
Published work in the proceedings of AAAI 2020
The Discrepancy between the Theoretical Analysis and Practical
Implementations of Compressed Communication for Distributed

Deep Learning

Aritra Dutta, El Houcine Bergou∗, Ahmed M. Abdelmoniem,
Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, Panos Kalnis

KAUST

July 1, 2020

Abstract

Compressed communication, in the form of sparsification or quantization of stochastic gradients, is employed
to reduce communication costs in distributed data-parallel training of deep neural networks. However, there exists a
discrepancy between theory and practice: while theoretical analysis of most existing compression methods assumes
compression is applied to the gradients of the entire model, many practical implementations operate individually on
the gradients of each layer of the model.

In this paper, we prove that layer-wise compression is, in theory, better, because the convergence rate is upper
bounded by that of entire-model compression for a wide range of biased and unbiased compression methods. However,
despite the theoretical bound, our experimental study of six well-known methods shows that convergence, in practice,
may or may not be better, depending on the actual trained model and compression ratio. Our findings suggest that
it would be advantageous for deep learning frameworks to include support for both layer-wise and entire-model
compression.

1 Introduction
Despite the recent advances in deep learning and its wide-spread transformative successes, training deep neural networks
(DNNs) remains a computationally-intensive and time-consuming task. The continuous trends towards larger volumes
of data and bigger DNN model sizes require to scale out training by parallelizing the optimization algorithm across
a set of workers. The most common scale out strategy is data parallelism where each worker acts on a partition of
input data. In each iteration of the optimization algorithm – typically the stochastic gradient descent (SGD) algorithm –
every worker processes a mini-batch of the input data and produces corresponding stochastic gradients. Then, gradients
from all workers are aggregated to produce an update to model parameters to be applied prior to the next iteration. The
gradient aggregation process involves network communication and is supported via a parameter-server architecture or
collective communication routines (e.g., all_reduce).

∗The author is also with INRA and has an equal contribution with the first author.

1

A major drawback of distributed training across parallel workers is that training time can negatively suffer from
high communication costs, especially at large scale, due to the transmission of stochastic gradients. To alleviate this
problem, several lossy compression techniques have been proposed [1, 2, 3, 4, 5, 6, 7, 8, 9].

Two main classes of compression approaches are sparsification and quantization. Sparsification communicates only
a subset of gradient elements. For instance, this is obtained by selecting uniformly at random k% elements or the top
k% elements by magnitude [5]. Quantization, on the other hand, represents gradient elements with lower precision,
thus using fewer bits for each element. For instance, this is done by transmitting only the sign of each element [6], or by
randomized rounding to a discrete set of values [3].

In theory, such methods can reduce the amount of communication and their analysis reveal that they provide
convergence guarantees (under certain analytic assumptions). Further, such methods preserve model accuracy across a
range of settings in practice.

However, we observe a discrepancy between the theoretical analysis and practical implementation of existing
compression methods. To the best of our knowledge, the theoretical analysis of every prior method appears to assume that
compression is applied to the gradient values of the entire model. However, from our study of existing implementations
[10, 11, 12, 13, 9] and experience with implementing compression methods, we observe that compression is applied
layer by layer, as illustrated in Figure 1. In fact, based on the existing programming interfaces in modern distributed
machine learning toolkits such as PyTorch [14] and TensorFlow [15], a layer-wise implementation is typically most
straightforward because wait-free backpropagation [10] – where gradients are sent as soon as they are available – is a
commonly used optimization.

Importantly, layer-wise compression in general differs from entire-model compression (though for certain quanti-
zation methods the results are identical). For example, Figure 1 shows the effects of Top k with a sparsification ratio
of 50%, highlighting that when entire-model compression is used, no gradient for the last layer is transmitted at that
specific step, which may affect convergence. This suggests that the choice of a compression approach may warrant
careful consideration in practice.

In particular, this discrepancy has important implications that motivate this paper. First, since implementation
artifacts differ from what has been theoretically analyzed, do theoretical guarantees continue to hold? Second, how does
the convergence behavior in the layer-wise compression setting theoretically compare to entire-model compression?
Third, in practice, are there significant differences in terms of convergence behavior when entire-model or layer-wise
compression is applied? And if so, how do these differences vary across compression methods, compression ratios, and
DNN models? To the best of our knowledge, this is the first paper to observe the above discrepancy and explore these
questions. To answer these questions, this paper makes the following contributions.
Layer-wise bidirectional compression analysis: We introduce a unified theory of convergence analysis for distributed
SGD with layer-wise compressed communication. Our analysis encompasses the majority of existing compression
methods and applies to both biased (e.g., Top k, Random k, signSGD [6]) and unbiased methods (e.g., QSGD [3],
TernGrad [4], CNAT [9]). Additionally, our analysis considers bidirectional compression, that is, compression at both the
worker side and parameter server side, mimicking the bidirectional strategy used in several compression methods [6, 9].
Our theoretical analysis gives a proof of tighter convergence bounds for layer-wise compression as compared to
entire-model compression.
Evaluation on standard benchmarks: We confirm our analytical findings by empirically evaluating a variety of
compression methods (Random k, Top k, TernGrad, Adaptive Threshold, Threshold v, and QSGD) with standard CNN
benchmarks [16] for a range of models (AlexNet, ResNet-9, and ResNet-50) and datasets (CIFAR-10 and ImageNet).
We mainly find that, in many cases, layer-wise compression is better or comparable to entire-model compression in
terms of test accuracy at model convergence. However, despite the theoretical findings, our empirical results reveal that
in practice there are cases, such as the Top k method with small sparsification ratio k and small model sizes, where
layer-wise compression performs worse than entire-model compression. This suggests that the current practice of
implementing compression methods in a layer-wise fashion out of implementation expedience may not be optimal in all

2

2.1 1.1 4.6 0.9 4.9 1.30.30.9 0.4 0.6

Layer 3 Layer 2 Layer 1

Stochastic gradients

2.1 4.6 4.9 1.3 0.6

Entire-model compression (theoretical analysis)

2.1 1.1 4.6 4.9 1.3

Layer-wise compression (practical implementation)

Backpropagation

Figure 1: Contrived example of compressed communication illustrating how layer-wise Top k compression (with k = 50%) differs
from entire-model compression.

cases. Thus, it would be advantageous for distributed deep learning toolkits to include support for both layer-wise and
entire-model compression.

