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Abstract
Programming forums are becoming the primary tools for
programmers to find answers for their programming prob-
lems. Our empirical study of popular programming forums
shows that the forum users experience long waiting period
for answers and a small number of experts are often over-
loaded with questions. To improve the usage experience, we
have designed and implemented G-Finder, both an algo-
rithm and a tool that makes intelligent routing decisions as
to which participant is the expert for answering a particular
programming question. Our main approach is to leverage the
source code information of the software systems that forums
are dedicated to, and discover latent relationships between
forums users. Our algorithms construct the concept networks
and the user networks from the program source and the fo-
rum data. We use programming questions to dynamically in-
tegrate these two networks and present an adaptive ranking
of the potential experts. Our evaluation of G-Finder, us-
ing the data from three large programming forums, takes a
retrospective view to check if G-Finder can correctly pre-
dict the experts who provided answers to programming ques-
tions. The evaluation results show that G-Finder improves
the prediction precision by 25% to 74%, compared to related
approaches.

Categories and Subject Descriptors D.2.6 [Software En-
gineering]: Programming Environments

General Terms Design, Human Factors

∗ In programming communities, experts are synonymous to both Gurus and
Geeks.
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1. Introduction
Programming forums are becoming a major means for pro-
grammers to get help for their programming tasks, especially
when open source software packages developed by the com-
munity effort are involved. The basic unit of programming
forums is a thread, consisting of a chain of messages, start-
ing with a question message from a user (questioner) and a
number of reply messages from other users, as illustrated in
Figure 1. If a message m1 is to reply another message m2,
m2 can be considered as the parent of m1. A message has
one parent at most in a thread.

Programming forums are being actively used. The Java
Develop Forum1, an online system from Sun, contains 87
sub-forums that focus on various topics concerning Java pro-
gramming [17]. Just one of these sub-forums, Java Program-
ming2 (referred to as the Java Forum hereon), contains about
77000 threads or 490000 messages. In this forum, there are
over 200 participants online and 200 messages posted per
day. The Eclipse Forum3, a platform for users to discuss
programming problems using the Eclipse platform, contains
about 80 sub-forums, and some of these sub-forums contain
more than 20000 threads. All these forums have thousands
of users registered, and they interact with each other by post-
ing messages and waiting for replies from other users.

Despite the popularity of programming forums, the fo-
rum participants often experience a few common problems.
First, the time span between raising the initial question and
getting the satisfactory answer is often hard to predict and
longer than expected. Through our investigation of the Java
Forum, we found that the time taken for a question to be

1 Java Develop Forum. URL: http://forums.sun.com/index.jspa
2 Java Programming Forum. URL: http://forums.sun.com/forum.

jspa?forumID=31
3 Eclipse Forum. URL: http://www.eclipse.org/forums/index.

php?t=index&cat=1&



Figure 1: An Example of Thread
It contains seven messages and four users. The arrows show

the post-reply relation

answered can range from less than an hour to 3 or 4 days
or even longer. A question lingering for several days will
undoubtedly slow down the programming productivity. Sec-
ond, experts in forums are overloaded with questions, which
affects the quality and timeliness of the answers. We ran-
domly sampled about 500 questions and 600 participants
from the Java Forum. We found that only one third of partic-
ipants give replies, and 14% of these participants have given
61% of the replies. All of the observations we made above
call for an intelligent information processing tool that can
make good decisions with respect to who is the right person
to answer a programming question.

The problem of expert searching has been extensively ex-
plored in the information retrieval research. We classify the
previous work using the simple criteria of whether they use
the content of the messages or the post-reply relationships
between participants or both types of knowledge in the anal-
ysis. The language model proposed in [2][3] computes the
probabilities of the term appearance in plain texts of the par-
ticipants. Another line of work [6][17] computes the global
rankings of the forum participants through the construction
of the participant graphs and the use of well-known algo-
rithms such as the PageRank [5] and HITS [7]. The con-
structed participant graphs encode the post-reply relation-
ships of participants in the message threads. The content of
the messages is, however, ignored. A recent method [18]
combines the language model and the post-reply structure
to improve the precision and recall of the expert searching
in forums. It uses term probabilities to profile the forum par-
ticipants. These profiles are combined with a global ranking
approach computing from the post-reply graphs to produce
the final ranking of experts. This combination is reported to
have improved both the precision and the recall of the expert
recommendation in forum systems.

Compared to the general forums that the related ap-
proaches are concerned with, programming forums (PFs)
share a certain degree of similarity and, at the same time,

exhibit some important differences. One difference is that
the messages in PFs contain not only texts but also, in
most cases, fragments of code. It is problematic for the
term probability calculation because it treats every word
non-discriminatively. For instance, a forum question ask-
ing about how to use I/O operations in Java may present
a piece of code fragment containing the Java I/O class:
BufferedReader. The word, BufferedReader, despite
having the same appearance weight as many other words
in the message, is more important than others in repre-
senting the nature of the question and much more help-
ful in finding the right expert. Another difference is re-
garding the topics of the threads. In previous approaches
[17] [18], different threads are considered representing
independent topics. But for PFs, many threads have im-
plicit relationships among each other. For example, ex-
perts participating a discussion thread involving the type,
java.io.BufferedInputStream, are very likely capable
of contributing to another thread involving java.io.Filt-
eredInputStream, a super type of BufferedInputStream.
Considering them as independent threads may lead to impre-
cision in the identification of experts.

