each of the eight corner points, the Euclidean
distance between the ground truth position and the position transformed by our
solution was computed. The median value of the eight distances was then taken
for assessing registration success. A registration was judged to be successful
if the median error was smaller than or equal to 4mm, which was the largest
voxel dimension of the CT – T1 image pair; otherwise, it was considered a
misregistration.

Table 2 lists the success rates for MI and MI-d-16 for all testing image pairs
(pt-001, pt-003, pt-005 and pt-007), together with the means and standard de-
viations of the median errors (in millimeters) for the successful registrations. It
is shown in the table that MI-d-16 consistently gives much higher success rates
as compared with MI. For registration accuracy, it is observed that the median
errors of the successful registrations for MI-d-16 are comparable to those for MI,
and are acceptably low.

Table 2. The success rates of MI and MI-d-16, and the means and standard deviations
of the median errors (in millimeters) for different testing image pairs

MI MI-d-16
success% mean ± sd success% mean ± sd

pt-001 51% 0.5295 ± 0.0459 96% 0.5438 ± 0.0530
pt-003 45% 0.1983 ± 0.1103 99% 0.2134 ± 0.2854
pt-005 40% 0.5182 ± 0.7830 93% 0.3959 ± 0.6452
pt-007 44% 1.6842 ± 0.4790 92% 1.6959 ± 0.4138

5 Conclusion and Discussion

To conclude, this paper has proposed a simple and computationally efficient
technique based on transformation disturbance to assist an optimization method
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to avoid local optima, and hence to achieve a robust optimization result. The
new technique has been demonstrated on 3D rigid registrations, and quaternions
have been adopted to represent rotations for the purpose of the unique and order-
independent expression. Randomized registration experiments on four clinical
CT and MR-T1 datasets have revealed that the success rates of our method are
consistently much higher than those of the conventional multi-resolution mutual
information based method. It has been also shown that the registration accuracy
of the new method is acceptably high.

Finally, we would like to note that there is no practical guarantee for our
method to achieve global maximum. However, empirical observations have shown
that the optimization performance of our method is much better than the con-
ventional multi-resolution approach. A theoretical justification of the work is
desirable and remains a topic for future research. Furthermore, although the
illustration and demonstration in this paper just concentrate on mutual infor-
mation as similarity measure and the Powell’s optimization method, the pro-
posed technique is quite general and can be applied to other similarity measures
(e.g. normalized mutual information and so on) and optimization methods (e.g.
simplex methods and so on).
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