2 Preliminaries
Distributed DNN training builds on the following optimization problem:

minx∈Rd f(x) := minx∈Rd
1
n

∑n
i=1 Eξ∼DiFi(x, ξ)︸ ︷︷ ︸

:=fi(x)

. (1)

Without loss of generality, consider the above problem as a classical empirical risk minimization problem over n
workers, where Di is the local data distribution for worker i, ξ is a random variable referring to a sample data. These
problems typically arise in deep neural network training in the synchronous data-parallel distributed setting, where each
worker has a local copy of the DNN model. Each worker uses one of n non-intersecting partitions of the data, Di, to
jointly update the model parameters x ∈ Rd, typically the weights and biases of a DNN model. In this paradigm, the

3

objective function f(x) is non-convex but has Lipschitz-continuous gradient. One of the most popular algorithms for
solving (1) is the stochastic gradient descent (SGD) algorithm [17]. For a sequence of iterates {xk}k≥0 and a step-size
parameter ηk > 0 (also called learning rate), SGD iterates are of the form: xk+1 = xk − ηkg(xk), where g(xk) is an
unbiased estimator of the gradient of f , that is, for a given xk we have E(g(xk)) = ∇f(xk).
Notations. We write the matrices in bold uppercase letters and denote vectors and scalars by simple lowercase letters.
We denote a vector norm of x ∈ Rd by ‖x‖, the `1-norm by ‖x‖1, the `2-norm by ‖x‖2, and for a positive definite
matrix M, we define ‖x‖M :=

√
x>Mx. By xi,jk , we denote a vector that results from the kth iteration, at the ith

worker, and represents the jth layer of the deep neural network. Similar notation follows for the stochastic gradients.
When j is implied, we simplify the notation as xik and vice-versa. Also, by x1:nk we denote a collection of n vectors xik,
where i = 1, . . . , n. Further, for the ease of notation, denote f(xk) = fk.

3 Layer-wise Gradient Compression
We define a general bidirectional compression framework that is instantiated via two classes of user-provided functions:
(1) a compression operator QW at each worker (which for simplicity, we assume is the same at each worker and for
every layer), and (2) a compression operator QM at the master node. The master node abstracts a set of parameter
servers. We now introduce the framework and then formalize the setup under which we analyze it. Our analysis follows
in the next section.

Conceptually, based on its local copy of the model at step k, each worker first computes the local stochastic gradient
gi,jk of each layer j (from 1 to L) and then performs layer-wise compression to produce g̃i,jk = QW |j(g

i,j
k). After

that, each worker transmits g̃i,jk to the master. The master collects all the gradients from the workers, aggregates them
(via averaging), and then uses the compression operator QM to generate g̃jk := QM |j(

1
n

∑n
i=1 g̃

i,j
k). The master then

broadcasts the results back to all workers. Each worker recovers the entire-model gradient g̃k by collating the aggregated
gradient of each layer g̃jk and then updates the model parameters via the following rule (where η is the learning rate):

xk+1 = xk − ηkg̃k. (2)

This process continues until convergence. Algorithm 1 lists the steps of this process.
We note that this framework is agnostic to the optimization algorithm. We consider SGD in this paper. However,

given access to xi,jk and g̃jk, Algorithm 1 can be adapted to any other popular optimizer used to train DNNs, such as
ADAM [18], ADAGrad [19] or RMSProp.

Moreover, the framework supports different compression operators at the worker side and master side as our general
theory supports it. In the limit, the compression operator may also differ between layers, including the identity function
as an operator for specific layers to avoid compressing those. This is also covered by our theory.

Finally, while we cast our framework on the parameter-server architecture, it is easy to see that it generalizes to
collective routines (specifically, all_reduce) since in that case, there is no master and this behavior is modeled by
taking QM as the identity function.

3.1 Setup
We now formalize the above concepts and state the general assumptions we make (several of which are classical ones).

Assumption 1. (Lower bound) The function f is lower bounded; that is, there exists an f? ∈ R such that f(x) ≥ f?,
for all x.

Assumption 2. (L-smoothness) The function f is L smooth if its gradient is L-Lipschitz continuous, that is, for all
x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

4

Algorithm 1 Layer-wise gradient compression framework
Input: Number of workers n, learning rate η, compression operators QW (worker side) and QM (master side)
Output: The trained model x

1: On each worker i:
2: for k = 0, 1, . . . do
3: Calculate stochastic gradient gi,jk of each layer j
4: g̃i,jk = QW |j(g

i,j
k)

5: Send compressed gradient g̃i,jk
6: Receive aggregated gradient g̃jk
7: Collate entire-model gradient g̃k = g̃1:Lk
8: xk+1 = xk − ηkg̃k
9: end for

10: return x

1: On master node, at each step k and for each layer j:
2: Receive g̃i,jk from each worker
3: g̃jk = QM |j(

1
n

∑n
i=1 g̃

i,j
k)

4: Broadcast aggregated compressed gradient g̃jk

Assumption 3. (Unbiasedness of stochastic gradient) The stochastic gradient is unbiased, that is,

E(gk|xk) = ∇fk. (3)

If one assumes that the stochastic gradient has bounded variance denoted as Σ, then, for a given symmetric positive
definite (SPD) matrix A, one has

E(‖gk‖2A|xk) = Trace(AΣ) + ‖∇fk‖2A,

where Trace(X) denotes the sum of the diagonal elements of a matrix X. A relaxed assumption of the bounded variance
is the strong growth condition on stochastic gradient.

Assumption 4. (Strong growth condition on stochastic gradient) For a given SPD matrix A, a general strong growth
condition with an additive error is

E(‖gk‖2A|xk) ≤ ρ‖∇fk‖2A + σ2, (4)

where ρ > 0 and σ > 0.

A similar assumption was proposed in [20, 21, 22] when A is the identity matrix, that is, for the `2-norm. For
overparameterized models such as DNNs, it is common practice to assume σ = 0; and the condition says that the
growth of stochastic gradients is relatively controlled by the gradient∇fk [20]. That is, there exists a ρ > 0 such that

E(‖gk‖2A) ≤ ρ‖∇fk‖2A.

Before defining compression operators formally, below we introduce an assumption that compressor operators
should obey. Consider a compression operator Q(·) : Rd → Rd.

5

Assumption 5. (Compression operator) For all vectors x ∈ Rd the compression operator Q(·) satisfies

EQ‖Q(x)‖22 ≤ (1 + Ω)‖x‖22. (5)

where the expectation EQ(·) is taken over the internal randomness of the operator Q(·) and Ω > 0.

Remark 1. A broad range of compression operators, whether biased or unbiased, satisfy Assumption 5. In particular,
existing compression operators such as Random k, Top k, signSGD, unbiased Random k, QSGD, CNAT, TernGrad,
stochastic rounding, adaptive compression, respect this assumption. Moreover, if there is no compression, then Ω = 0.

Following [23], we generalize their assumption (c.f. Assumption 3.3) that imposes a descent property to the
stochastic gradient. This assumption lower bounds the expected inner product of the stochastic gradient g̃k with the
gradient∇fk with a positive quantity depending on a power of the gradient norm while allowing a small residual on the
lower bound.