Leveraging these observations, we have designed, imple-
mented, and evaluated G-Finder, both an algorithm and a
tool that uses the semantic information of forum threads, in
addition to the post-reply relationships, to locate experts in
programming forums. We encode the relationships of con-
cepts and participants as graphs or ”networks”. Meanwhile,
we associate forum threads and querying questions with a
set of Java class types, we hereon referred to as concepts,
using a few effective heuristics based on the observed pat-
terns. We then construct the concept networks by extracting
the relationships of concepts from either the source code or
the bytecode of the system that the forum is dedicated to.
We also build the user networks based on the post-reply re-
lationships. However, unlike the related work, our user net-
work is not static but computed on demand according to the
concept-mappings of the queries. Therefore, our prediction
is quite adaptive to the semantics of the queries and, hence,
more accurate.

The evaluation of our algorithm is based on the real fo-
rum data crawled from three popular online programming
forums. From these forums, we first extract ”predictable”
data by selecting questions that are answered by participants
who also answered multiple questions. We then randomly
divide the data into two sets, where the first set is used to
construct both the concept and the user networks, and the
second to test if G-Finder can correctly identify the experts
who also answered the questions in the first set. We sampled
about three to four thousand threads from two general Java
programming forums and one specific programming forum
from Eclipse, and evaluated the precision of our algorithm.
Our evaluation shows that, compared to the previous work,
G-Finder improves the prediction accuracy by 25% to 74%.



The main contributions of our paper are:

1. We present an empirical study of the post-reply relation-
ships on three popular programming forums to further
motivate the need for the more accurate and balanced se-
lection of experts, for answering questions in online fo-
rums.

2. We present the design and the implementation of an algo-
rithm that can be used by programming forums to route
programming questions closer to the experts. This algo-
rithm uses the semantic information extracted from the
source code as the main insight for improving the predic-
tion accuracy.

3. We evaluate the prediction quality of our approaches
using the data from active programming forums. We also
quantify our improvement with respect to the state of the
art by implementing and comparing to the other related
expert searching algorithms.

The rest of the paper is organized as follows: Section 2
shows the related research on expert searching; Section 3
presents some analysis that motivates our design principles.
Section 4 shows our algorithm of expert searching on pro-
gramming forums. Section 5 describes the implementation
of our model. Section 6 shows the evaluation of our algo-
rithms and discusses some observations on programming fo-
rums. Section 7 gives the conclusion and future work.

2. Related Work
The research of expert searching is originally based on the
scientific and enterprise data. The research in [9] studied a
topic model that matches papers with reviewers, which uses
the method of Latent Dirichlet Allocation (LDA) [4] to ob-
tain the distribution of documents over topics and the distri-
bution of topics over the vocabulary of topics. Our method
is different in following aspects. First, the topic model de-
scribes topics by the most probable words in the paper cor-
pus, whereas, in PFs, the concepts are described by words
concerning with the source code. Second, LDA is not suit-
able for PFs, as PFs have explicit word vocabularies of con-
cepts. Third, the post-reply structures do not exist in the pa-
per corpus. The significant research effort4 is devoted to ex-
pert searching based on the enterprise data that reflects the
experiences of users in real organizations, such as intranet
pages, email archives, and document repositories, to identify
experts. For this type of data, language models are the dom-
inating techniques [2][3][11], which calculate the probabil-
ities of term generation of the users through the documents
associated with the users. The probability that a user will
be an expert on a question is calculated through computing
the probability that the user generates the set of terms in the
question. Language models have sound foundations in the-

4 Enterprise Track of TREC. URL: http://trec.nist.gov/data/

enterprise.html

ory [12][16] and perform well on the document corpus. Our
algorithm is different from those that use language model in
two aspects. First, our algorithm analyzes both the message
content and the code structures of the target software system,
hence, uses more information to improve the precision of the
prediction. Second, the document corpus have no post-reply
structures.

Regarding the expert search using forum data, Zhang et
al [17] analyzed the characteristics of post-reply structures
of the Java Forum, and compared some ranking methods in-
cluding ranking using the PageRank values and the HITS au-
thority values. Another method proposed by Jurczyk et al [6]
constructs the ask-reply structures in Question/Answering
portals, such as Yahoo!Answers5, and uses link analysis
methods, such as HITS, to find the users with high author-
ity values or users answering a large proportion of questions.
These methods ignore the content of the posts and rank users
globally. Consequently, questions will always be routed to
top ranked users, which exacerbates the overloading prob-
lem. In addition, global ranks also do not recognize the se-
mantic differences of the questions and, consequently, result
in low precision in identifying experts.

Zhou et al [18] proposed three models to route ques-
tions to proper users, including the profile-based model,
the thread-based model, and the cluster-based model. These
methods build language models with three different policies,
which are integrated with a global ranking of users using the
authority values, computed by the HITS-based algorithm on
the post-reply graph. Their algorithms made significant im-
provement on precision and recall on general forums. Com-
pared to this approach, we leverage the source code informa-
tion of the target software system of the forum.