Assumption 6. There exists 0 < α ≤ 2 such that

E
[
g̃>k ∇fk

]
≥ E‖∇fk‖α +Rk, (6)

where ‖ · ‖ is a vector norm in Rd and Rk is a small scalar residual which may appear due to the numerical inexactness
of some operators or due to other computational overheads.

By setting α = 1 and Rk = 0, we recover the key assumption made by [23].
In light of our framework and the assumptions made, we now define a general layer-wise compression operator.

Definition 1. (Layer-wise compression operator.) Let Q(·) : Rd → Rd be a layer-wise compression operator such
that Q := (Q1 Q2 · · ·QL), where each Qj(·) : Rdj → Rdj , for j = 1, 2, · · · , L with

∑L
j=1 dj = d be a compression

operator.

The following lemma characterizes the compression made by biased layer-wise compression operators.

Lemma 1. Let Q(·) : Rd → Rd be layer-wise biased compression operator with Q := (Q1 Q2 · · ·QL), such that,
each Qj(·) : Rdj → Rdj for j = 1, 2, · · · , L satisfies Assumption 5 with Ω = Ωj . Then we have

EQ
(
‖Q(x)‖22

)
≤

∑
1≤j≤L

(1 + Ωj)‖xj‖22

≤ max
1≤j≤L

(1 + Ωj)‖x‖22. (7)

4 Convergence Analysis
We now establish the convergence of the above-defined layer-wise bidirectional compression scheme. The proofs are
available in a companion technical report [24]. Let the matrix WW := diag((1 + Ω1

W)I1 (1 + Ω2
W)I2 · · · (1 + ΩLW)IL)

be a diagonal matrix that characterizes the layer-wise compression at each worker, such that for each j = 1, 2, · · · , L,
Ij be a dj × dj identity matrix. Similarly, to characterize the layer-wise compression at the master node, we de-
fine WM . Given that ΩjW ,Ω

j
M ≥ 0 for each j = 1, 2, · · · , L, therefore, WW and WM are SPD matrices. Denote

ΩM := max1≤j≤L ΩjM , ΩW := max1≤j≤L ΩjW . Further define A := WMWW .
In the next lemma, we consider several compression operators that satisfy Assumption 6. For instance, these include

unbiased compression operators, as well as Random k and signSGD.

6

Lemma 2. We note the following:

i. (For unbiased compression) If g̃k is unbiased (the case when QM and QW are unbiased), then

E
[
g̃>k ∇fk

]
= E‖∇fk‖22. (8)

Therefore, g̃k satisfies Assumption 6 with α = 2, ‖ · ‖ = ‖ · ‖2 and Rk = 0.

ii. If QM and QW are the Random k compression operator with sparsification ratios kM and kW , respectively, then

E
[
g̃>k ∇fk

]
= kMkW

d2 E‖∇fk‖22. (9)

Therefore, g̃k satisfies Assumption 6 with α = 2, ‖ · ‖ = kMkW
d2 ‖ · ‖2, and Rk = 0.

iii. Let QM be the layer-wise Random kMj
compression operator for each layer j. Similarly, QW is the layer-wise

Random kWj
compression operator for each layer j, then

E
[
g̃>k ∇fk

]
= E‖∇fk‖2B, (10)

where B = diag
(
kM1

kW1

d21
I1

kM2
kW2

d22
I2 · · ·

kMLkWL
d2L

IL

)
. Therefore, g̃k satisfies Assumption 6 with α = 2, ‖ · ‖ =

‖ · ‖B and Rk = 0.

iv. Let QM and QW be the sign function, similar to that in signSGD, then

E
[
g̃>k ∇fk

]
≥ E‖∇fk‖1 +Rk. (11)

Therefore, g̃k satisfies Assumption 6 with α = 1, ‖ · ‖ = ‖ · ‖1, and Rk = O
(

1
BS

)
, where BS is the size of used

batch to compute the signSGD.

Similar to the cases mentioned in Lemma 2, we can characterize several other well-known compression operators or
their combinations. Our next lemma gives an upper bound on the compressed stochastic gradient g̃k.

Lemma 3. Let Assumption 4 hold. With the notations defined above, we have

E‖g̃k‖22 ≤ ρ‖∇fk‖2A + σ2. (12)

Remark 2. If gik has bounded variance, Σ, say, then Trace(AΣ) = σ2.

Now we quote our first general inequality that the iterates of (2) satisfy. This inequality does not directly yield
convergence of the scheme in (2). However, this is a first necessary step to show convergence. We note that the matrix
A and σ quantify layer-wise compression.

Proposition 1. With the notations and the framework defined before, the iterates of (2) satisfy

ηk

(
E‖∇fk‖α − Lηk2 E‖∇fk‖2A

)
≤ E(fk − fk+1) (13)

−ηkRk +
Lη2kσ

2

2 .

Remark 3. If g̃k is an unbiased estimator of the gradient, then α = 2, ‖ · ‖ = ‖ · ‖2, A = I, and Rk = 0. Therefore,
(13) becomes

ηkE‖∇fk‖22
(

1− Lρηk2

)
≤ E(fk − fk+1) +

Lη2kσ
2

2 .

The above is the classic inequality used in analyzing SGD.

7

In the non-convex setting, it is standard to show that over the iterations the quantity mink∈[K] E(‖∇fk‖2) approaches
to 0 as K → ∞. Admittedly, this is a weak statement as it only guarantees that an algorithm converges to a local
minimum of f . To facilitate this, next we quote two propositions: one is for the special case when α = 2; the other
one covers all cases α ∈ (0, 2]. In the propositions, for simplicity, we use a fixed step-size η. One can easily derive
the convergence of Algorithm 1 under general compression Q to the ε-optimum by choosing a sufficiently small or
decreasing step-size, similarly to the classical analysis of SGD.

Proposition 2. (Special case.) Consider α = 2, and Rk = 0. Let C > 0 be the constant due to the equivalence between
the norms ‖ · ‖ and ‖ · ‖A, and K > 0 be the number of iterations. If ηk = η = O

(
1√
K

)
< 2

LCρ then

∑K
k=1 E‖∇fk‖2

K ≤ O
(

1√
K

)
.

Proposition 3. (General case.) Assume ‖∇fk‖ ≤ G. Let C > 0 be the constant coming from the equivalence between

‖ · ‖ and ‖ · ‖A. Let ηk = η = O
(

1√
K

)
< 2
LCρG2−α . Let a :=

(
1− LCρG

2−αη
2

)
> 0, then

∑K
k=1 E‖∇fk‖α

K ≤ O
(

1√
K

)
+

∑K
k=1 Rk
aK .