There is also significant research effort in the expertise
recommendation in the software engineering area [10][1].
Mockus et al used the experience atoms [10] to identify
the expertise. John Anvik et al [1] proposed methods on
deciding who should fix bugs based on text classification
methods. G-Finder aims to search experts in PFs, which
is complimentary to these approaches.

3. An Empirical Study of Program Forums
To further motivate our research, we have conducted an em-
pirical study on the post-reply structures of online program-
ming forums. A special web crawler is implemented to crawl
three popular forums, including the Java Forum, hosted by
Sun6 for developers to ask general JDK related questions, the
Java DevShed Forum7, another Java forum for general Java
programming problems with about 22000 threads, and the

5 Yahoo Answer. URL: http://answers.yahoo.com/
6 Java Forum. URL: http://forums.sun.com/forum.jspa?forumID=
31
7 Java DevShed Forum. URL: http://forums.devshed.com/

java-help-9/



GEF Forum8, where the Eclipse9 users search for help with
the programming tasks using GEF. The size of the crawled
data is about 2GB, consisting of 23000 threads from the Java
Forum, 21000 threads from the Java DevShed Forum, and
7000 threads from the GEF Forum. As summarized in Ta-
ble 2, we analyzed about 4000 threads from two Java forums
and 3000 threads from the GEF Forum. We also collect the
number of users as well as the number of distinctive con-
cepts as the measures of the discussion diversity. In Table 2,
we report the number of active users for each PF. The active
users are defined as those giving more than 10 replies in our
data set.

We formulate our analysis of the crawled forum data as
the following observations:

Observation 1: The life span of discussions is long. Table
1 shows the distribution of the life span of the threads on the
three investigated forums, where the life span is defined as
the time period from the first message to the last message.
It shows that about 43% of the threads last for more than 4
hours and about 21% of them last for more than one day on
average. A significant number of discussions in the forums
last for a long time, while the programmers want to solve
their problems as soon as possible.

Forum 0 - 4h 4 - 24h 24 - 48h 48h -
Java Forum 52.4% 23.1% 10.3% 14.2%

Java Devshed 53% 20.3% 17% 9.7%
GEF 65.7% 20% 4.1% 10.2%

Table 1: Overview of PFs

Observation 2: Most of the questions are answered by a
small number of active users. Table 2 reports the number
of concepts, the number of users, and the number of active
users in the three forums. It shows that the active users only
constitute about 13% of all of the users. In Figure 2, we show
the distribution of the number of users with respect to the
number of replies given by a single user. Each point in the
graph represents the distribution of the total number of users
who provided more than the number of replies represented
by the X-axis. For all of the three PFs, we observed that the
measured overall “activeness” of users in providing answers
and participants in discussions is distributed very unevenly,
as most of the users provide a small number of replies, and
the active users carry the majority of the workload. This
type of imbalance detriments the usage experience of these
forums. We believe that this power-law distribution is not a
measure of the “willingness” of users to provide answers.
Routing questions to proper users can not only lower the
loads of active users, but also increase the participation of
otherwise less active users, with the help of some incentive

8 GEF is an open source framework for GUI programming. URL: http:
//www.eclipse.org/forums/index.php?t=thread&frm_id=81&
9 Eclipse Platform. URL: http://www.eclipse.org/

mechanisms, such as the money rewards in the Amazon’s
Mechanical Turk Scheme10.

Forum
Thread
Num Concepts Users

Active
User

Java Forum 4000 814 3439 502
Java Devshed 4000 753 1549 186

GEF 3000 43 1373 110

Table 2: Overview of PFs
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Figure 2: User/Replies Count Distribution

Observation 3: Experts answer questions in semantic
clusters. We found that experts who answer multiple ques-
tions tend to answer questions that are related to each other.
We analyze the relationships of concepts that participants
give replies to on the Java Forum. It is not surprising that
the replies of some users involve more than one class types.
In fact, about 68% of the users participate in the questions
related to at least 2 class types. What is more interesting
is that about 75% of these participants give replies on the
class types that have relationships. For example, in Table
3, a user called ”jverd” in the Java Forum replies to ques-
tions on HashMap and Map, where the former is a subclass of
the latter. JComboBox and JTable of the user ”PhHein” are
inherited from the same class type. The fact that one class
type inherits from another, or two class types inherit from
a third class type, which we refer to as the type hierarchy
relationship, is common in the set of classes that each user
answers. The relationships that span more than one level of
inheritance is rare in our observation. Another implicit rela-
tionship among the class types is the call graph relationship.
The fact that experts answer questions in semantic clusters
gives us the inspiration to construct a relation network of
the class types discussed by the threads, which is used to
improve the quality of expert recommendation.

10 Amazon’s Mechanical Turk. URL: https://www.mturk.com/mturk/
welcome



Table 3: Distribution on Concepts of Users
UserId Concepts

DarrylBurke JList,JFrame,JButton,JScrollBar

JoachimSauer
String,Integer,List,ArrayList,
Collection, HashSet, Collections

jverd
String,Integer,Map,Short,
Boolean, ArrayList, HashMap

DeltaGeek
Array,Iterator,ArrayList,
Collection

PhHein JComboBox,JTable

DrClap
String,JTextField,List,Iterator,
ArrayList

From the observation 1 and 2 above, we believe that for
the programming forums, an expert searching tool is use-
ful in shortening the time span for the questions to be an-
swered. Meanwhile, this tool should be capable of locating
experts adaptively with respect to the semantics of the ques-
tions to release the load of experts in general. Observation
3 shows that some users tend to be ”local experts”, mean-
ing that users tend to only answer questions on related con-
cepts. For a specific concept, finding out potential experts
on related concepts may help to retrieve more experts due
to the clustering phenomenon. Driven by this objective, we
have developed an adaptive expert searching algorithm that
simultaneously considers message semantics and the social
networks of users. We explain our algorithm in detail next.

4. Algorithm
The goal of the expert recommendation is to identify a list of
participants who are knowledgeable about a given question.
In G-Finder, this is achieved in the following steps, shown
in Figure 3. First, we crawl down the pages of threads from
the online forums. Second, we extract the concepts that each
thread discusses. The concepts of a thread represent the main
semantic content of the thread. Third, we build the concept
networks to present the relationships among concepts, and
the user networks to describe the post-reply structures of
users. To search experts, we map the queries onto concepts
and return a ranked list of users as recommended experts for
each query.

Our algorithm is underpinned by a probabilistic model
that calculates the probability of a user being an expert on a
specific question. Given a question(or a thread), the proba-
bility of a participant being an expert on this question can be
represented as the conditional probability P (user|question).
P (user|question) can be calculated by multiplying the
probability of user being an expert of a particular concept,
P (user|concept), with the probability of question belong-
ing to the concept, P (concept|question), summing over all
the concepts:

Online Forums

Threads

Concepts

User

network
Concept

network

Step1: crawl down threads

Step2: map threads 

to concepts

Step3: build user & 

concept network

Figure 3: Algorithm Steps

P (user|question) =
∑

concept

P (user|concept)×

P (concept|question)
(1)

P (concept|question) is calculated using some heuristic
methods, and P (user|concept) is computed by constructing
the user network on each concept, and integrating the user
network with concept network.

4.1 Map Threads to Concepts
Concepts are the semantic foci of a thread. In PFs, many
threads contain the class type information, and we believe
that these class types, either referred to in the titles as well
as the texts of messages, or embedded in the source code, can
be considered as the main semantic narrative of the thread.
We define the concept universe of a program forum as all the
class types in the source code of the target software system.
For example, for a Java forum, the concepts are referred to as
the class names in JDK packages, and, in GEF, the concepts
are the classes in the source code of the GEF packages.

We use a set of heuristics to calculate which of the con-
cepts in the concept universe are relevant to a particular
thread. The probability of a question belonging to a con-
cept, P (concept|question), is computed using the follow-
ing heuristics:

1. Title: If the title of a thread contains n concepts, we
define:

P (concept|question) = 1/n (2)

Usually, the title of a thread is a short description of
the question. The class types appearing in the title are
strong indicators of what the question is concerned with.



Figure 4: Map from Thread to Concept

Equation 2 states that a thread is represented by all the
concepts in the title with equal probabilities.

2. Source Code: If the thread contains fragments of source
code, we use a method similar to the calculation of the
tf/idf [13] value. The tf/idf value shows the strength
of the relevance of a term with respect to a document.
Tf is the frequency of a term appearing in this docu-
ment, and idf is the inverse of the frequency a term
appears in all the documents. The tf/idf value of a
term in a document is proportional to the relevance be-
tween the term and the document. In our context, we
just consider the terms involving concepts and calcu-
late the tf/idf values for each concept. We define tf
as the frequency of a concept appearing in a thread
among all the concepts in the thread and idf the in-
verse of frequency that a concept appears in all threads.
Let vconcept question be the tf/idf value of a concept
in a thread, which indicates the relevance between the
concept and the thread. If vconcept question is higher, the
thread is more likely concerned with the concept. We
define P (concept|question) as:

P (concept|question) =
vconcept question∑

concept vconcept question

(3)

3. Content: In some threads, concepts are mentioned not
in the source code but in the plain text of the messages.
In this case, we consider the probability of the thread
belonging to the concept, P (concept|question), will be
also 1/n, where n is the number of concepts appearing in
the content of the thread.

If a thread satisfies more than two criteria above, we
just use one heuristic following the priority order of title,
source code, and content. Figure 4 shows a simple example,
in which four threads on the left have concepts in their
titles, and are mapped to corresponding concepts. The values
of P (concept|question) are presented above the arrows in
Figure 4. This example will be used through out this section
to illustrate the complete calculation.

4.2 Probabilities of Participants on Concepts
The probability P (user|concept) is calculated through two
steps. We first establish the user network for each concept
and compute the probability of a particular user being an
expert on the concept, Psep(user|concept), based on the
user network of the concept. In this step, the relationships
of concepts are not involved. In the second step, we take
the relationships among concepts, represented by concept
network, into consideration to compute P (user|concept)
of a user, based on the semantic clustering phenomenon of
concepts. Experiments show that this step can significantly
improve the quality of expert recommendation.