Remark 4. Note that if we assume small residuals such that for all k,Rk = O
(

1√
K

)
, then we have

∑K
k=1 E‖∇fk‖α

K ≤ O
(

1√
K

)
.

Remark 5. From the above propositions, immediately one can observe, K mink∈[K] E(‖∇fk‖α) ≤
∑k
k=1 E(‖∇fk‖α)

and hence the above propositions directly imply convergence of the iterative scheme in (2) under layer-wise compression.

Remark 6. Note that for all the cases we mentioned in Lemma 2, except for signSGD, we have α = 2, and
Rk = 0, so we are in Proposition 2. For signSGD, |Rk| ≤ O(1/BS) so if one uses BS = O(

√
K), then we

get
∑K
k=1 E‖∇fk‖α

K ≤ O
(

1√
K

)
.

We note that our convergence analysis can be extended to convex and strongly convex cases.
Layer-wise compression vs entire-model compression. From our analysis, a natural question arises: can we relate
the noise for layer-wise compression with that of entire-model compression? The answer is yes and we give a sharper
estimate of the noise bound. From our convergence results, we see that the error for layer-wise compression is
proportional to Trace(A) =

∑L
j=1(1 + ΩjM)(1 + ΩjW). This is less than or equal to Lmaxj(1 + ΩjM)(1 + ΩjW),

which is the error for using bidirectional compression applied to the entire model.

5 Empirical Study
We implement several well-known compression methods and show experimental results contrasting layer-wise with
entire-model compression for a range of standard benchmarks.

5.1 Implementation highlights
We base our proof-of-concept implementation on PyTorch.1 Layer-wise and entire-model compression share the same
compression operations. The difference is the inputs used with each invocation of the compressor. As with other modern
toolkits, in PyTorch, the gradients are computed layer-by-layer during the backward pass, starting from the last layer of

1Available at https://github.com/sands-lab/layer-wise-aaai20.

8

the model. As such, layer j’s gradient is available as soon as it is computed and before backward propagation for layer
j − 1 starts. Distributed training typically exploits this characteristic to accelerate training by overlapping some amount
of communication with the still ongoing gradient computation. In the layer-wise setting, our implementation invokes the
compressor independently for the gradient of each layer as soon as it is available. In contrast, in the entire-model setting,
our implementation waits until the end of the backward pass and invokes the compressor once with the entire model
gradients as input. Clearly, this introduces an additional delay before communication starts; however, with smaller
volumes of transmitted data, the benefits of compressed communication can eclipse this performance penalty.

5.2 Experimental setting
Compression methods. We experiment with the following compression operators: Random k, Top k, Threshold v,
TernGrad [4], Adaptive Threshold [25], and QSGD [3]. Given an input vector, Random k uniformly samples k% of its
elements; Top k selects the largest k% elements by magnitude; Threshold v selects any element greater or equal to v in
magnitude.
Benchmarks. We adopt DAWNBench [16] as a benchmark for image classification tasks using convolutional neural
networks (CNNs). We train AlexNet [26], ResNet-9 and ResNet-50 [27] models. We use standard CIFAR-10 [28] and
ImageNet [29] datasets.
Hyperparameters. We set the global mini-batch size to 1,024 (the local mini-batch size is equally divided across
workers); the learning rate schedule follows a piecewise-linear function that increases the learning rate from 0.0 to 0.4
during the first 5 epochs and then decreases to 0.0 till the last epoch. Unless otherwise noted, CIFAR-10 experiments
run for 24 epochs and ImageNet experiments for 34 epochs. Where applicable, we use ratio k in {0.1, 1, 10, 30, 50}%.
Environment. We perform our experiments on server-grade machines running Ubuntu 18.04, Linux 4.15.0-54, CUDA
10.1 and PyTorch 1.2.0a0_de5a481. The machines are equipped with 16-core 2.6 GHz Intel Xeon Silver 4112 CPU,
512 GB of RAM and 10 Gbps network interface cards. Each machine has an NVIDIA Tesla V100 GPU with 16 GB of
memory. We use two machines for CIFAR-10 experiments while we use four machines for ImageNet experiments.
Evaluation metrics. We report the accuracy on a held-out testing dataset evaluated at the end of each epoch during the
training process. We compare the test accuracy of layer-wise and entire-model compression.

5.3 Experimental Results
Below we illustrate the results for each compression method. In a nutshell, our results show that both layer-wise and
entire-model compression approaches achieve in most cases similar convergence behavior and test accuracy. However,
certain compression methods, namely, TernGrad, QSGD, and Adaptive Threshold achieve significantly better accuracy
using layer-wise compression. This is because per-layer compression in these cases capitalizes on more fine-grained
representations that reduce the overall compression error.
Random k. Figure 2 reports results for Random k compression while training AlexNet and ResNet-9 on CIFAR-10. We
observe that layer-wise Random k achieves comparable results to entire-model compression at different sparsification
ratios, except for ratio of 0.1% where layer-wise supersedes entire-model compression. This is not surprising because
both layer-wise and entire-model compression approaches sample uniformly at random gradient elements, and so, every
element has an equal probability of being sampled regardless of its magnitude. We also notice that for ratios less than
10%, Random k has a slower rate of convergence for both compression approaches compared to other compression
methods (shown below). This suggests that randomly selecting a sample of gradient elements with no regard to their
importance is not ideal, especially for small sparsification ratios.
TernGrad. Figure 3 presents the results of TernGrad compression for several benchmarks. We observe that with
TernGrad, layer-wise compression achieves consistently higher test accuracy compared to entire-model compression.
Mostly this result is attributed to the following. As an unbiased quantization method, TernGrad scales the gradient

9

1 5 9 13 17 21 25 29 33 37 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 a

cc
ur

ac
y

0.1% layer-wise
0.1% entire-model

1% layer-wise
1% entire-model

10% layer-wise
10% entire-model

30% layer-wise
30% entire-model

50% layer-wise
50% entire-model

(a) AlexNet

1 5 9 13 17 21 25 29 33 37 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

0.1% layer-wise
0.1% entire-model

1% layer-wise
1% entire-model

10% layer-wise
10% entire-model

30% layer-wise
30% entire-model

50% layer-wise
50% entire-model

(b) ResNet-9

Figure 2: CIFAR-10 test accuracy for Random k compression.