4.2.1 User network
In forums, the post-reply structures of messages can be
viewed as probabilistic voting networks for experts. For ex-
ample, if user A replies to user B, user B is likely to vote
user A as an expert. If multiple users reply, user B is equally
likely to vote any of the repliers as an expert. If the user
A replies multiple times, this will increase the probability
of being voted as an expert. We extract this post-reply in-
formation from each thread and construct the user network
G(V, E) as follows. V is a set of nodes representing partic-
ipants. A directed edge e from A to B signifies that user B
has provided replies to user A. Each edge has a weight label,
wAB , which is the count of the number of replies.

After constructing the user network for each thread, we
apply a consolidation step across all networks as follows.
We merge the common nodes, i.e., the node representing the
same participants, of the networks, and connect all the edges
to the new node. If the edges are common, we do not add new
edges and instead, simply update the weight of the common
edge to be the sum of the weights of all the merged edges.
This merging process is depicted in Figure 5, where Figure
5(a) shows the thread-specific user networks in the example
of Figure 4 and Figure 5(b) shows the merged network.

Figure 5: User Network
The concepts and the users in ellipses are merged. The

numbers above the arrows are the counts of replies.



Based on the merged user network, we can compute the
ranking of expert participants based on the voting scheme.
Assume that the expertise value of a user u on a particular
concept is Psep(u|concept). The probability of u voting v
as an expert is Puv , the fraction of the edge weight over the
sum of weights of all the outgoing edges of u. Therefore,
the probability of participant v being an expert on the same
concept is Puv ∗ Psep(u|concept). Considering all the con-
nected participants in the network, the complete calculation
of Psep(v|concept) is as follows:

Psep(v|concept) =
∑

u

(Puv ∗ Psep(u|concept)) (4)

Let EV be the vector recording the likelihood probability
for all users being an expert on a particular concept, and
M be the voting probabilities matrix between all pairs of
participants, Equation 4 encodes the voting calculations of
the user network, which is a Markov process.

EV = MT ∗ EV (5)

With some standard manipulations, we can use the PageR-
ank algorithm [5] to compute Psep(u|concept) for each user.
The column of Psep(u|concept) in Table 4 shows the prob-
ability values of users for the example in Figure 5.

Table 4: User Probabilities
Users: ( u1 : luck2000@gmx.at u2 : JoachimSauer u3 :

ejp u4 : thomas.behr u5 : kazenofairy u6 : JosAH
u7 : gogo u8 : pm kirkham u9 : enfiend u10 :

sabre150 u11 : kimos2 u12 : pieblok),
Concepts: (c1 : FileInputStream c2 : InputStream)

Psep(u|concept)
Psep(u1|c1) = 0.069 Psep(u6|c2) = 0.072
Psep(u2|c1) = 0.088 Psep(u7|c2) = 0.088
Psep(u3|c1) = 0.088 Psep(u8|c2) = 0.074
Psep(u4|c1) = 0.088 Psep(u9|c2) = 0.051
Psep(u3|c2) = 0.087 Psep(u10|c2) = 0.064
Psep(u4|c2) = 0.064 Psep(u11|c2) = 0.064
Psep(u5|c2) = 0.050 Psep(u12|c2) = 0.064

In the previous work [17], the post-reply structure is con-
structed globally and used to compute PageRank or author-
ity values as users’ prior probabilities of being experts. On
the contrast, our user network is built separately for each
main concept of the queries. As a result, our user network is
adaptive to queries, as the concept mappings of the different
queries will vary. In the next step, we consider the relation-
ships among the concepts and integrate the user networks
adaptively according to the specific queries.

4.2.2 Concept Network
As we mentioned, participants tend to answer questions of
related concepts. We consider two types of relationships in
this paper and use them to construct the concept network.

1. Type Hierarchy: The first type of relationship is the type
hierarchy. We consider two classes are related by the type
hierarchy if one inherits another or both inherit the same
super type. However, the transitivity of type hierarchy is
not considered, as in Observation 3, we find the transitiv-
ity of type hierarchy rarely observed in related concepts.
Given a class type A, the type hierarchy relation we con-
sider is just the super classes, the children and the siblings
of A in type hierarchy tree.

2. Call Graph: The second type of relationship we consider
is the call graph relation. If a class A calls some methods
of a class B in the source code, these two classes have the
call graph relationship. We do not consider the entire call
graph of the whole concept universe, only the concepts
involved in the threads, generated by the code analysis
tools11.