values (i.e., three numerical levels {−1, 0, 1}) by a scalar computed as a function of the gradient vector and its size. For
entire-model compression, there is a single scalar and this may be looser than each layer’s scalar used in layer-wise
compression. Thus, when the model is updated (line 8 of Algorithm 1), entire-model compression has higher probability
of error.
QSGD. The results using QSGD, shown in Figure 4 are similar to TernGrad. We note that ImageNet layer-wise accuracy
is 1.52× better than entire-model compression.
Adaptive Threshold. Figure 5 shows the results of Adaptive Threshold compression while training AlexNet and ResNet-
9 on CIFAR-10. As before, layer-wise compression achieves better accuracy compared to entire-model compression.
The reasoning for this is similar to TernGrad: here, a per-layer threshold chosen with respect to the layer’s gradient
values performs better than a single threshold selected for the entire-model gradient values. However, we note that this
compression method, compared to others, induces slower convergence and only achieves at best ≈ 70% accuracy after
40 epochs.
Threshold v. Figures 7 reports results of Threshold v compression while training ResNet-9 on CIFAR-10 (AlexNet is
qualitatively similar and omitted). We observe that layer-wise and entire-model compression achieve similar accuracy
for a wide range of thresholds across three orders of magnitude. This is expected because every gradient element greater

10

1 5 9 13 17 21 24
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 a

cc
ur

ac
y

 ResNet-9 layer-wise
ResNet-9 entire-model

AlexNet layer-wise
AlexNet entire-model

(a) CIFAR-10 test accuracy

1 4 7 10 13 16 19 22 25 28 31 3434
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
te

st
 a

cc
ur

ac
y

ResNet-50 layer-wise ResNet-50 entire-model

(b) ImageNet top-5 test accuracy

Figure 3: TernGrad compression.

than v in magnitude is transmitted in both approaches.
Top k. Figure 8 presents the results on CIFAR-10 for Top k compression. Similarly to Random k, layer-wise compression
achieves comparable results to entire-model compression for a range of sparsification ratios.

Interestingly, for ratios ≤ 10%, where test accuracy is overall low, entire-model compression performs better than
layer-wise compression. We could attribute this to the relevance of different layers to the model’s convergence, in
accordance to a recent study on the relevance of layers in DNNs [30]. Unlike layer-wise compression, the top k%
gradient elements picked by entire-model compression could indeed be more important towards the optimization
objective, that is, the loss function. Small sparsification ratios and models with a relatively small number of layers
stress this behavior. However, to highlight that layer-wise compression is not necessarily inferior in these settings, we
repeat the experiment training ResNet-9 by using SGD with Nesterov’s momentum (which is outside the scope of our
theoretical analysis). Figure 8c shows that layer-wise compression is comparable to, if not better than entire-model
compression even at small ratios. We leave a thorough analysis of these observations to future work.

Figure 9 shows the top-5 test accuracy for the ResNet-50 model trained on ImageNet (only 20 epochs shown for
clarity). Layer-wise compression achieves 1.25-1.63× better test accuracy. In contrast to CIFAR-10 results, layer-wise
compression supersedes entire-model compression even at small ratios (i.e., 0.1%). This reaffirms that layer-wise
compression remains more effective for models with a larger number of layers compared to previous experiments.
Training Time. We remark that our focus in this study is the convergence behavior of existing methods. Although total

11

1 5 9 13 17 21 24
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 a

cc
ur

ac
y

 ResNet-9 layer-wise
ResNet-9 entire-model

AlexNet layer-wise
AlexNet entire-model

(a) CIFAR-10 test accuracy

1 4 7 10 13 16 19 22 25 28 31 3434
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
te

st
 a

cc
ur

ac
y

ResNet-50 layer-wise ResNet-50 entire-model

(b) ImageNet top-5 test accuracy

Figure 4: QSGD compression (with s = 256).

training time is an important factor, we do not present wall-clock results because (1) our unoptimized implementation
does not represent a valid proof point for the level of training speedup that well-engineered compression methods can
offer, and (2) the literature has already established that there are potentially large speedups to be achieved. Indeed, our
measurements show that performance depends on several factors including the model size and depth, the computational
costs of compression and layer sizes. While layer-wise compression yields opportunities for overlapping communication
and computation, we note that in some cases, overheads are better amortized by combining multiple invocations of the
communication routines into a single one. We leave it to future work to thoroughly study the performance implications.

6 Conclusion
We identified a significant discrepancy between the theoretical analysis of the existing gradient compression methods
and their practical implementation: while in practice compression is applied layer-wise, theoretical analysis is presumes
compression is applied on the entire model. We addressed the lack of understanding of converge guarantees in the
layer-wise setting by proposing a bi-directional compression framework that encompasses both biased compression
methods and unbiased ones as a special case. We proved tighter bounds on the noise (i.e., convergence) induced on SGD
optimizers by layer-wise compression and showed that it is theoretically no worse than entire model compression. We
implemented many common compression methods and evaluated their accuracy comparing layer-wise compression to

12

1 5 9 13 17 21 25 29 33 37 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 a

cc
ur

ac
y

 ResNet-9 layer-wise
ResNet-9 entire-model

AlexNet layer-wise
AlexNet entire-model

Figure 5: CIFAR-10 test accuracy for Adaptive Threshold.

entire-model compression. Conforming to our analysis, our results illustrated that in most cases, layer-wise compression
performs no worse than entire-model compression, and in many cases it achieves better accuracy, in particular for larger
models.

13

1 5 9 13 17 21 24
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 a

cc
ur

ac
y

0.1% layer-wise
0.1% entire-model
1% layer-wise
1% entire-model
10% layer-wise

10% entire-model
30% layer-wise
30% entire-model
50% layer-wise
50% entire-model

(a) AlexNet

1 5 9 13 17 21 24
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

ResNet-9
v=0.001 layer-wise
v=0.001 entire-model
v=0.01 layer-wise
v=0.01 entire-model
v=0.1 layer-wise

v=0.1 entire-model
v=0.3 layer-wise
v=0.3 entire-model
v=0.5 layer-wise
v=0.5 entire-model

(b) ResNet-9

Figure 6: CIFAR-10 test accuracy for Threshold v compression.

References
[1] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-Bit Stochastic Gradient Descent and Application to Data-Parallel Distributed

Training of Speech DNNs. In INTERSPEECH, 2014.

[2] T. Dettmers. 8-Bit Approximations for Parallelism in Deep Learning. In ICLR, 2016.

[3] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-Efficient SGD via Gradient Quantization
and Encoding. In NeurIPS, 2017.

[4] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. TernGrad: Ternary Gradients to Reduce
Communication in Distributed Deep Learning. In NeurIPS, 2017.

[5] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli. The Convergence of Sparsified Gradient
Methods. In NeurIPS, 2018.

[6] J. Bernstein, Y. Wang, K. Azizzadenesheli, and A. Anandkumar. signSGD: Compressed Optimisation for Non-Convex Problems.
In ICML, 2018.

[7] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu. Communication Compression for Decentralized Training. In NeurIPS, 2018.

[8] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient Sparsification for Communication-Efficient Distributed Optimization. In
NeurIPS, 2018.