After defining the relationships between concepts, we fur-
ther define the weights of these relationships, to show the
likelihood probability of a participant being an expert on
both the related concepts. The weight of type hierarchy rela-
tionship, wh(a, b, u), and the weight of call graph relation-
ship, wc(a, b, u), are defined as the likelihood probabilities
of the user u being an expert on concept B, when the user is
also an expert on concept A. These likelihood probabilities
are determined by the specific data sets of forums. For exam-
ple, if a user replies to three concepts that have the type hier-
archy relationships with concept A, and there are totally ten
concepts that have type hierarchy relationships with A, we
consider the probability of this user to answer the concepts
related to A to be 3/10. We formally define the weights as
follows:

wh(a, b, u) =
| conceptsu reply to |

| conceptstypeHierarchy−with−A | (6)

And wc(a, b, u) can also be calculated similarly, with the
relation type being the call graph relation:

wc(a, b, u) =
| conceptsu reply to |

| conceptscallGraph−with−A | (7)

With the weights of these two relationships, the total
weight between concept A and B of the user u is the sum
of these two weights when the relationships exist. Define
hab = 1 if type hierarchy relation exists and hab = 0 else
from A to B, and define cab = 1 if call graph relation exists
and cab = 0 else from A to B, the weight w(a, b, u) from A
to B of u is:

w(a, b, u) = wh(a, b, u) ∗ hab + wc(a, b, u) ∗ cab (8)

The Concept Network is defined as a graph of concepts:
CN = {V,E, P}, while the vertex set V represents the set

11 In this research, we use the tool Wala. URL: http://wala.

sourceforge.net/wiki/index.php/Main_Page



of concepts. P is the set of likelihood probabilities P (a, b, u)
for the user to be an expert on concept B when also being an
expert on concept A, which is defined as follows:

P (a, b, u) =
{

w(a, b, u), w(a, b, u) ≤ 1, (9)
1, w(a, b, u) > 1. (9′)

The likelihood probability P (a, b, u) uses the two heuristics
above and, when the sum of them is big enough, we can
conclude that the probability is high enough to be defined as
1. E is the edge set and for a user, u, an edge from vertex a to
b exists, when P (a, b, u) > 0. Note that for different users,
the concept networks are also different as the weights may
vary. Taking u3 in Figure 5 as an example, the left area of
Figure 6 shows the concept network of u3, if the likelihood
probabilities for u3 between c1 and c2 are both 0.5.

Figure 6: Concept Network

4.2.3 Integration of User Network and Concept
Network

The concept network defines that a participant u, an expert
on concept A with the probability Psep(u|concepta), is also
likely an expert on a related concept B with the likelihood
probability of P (a, b, u). So it can be considered that the
expertise probability of the participant on concept B, as
a result of being an expert on concept A, is P (a, b, u) ×
Psep(u|concepta).

Taking the relationships of concepts into consideration,
we calculate the probability of a participant being an expert
on a specific concept A, P (user|concepta), by accumulat-
ing all the Psep(u|concept) of u on related concepts of A,
shown in concept networks. As the user tends to answer a
related concept B with the likelihood probability, P (b, a, u),
we determine P (u|concepta) in following Equation:

P (u|concepta) =
∑

b

P (b, a, u)×Psep(u|conceptb) (10)

When a = b, we consider P (a, a, u) = 1. The probabil-
ity P (u|concepta) can be viewed as combining the proba-
bilities, Psep(u|conceptb), of the same user being an expert
on all of the concepts associated with A with the strength,
P (b, a, u), of the associations.

4.3 Query Processing
We describe how we leverage both concept networks and
user networks to process queries. A query q is usually a
post with source code. The query is first mapped to a set of
concepts as described in Section 4.1, in which P (concept|q)
is calculated. The probability of user being an expert on
concept is calculated by Equation 10. With Equation 1, the
probability of the user being an expert of the question q is
calculated through following equation:

P (user|q) =
∑

concepta

(
∑

b

P (b, a, user)P (user|conceptb))

× P (concepta|q)
(11)

For the example in Figure 5, assuming a query, q, the
title of which is ”I have a question on how to use FileIn-
putStream”, is analyzed by G-Finder. First, q is mapped
to only one concept, c1, with the probability of 1. Accord-
ing to Equation 11, the probability P (u3|c1) is the sum
of the probability of u3 being an expert on c1, and the
probability of u3 on related concept c2 multiplied by the
likelihood probability P (c2, c1, u3). Therefore, the calcula-
tion is 0.088 + 0.087 × 0.5 = 0.1315. If another query is
mapped to c2 with the probability of 1, P (u3|c2) would be
0.087 + 0.088× 0.5 = 0.131.

Our model produces adaptive results for each query, as
each query has different probabilities P (concept|q) on con-
cepts according to their differences in the attached source
code or their contents.

5. Implementation
We have implemented our algorithm in a tool called G-Find-
er, the architecture of which is shown in Figure 7. The wide
arrows show the flow of data preprocessing: the forum data
and the software source code that the forum is dedicated to
are downloaded by the crawler, and the raw data preproces-
sor takes the raw forum data and outputs the threads into
a relational database. These two components are described
below:

1. Crawler: The crawler downloads the pages of threads
from online forums, given the seed links of the forums.
The seed links are the initial links that the crawler uses
to download pages, of which the links are extracted for
further downloading. As a forum always has fixed site
structures and page formats, our crawler efficiently ex-
tracts new links of pages in the seed pages using regular
expressions.



2. Raw data preprocessor: After downloading data, the
raw data preprocessor extracts the posted messages, the
users, the post-reply structures, and the source code from
the pages. This information is then stored into database
tables.