14

1 5 9 13 17 21 24
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

ResNet-9
v=0.001 layer-wise
v=0.001 entire-model
v=0.01 layer-wise
v=0.01 entire-model
v=0.1 layer-wise

v=0.1 entire-model
v=0.3 layer-wise
v=0.3 entire-model
v=0.5 layer-wise
v=0.5 entire-model

Figure 7: CIFAR-10 test accuracy for Threshold v compression.

[9] Samuel Horváth, Chen-Yu Ho, L’udovít Horváth, Atal Narayan Sahu, Marco Canini, and Peter Richtárik. Natural Compression
for Distributed Deep Learning, 2019. arXiv 1905.10988. http://arxiv.org/abs/1905.10988.

[10] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P.
Xing. Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters. In USENIX ATC,
2017.

[11] Shaohuai Shi, Qiang Wang, and Xiaowen Chu. Performance Modeling and Evaluation of Distributed Deep Learning Frameworks
on GPUs, 2017. arXiv 1711.05979. http://arxiv.org/abs/1711.05979.

[12] Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. 3LC: Lightweight and Effective Traffic Compression For
Distributed Machine Learning. In SysML, 2019.

[13] Shaohuai Shi, Xiaowen Chu, and Bo Li. MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD
Algorithms. In INFOCOM, 2019.

[14] PyTorch. https://pytorch.org/.

[15] TensorFlow. https://tensorflow.org/.

[16] Cody A. Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter Bailis, Kunle Olukotun, Chris
Ré, and Matei Zaharia. DAWNBench: An End-to-End Deep Learning Benchmark and Competition. In NeurIPS - ML Systems
Workshop, 2017.

[17] H. Robbins and S. Monro. A Stochastic Approximation Method. Annals of Mathematical Statistics, 22(3):400–407, 1951.

[18] Diederik P. Kingma and Jimmy Ba. ADAM: A Method for Stochastic Optimization. In ICLR, 2015.

[19] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. JMLR,
12:2121–2159, 2011.

[20] S. Vaswani, F. Bach, and M. Schmidt. Fast and Faster Convergence of SGD for Over-Parameterized Models (and an Accelerated
Perceptron). In AISTATS, 2019.

[21] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale Machine Learning. SIAM Review, 60(2), 2018.

[22] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming, 1st edition. Athena Scientific, 1996.

[23] El Houcine Bergou, Eduard Gorbunov, and Peter Richtárik. Stochastic Three Points Method for Unconstrained Smooth
Minimization, 2019. arXiv 1902.03591. http://arxiv.org/abs/1902.03591.

[24] Aritra Dutta, El Houcine Bergou, Ahmed M. Abdelmoniem, Chen-Yu Ho, Narayan Atal Sahu, Marco Canini, and Panos Kalnis.
On the Discrepancy between the Theoretical Analysis and Practical Implementations of Compressed Communication for
Distributed Deep Learning. Technical report, KAUST, Nov 2019. http://hdl.handle.net/10754/660127.

[25] Chia Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and Kailash Gopalakrishnan. AdaComp: Adaptive
Residual Gradient Compression for Data-Parallel Distributed Training. In AAAI, 2018.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet Classification with Deep Convolutional Neural Networks. In NeurIPS,
2012.

15

[27] H. Kaiming, Z. Xiangyu, R. Shaoqing, and S. Jian. Deep Residual Learning for Image Recognition. In CVPR, 2016.

[28] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR,
2009.

[30] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and understanding deep neural
networks. Digital Signal Processing, 73:1–15, feb 2018.

[31] Ahmed M. Abdelmoniem and Brahim Bensaou. Efficient Switch-Assisted Congestion Control for Data Centers: an Implemen-
tation and Evaluation. In IEEE International Performance Computing and Communications Conference (IPCCC), December
2015.

[32] Ahmed M. Abdelmoniem, Brahim Bensaou, and Amuda James Abu. HyGenICC: Hypervisor-based Generic IP Congestion
Control for Virtualized Data Centers. In Proceedings of IEEE ICC, 2016.

[33] Amuda James Abu, Brahim Bensaou, and Ahmed M. Abdelmoniem. A Markov Model of CCN Pending Interest Table
Occupancy with Interest Timeout and Retries. In IEEE International Confereence on Communications (ICC), 2016.

[34] Ahmed M. Abdelmoniem, Brahim Bensaou, and Amuda James Abu. SICC: SDN-based Incast Congestion Control for Data
Centers. In Proceedings of IEEE ICC, 2017.

[35] Valerio Persico, Pietro Marchetta, Alessio Botta, and Antonio Pescapè. Measuring network throughput in the cloud. Computer
Networks, 93(P3):408–422, 2015.

[36] S. Shi, Q. Wang, and X. Chu. Performance modeling and evaluation of distributed deep learning frameworks on gpus. In 16th
IEEE DataCom, pages 949–957, 2018.

[37] Ahmed M. Abdelmoniem and Brahim Bensaou. Curbing Timeouts for TCP-Incast in Data Centers via A Cross-Layer Faster
Recovery Mechanism. In IEEE International Conference on Computer Communications, 2017.

[38] Ahmed M. Abdelmoniem and Brahim Bensaou. Reconciling Mice and Elephants in Data Center Networks. In IEEE
International Conference on Cloud Networking (CloudNet), 2015.

[39] Ahmed M. Abdelmoniem and Brahim Bensaou. Incast-Aware Switch-Assisted TCP Congestion Control for Data Centers. In
IEEE Global Communications Conference (GlobeCom), 2015.

[40] Ahmed M. Abdelmoniem and Brahim Bensaou. Hysteresis-based Active Queue Management for TCP Traffic in Data Centers.
In IEEE International Conference on Computer Communications, 2019.

[41] Ahmed M. Abdelmoniem, Brahim Bensaou, and Amuda James Abu. Mitigating TCP-Incast Congestion in Data Centers with
SDN. Special issue on Cloud Communications and Networking, Annals of Telecommunications, 2017.

[42] A. S. Sabyasachi, H. M. D. Kabir, A. M. Abdelmoniem, and S. K. Mondal. A resilient auction framework for deadline-aware
jobs in cloud spot market. In 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS), pages 247–249, 2017.

[43] Ahmed M. Abdelmoniem, Hengky Susanto, and Brahim Bensaou. Taming Latency in Data centers via Active Congestion-
Probing. In IEEE International Conference on Distributed Computing Systems (IEEE ICDCS), 2019.

[44] Hengky Susanto, Benyuan Liu Ahmed M. Abdelmoniem, Honggang Zhang, and Don Towsley. A Near Optimal Multi-Faced
Job Scheduler for Datacenter Workloads. In IEEE International Conference on Distributed Computing Systems (IEEE ICDCS),
2019.