Concept network 

constructer

User network 

constructer

Query handler

Crawler
Raw data 

preprocesser

Mapper

Router

Online Forum

Database 

of thread

Software

system of forum

G-Finder

User network

Concept network

Figure 7: Architecture

The thin arrows show the steps of the model construction.
The key module is the router, which extracts the threads
from the database and constructs both the concept networks
and the user networks. The router also processes queries and
returns the ranked user lists. All these functions are achieved
through four sub-components of the router described below:

1. Mapper: The mapper maps the threads to concepts, tak-
ing the threads in the database and the code of software
system pertaining to the forum as input. The threads are
mapped to concepts with certain probabilities using the
heuristics explained in Section 4. The code of software
system of forum is downloaded separately.

2. Concept network constructor: The concept network
constructor builds the concept networks by construct-
ing the relationships of the concepts and computing
the weights among concepts using the threads in the
database. The type hierarchy relationship and the call
graph relationship between classes are obtained using
the code analysis tool Wala.12

3. User network constructor: The user network construc-
tor builds the user networks for each concept, and cal-
culate the probability P (user|concept) using the post-
reply structures in the threads.

4. Query handler: The query handler, taking queries as
input, calculates the probabilities P (concept|question)
by invoking the functionalities of the mapper, and then
returns a list of ranked users.

12 Wala. URL: http://wala.sourceforge.net/wiki/index.php/

Main_Page

6. Experiment
Our evaluation of G-Finder aims at the following objec-
tives:

• Generality. Does our algorithm effectively work on pro-
gramming forums in general?

• Effectiveness. Is our technique more effective compared
to related approaches?

• Scalability Does our modeling technique scale with the
size of the forum data?

We crawl the data of discussion threads from three fo-
rums: the Java Forum, the Java DevShed Forum, and the
GEF Forum. Our main evaluation method is to first create
a manually verified historical data set as the oracle. We then
implement an array of related approaches and compare the
performance of G-Finder against them. In the rest of the
section, we first describe the oracle data set, followed by the
details of the evaluation.

6.1 Oracle Data Set
Unlike the earlier evaluation method [18], which is based
on the manual judgement to assess the precision, we use the
historical data to quantify the prediction effectiveness of our
algorithm. We divide the concepts concerned in the threads
into two parts randomly, one called PA, used to construct
both the user and concept networks, and the other called PB,
used to test the results. After division, we only reserve the
”predictable” data in these two sets, such that the threads
in one set have participants who also provided answers to
the questions in the other set. We compute the probabilities
that the user can answer the associated questions in PB,
according to the model built using PA. The returned user list
is compared with the actual expert set, defined as AUconcept.

The expert set, AUconcept, is obtained through a consen-
sus voting process on each thread. Six graduate students
were involved to go through the questions in PB and vote
which user is the expert. We pick the users with more than 4
votes as the experts and add them into AUconcept. Then the
precision of our algorithm is computed by comparing the re-
turned user list with AUconcept. The manual judgement of
experts can not be avoided for the forum systems that do not
tag who have given the right answers to questions. However,
the voting approach downplays the subjectivity in our exper-
iments.

6.2 Metrics
In the expert searching area, the metrics of mean of average
precision (MAP) [14][15] and Precision@N (P@N) [8] are
widely used to evaluate the precision of expert searching.
They are defined as follows:

DEFINITION 1. MAP: MAP is the mean of the average of
precisions over a set of query questions. The average of
precisions for a query is the average of precision at each
correctly retrieved answer(expert).



Table 5: Performance on Three Java Forums

Method
Java Forum Java Devshed GEF

MAP P@5 P@10 MAP P@5 P@10 MAP P@5 P@10
G-Finder 0.73 0.65 0.73 0.74 0.65 0.72 0.67 0.61 0.63

Profile-based 0.58 0.55 0.53 0.61 0.57 0.62 0.57 0.54 0.55
Language Model 0.53 0.53 0.54 0.55 0.56 0.57 0.52 0.51 0.53

Replies Count 0.43 0.41 0.4 0.51 0.51 0.52 0.33 0.31 0.34

DEFINITION 2. P@N is the percentage of top N candidate
answers who are correct.

6.3 Benchmarked Approaches
We compare our model to three methods, including the lan-
guage model [2], the profile-based method [18], and the
method of ranking using the reply count [18]. The detailed
descriptions on these three methods are below:

1. language model: The language model calculates the
probability of a user to generate the terms in a partic-
ular question, based on the historical documents created
by the users. First, the term probabilities of the users
are computed and smoothed according to the profiles of
users. Then the probability of generating a question is
obtained through multiplying probabilities of each term
in the question.

2. profile-based method: The profile-based method com-
bines the language models and the graph-based methods.
First, the messages posted by a particular participant are
considered as the profile of the user. Second, the prob-
ability of a user as a candidate of expert is calculated
by multiplying the authority value, computed using the
HITS algorithm from the post-reply network of threads,
with the probability computed from the language model
of the user.

3. reply count: Ranking according to reply count is to rank
the users according to the numbers of threads users give
replies to. This is a straight forward approach for predict-
ing experts.

6.4 Generality Study
We first test the general effectiveness of our algorithm on the
three PFs. The results are shown below in Table 6.