[45] Ahmed M. Abdelmoniem, Brahim Bensaou, and Victor Barsoum. IncastGuard: An Efficient TCP-Incast Congestion Effects
Mitigation Scheme for Data Center Network. In IEEE International Conference on Global Communications (IEEE GlobeCom),,
2018.

[46] Ahmed M. Abdelmoniem and Brahim Bensaou. Enforcing Transport-Agnostic Congestion Control via SDN in Data Centers.
In IEEE Local Computer Networks (LCN), Singapore, October 2017.

[47] Ahmed M. Abdelmoniem, Yomna M. Abdelmoniem, and Brahim Bensaou. On Network Systems Design: Pushing the
Performance Envelope via FPGA Prototyping. In IEEE international Conference on Recent Trends in Computer Engineering
(IEEE ITCE), 2019.

16

1 5 9 13 17 21 24
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

0.1% layer-wise
0.1% entire-model

1% layer-wise
1% entire-model

10% layer-wise
10% entire-model

30% layer-wise
30% entire-model

50% layer-wise
50% entire-model

(a) AlexNet

1 5 9 13 17 21 24
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

0.1% layer-wise
0.1% entire-model
1% layer-wise
1% entire-model
10% layer-wise

10% entire-model
30% layer-wise
30% entire-model
50% layer-wise
50% entire-model

(b) ResNet-9

1 5 9 13 17 21 24
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

0.1% layer-wise
0.1% entire-model
1% layer-wise
1% entire-model
10% layer-wise

10% entire-model
30% layer-wise
30% entire-model
50% layer-wise
50% entire-model

(c) ResNet-9 by using SGD with Nesterov’s momentum

Figure 8: CIFAR-10 test accuracy for Top k compression.

17

1 5 9 13 17 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
te

st
 a

cc
ur

ac
y

0.1% layer-wise
0.1% entire-model
1% layer-wise
1% entire-model
10% layer-wise

10% entire-model
50% layer-wise
50% entire-model
70% layer-wise
70% entire-model

Figure 9: ImageNet top-5 test accuracy for Top k compression.

18

A Convergence Analysis: Proofs
In this section, we prove the claims in Section 4.

Lemma. Let Q(·) : Rd → Rd be layer-wise biased compression operator with Q := (Q1 Q2 · · ·QL), such that, each
Qj(·) : Rdj → Rdj for j = 1, 2, · · · , L satisfies Assumption 5 with Ω = Ωj . Then we have

EQ
(
‖Q(x)‖22

)
≤
∑

1≤j≤L(1 + Ωj)‖xj‖22 ≤ max1≤j≤L(1 + Ωj)‖x‖22. (14)

Proof. Exploiting the layer-wise structure of Q = (Q1 Q2 · · ·QL) we can write

EQ
(
‖Q(x)‖22

)
= EQ

(
‖(Q1 Q2 · · ·QL)(x)‖22

) By (5)
≤

∑
1≤j≤L

(1 + Ωj)‖xj‖22 ≤ max
1≤j≤L

(1 + Ωj)‖x‖22.

Hence the result.

Lemma. We note the following:

1. (For unbiased compression) If g̃k is unbiased (the case when QM and QW are unbiased), then

E
[
g̃>k ∇fk

]
= E‖∇fk‖22. (15)

Therefore, g̃k satisfies Assumption 6 with α = 2, ‖ · ‖ = ‖ · ‖2 and Rk = 0.

2. If QM and QW are both Random k compression with compression factors kM and kW , respectively, then

E
[
g̃>k ∇fk

]
=
kMkW
d2

E‖∇fk‖22. (16)

Therefore, g̃k satisfies Assumption 6 with α = 2, ‖ · ‖ = kMkW
d2 ‖ · ‖2, and Rk = 0.

3. Let QM be the layer-wise compression operator that is Random kMj
for each layer j. Similarly, QW is also a

layer-wise compression operator that is the same for all workers and for each layer j, it is Random kWj , then

E
[
g̃>k ∇fk

]
= E‖∇fk‖2B, (17)

where B = diag
(
kM1

kW1

d21
I1

kM2
kW2

d22
I2 · · ·

kMLkWL
d2L

IL

)
. Therefore, g̃k satisfies Assumption 6 with α = 2, ‖·‖ =

‖ · ‖B and Rk = 0.

4. Let QW be sign compression, then
E
[
g̃>k ∇fk

]
≥ E‖∇fk‖1 +Rk. (18)

Therefore, g̃k satisfies Assumption 6 with α = 1, ‖ · ‖ = ‖ · ‖1, and Rk = O
(

1
BS

)
, where BS is the size of used

batch to compute the signSGD.

Proof. 1. If g̃k is unbiased, then E[g̃k|xk] = ∇fk, whence

E
[
g̃>k ∇fk|xk

]
= ‖∇fk‖22. (19)

Using tower property we conclude in this case that E
[
g̃>k ∇fk

]
= E‖∇fk‖22, therefore in this case Assumption 6

is satisfied with α = 2, ‖ · ‖ = ‖ · ‖2 and Rk = 0.

19

2. If QM and QW are both Random k with sparsification ratios kM and kW , respectively: We have g̃k =
QM (1

n

∑n
i=1QW (gik)). Therefore, by taking expectation based on the internal randomness of QM we have

EQM (g̃k) = EQM

(
QM

(
1

n

n∑
i=1

QW (gik)

))

=
kM
d

1

n

n∑
i=1

QW (gik).

Further taking expectation based on the internal randomness of the workers we have

EQWEQM (g̃k) =
kM
d

1

n

n∑
i=1

EQW (QW (gik))

=
kMkW
d2

1

n

n∑
i=1

gik.

Therefore we conclude that
E
[
g̃>k ∇fk

]
=
kMkW
d2

E‖∇fk‖22, (20)

so in this case Assumption 6 is satisfied with α = 2, ‖ · ‖ = kMkW
d2 ‖ · ‖2, and Rk = 0.

3. Let QM be the layer-wise compression operator that is Random kMj
for each layer j. Similarly, QW is also a

layer-wise compression operator that is the same for all workers and for each layer j, it is Random kWj , then

We have g̃k = QM (1
n

∑n
i=1QW (gik)). Therefore, by taking expectation based on the internal randomness of

QM we have

EQM (g̃k) =

L∑
j=1

kMj

dj

(
1

n

n∑
i=1

QW (gik))j

)
.

Further taking expectation based on the internal randomness of the workers we have

EQWEQM (g̃k) =

L∑
j=1

kMj
kWj

d2j

(
1

n

n∑
i=1

(gik)j

)
.

Therefore by taking the scalar product with the gradient and taking the expectation we conclude that

E
[
g̃>k ∇fk

]
= E‖∇fk‖2B,

where B = diag
(
kM1

kW1

d21
I1

kM2
kW2

d22
I2 · · ·

kMLkWL
d2L

IL

)
. Hence, in this case Assumption 6 is satisfied with

α = 2, ‖ · ‖ = ‖ · ‖B and Rk = 0.

4. This result is directly inspired from [6]. We quote it for completeness. If we consider signSGD as the compression
method, then g̃k = sign(1

n

∑
i sign(gik)). We note that it is a deterministic and biased compression method.

Therefore, as in [6]

E
[
g̃>k ∇fk|xk

]
≥ ‖∇fk‖1 +O

(
1

BS

)
,

20

where BS is the mini-batch size. Therefore, Rk = O
(

1
BS

)
, α = 1, and ‖ · ‖ = ‖ · ‖1.

Now we bound the compressed gradient g̃k.

Lemma. Let Assumption 4 hold. With the notations defined above, we have

E‖g̃k‖22 ≤ ρ‖∇fk‖2A + σ2. (21)

Proof. Recall g̃k = QM (1
n

∑n
i=1QW (gik)). Therefore, by using (14) and taking expectation based on the internal

randomness of QM we have

EQM
(
‖g̃k‖22

)
= EQM

∥∥∥∥∥QM
(

1

n

n∑
i=1

QW (gik)

)∥∥∥∥∥
2

2

≤

L∑
j=1

(1 + ΩjM)

∥∥∥∥∥ 1

n

n∑
i=1

(QW (gik))j

∥∥∥∥∥
2

2

‖
∑n
i=1 ai‖

2
2≤n

∑n
i=1 ‖ai‖

2
2

≤ 1

n

n∑
i=1

L∑
j=1

(1 + ΩjM)
∥∥(QW (gik))j

∥∥2
2
,

Further taking expectation based on the internal randomness of the workers we have

EQW
(
EQM

(
‖g̃k‖22

))
≤ 1

n

n∑
i=1

L∑
j=1

(1 + ΩjM)EQW
(
‖(QW (gik))j‖22

)
≤ 1

n

n∑
i=1

L∑
j=1

(1 + ΩjM)(1 + ΩjW)‖(gik)j‖22

=
1

n

n∑
i=1

‖gik‖2A.

Now we take the final expectation and by using tower property of the expectation we have

E
(
‖g̃k‖22

)
≤ 1

n

n∑
i=1

E(‖gik‖2A)

By Assumption 4

≤ ρ‖∇fk‖2A + σ2.

Hence the result.

Proposition. With the notations and the framework defined before, the iterates of (2) satisfy

ηk

(
E‖∇fk‖α −

Lηk
2

E‖∇fk‖2A
)
≤ E(fk − fk+1)− ηkRk +

Lη2kσ
2

2 . (22)

21

Proof. From the L-smoothness of the function f we have

fk+1 ≤ fk +∇f>k (xk − xk+1) +
η2kL

2
‖xk − xk+1‖2

By (2)
= fk − ηk∇f>k g̃k +

η2kL
2
‖g̃k‖2,

which after taking the expectation and by using Lemma 21 and Assumption 6, reduces to

E(fk+1) ≤ E(fk)− ηkE‖∇fk‖α − ηkRk +
Lη2k

2
(E‖∇fk‖2A + σ2).

Rearranging the terms we get the final result.

Proposition. (Special case.) Consider α = 2, and Rk = 0. Let C > 0 be the constant due to the equivalence between
the norms ‖ · ‖ and ‖ · ‖A, and K > 0 be the number of iterations. If ηk = η = O

(
1√
K

)
< 2

LCρ then

∑K
k=1 E‖∇fk‖2

K ≤ O
(

1√
K

)
.

Proof. Set ηk = η. From (22) we have

η

(
E‖∇fk‖2 −

Lρη

2
E‖∇fk‖2A

)
≤ E(fk)− E(fk+1) +

Lσ2η2

2
.

From the equivalence between ‖ · ‖ and ‖ · ‖A norms, there exist a constant C > 0 such that E‖∇fk‖2A ≤ CE‖∇fk‖2
and we have

E‖∇fk‖2
(

1− LCρη
2

)
≤ E‖∇fk‖2 −

Lρη
2

E‖∇fk‖2A.

Let a :=
(

1− LCρη
2

)
> 0, then by combining the previous two inequalities gives

E‖∇fk‖2 ≤
E(fk)− E(fk+1)

ηa
+
Lσ2η

2a
.

By unrolling the recurrence on this inequality we get∑K
k=1 E‖∇fk‖2

K
≤ f0 − E(fK+1)

Kηa
+
Lσ2η

2a
.

Since η = O
(

1√
K

)
and E(fk+1) ≥ f? then∑K

k=1 E‖∇fk‖2

K
≤ O

(
1√
K

)
.

Proposition. (General case.) Assume ‖∇fk‖ ≤ G. Let C > 0 be the constant coming from the equivalence between

‖ · ‖ and ‖ · ‖A. Let ηk = η = O
(

1√
K

)
< 2
LCρG2−α . Let a :=

(
1− LCρG

2−αη
2

)
> 0, then∑K

k=1 E‖∇fk‖α

K
≤ O

(
1√
K

)
+

∑K
k=1Rk
aK

.

22

Proof. We assume ‖∇fk‖ ≤ G. From the equivalence between ‖ · ‖ and ‖ · ‖A there exist a constant C > 0 such that
(22) reduces to

E‖∇fk‖α
(

1− LCρG
2−αη

2

)
≤ E‖∇fk‖α −

LCρη
2

E‖∇fk‖2A.

By injecting the previous inequality in (22) we get

E‖∇fk‖α ≤
E(fk)− E(fk+1)

ηa
+
Lσ2η

2a
+
Rk
a
.

By unrolling the recurrence on this inequality we get∑K
k=1 E‖∇fk‖α

K
≤ f0 − E(fk+1)

Kηa
+
Lσ2η

2a
+

∑K
k=1Rk
aK

.

Since η = O
(

1√
K

)
and E(fk+1) ≥ f? then

∑K
k=1 E‖∇fk‖α

K
≤ O

(
1√
K

)
+

∑K
k=1Rk
aK

.

B Remarks on Network Congestion and Gradient Compression
Existing works have showed that even best network infrastructure employed in the data centers, where most dis-
tributed ML workloads typically run, suffer from congestion problems leading to unpredictable latency and throughput
performance [31, 32, 33, 34, 35, 36, 37]. Existing works tried to several techniques to mitigate these anomalies
[38, 39, 40, 41, 42, 43, 44, 45, 46, 47] to improve and reduce variability of the network performance. However, when the
network congestion is mitigated and best performance is yielded, gradient compression becomes an essential technique
for further training run-time reduction and better scaling of the training workload.

23