Table 6: Generality Study
Forum MAP P@1 P@3 P@5 P@10

Java Forum 0.73 0.58 0.6 0.65 0.73
Java Devshed 0.74 0.6 0.62 0.65 0.72

GEF 0.67 0.53 0.56 0.61 0.63

The results show that, on average, our algorithm can
achieve about 70% on MAP and 65% on P@N in all the
three PFs. The best precision G-Finder can achieve is about
74%, and the worst is about 53% on P@1. For the case of

Top-1 users, the returned user set is small, which makes
the percentage of experts small. However, G-Finder can
still predict the right experts for about 60% of the times
on average in such situations. The prediction results on two
Java forums are a little higher than that on the GEF Forum.
We think that, compared with the general Java programming
problems, the problems in the GEF Forum is more difficult
to answer and the percentage of users that give answer is
relatively smaller, resulting lower MAPs and P@Ns on the
GEF Forum.

6.5 Performance
In this experiment, we show the performance of our model
compared with three other methods mentioned above on the
three forums. The results are shown in Table 5.

The results show that, based on semantic information,
G-Finder can improve the performance of expert searching
by 21% on average on MAP, and 23% on P@10, compared
to the profile-based model. The best case for MAP is on the
Java Forum, and the improvement is about 25%. The worst
case is on the GEF Forum with the improvement of 17%.
From the result, we conclude that the G-Finder improves
the precision of expert searching significantly.

6.6 Effectiveness of Concept Network
The main difference in our approach, as compared to the re-
lated work, is that we use the concept network in G-Finder
to locate experts. So are the relationships among concepts re-
ally effective in improving the quality of prediction? In this
experiment, we compare the prediction quality of G-Finder
with (G-Finder) and without (Single Concept) the concept
network.

The result, presented in Table 7, shows that using concept
network improves precision by about 50% on MAP com-
pared to Single Concept Method. For the top ten users re-
turned, the use of concept networks returns two more rec-
ommended experts on average. Returning more experts can
help to lower the work load of experts.

Table 7: Effectiveness of Concept Network
Method MAP P@5 P@10

G-Finder 0.73 0.65 0.73
Single Concept 0.50 0.45 0.49



6.7 Scalability
As the number of threads in forums is usually large, can
G-Finder be applied on large data sets when the number of
threads grows? Figure 8 shows the computation time taken
by building both the concept networks and the user networks
by G-Finder on data sets of different number of threads.
The results show that the runtime of G-Finder is almost
linear to the size of data set. It should be noticed that as the
user networks grow with the size of the data set, the time cost
used to compute the PageRank values of users will be a little
longer. The linear time growth shows that our algorithm is
scalable with the number of threads.
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Figure 8: Time Cost/Count of Threads

We do not evaluate the query time. The probabilities,
Psep(u|concept), and the likelihood probabilities, P , are
computed and stored in the database after building the con-
cept networks and the user networks. The cost of querying is
mainly the time of mapping the query to the concepts, a tiny
period of time that can be ignored.

6.8 Limitations of G-Finder
In this section, we discuss the limitation of G-Finder:

• No Concepts in Threads: Our heuristic-based concept
mapping method in some cases fails to extract concepts.
When these threads are in the test data set, our model can
not return a reasonable result. However, in PFs, the per-
centage of threads that cannot be handled by our heuris-
tics is usually low. Second, when these threads are in the
set for building models, we can just remove these threads
because the remaining threads in the set are of a healthy
number to build our model.

• Precision of Mapping from Thread to Concept: In the
algorithm, we map the threads to concepts using a
heuristic-based approach. So the threads may be mapped
to concepts they do not semantically belong to. We do not
calculate the mapping precision in the experiment, but
just calculate the final result. In fact, we can not quantify
this error, as in the current forums no labeled mapping

between threads and concepts exists. In some forums, a
question is marked with tags, such as ”java” or ”perl”.
However, these tags are too high-level and not sensible to
construct concept networks. So we just compute the final
precision to evaluate the performance of our algorithm.

The probabilistic nature of our algorithm requires a sig-
nificant amount of data to build both the user and the concept
networks. Active forums usually have sufficient data for our
algorithm to be applied.

6.9 Analysis of Prediction Errors
We carefully examined the evaluation results and found that
G-Finder fails to find experts on the following three types:

1. General Experts: From the perspective of the concept
network, we find that a certain type of users can be ob-
served as ”general experts”, as the concepts of the ques-
tions they answer have no explicit or implicit semantic
relationships with each other.

2. Random Experts: Another type of false positives is what
we refer to as the random experts. They actively par-
ticipate in the threads with comments and suggestions
but rarely with answers. Our algorithm makes correct
guesses that they are likely to give the answers but un-
able to distinguish between real answers and commentary
texts.

3. New Experts: The third type of false positives belongs to
users who never reply to anything before. Their first posts
on the forums give the right answers to the questions. We
refer to these users as new experts.

These three types of users do not have high rankings in
our results, but provide the right answers in the verified
data set. This is due to the special participation behavior of
these users on the forums. As users are free to post anything
to any threads, there are probably other latent patterns and
relationships that are not captured by our model. We plan to
address these issues in our future work.

7. Conclusions and Future Work
We have presented the design and the evaluation of G-Finde-
r, both an algorithm and a tool that locates the most appro-
priate user of programming forums for answering a partic-
ular programming question. G-Finder makes use of the
source code information of the target software system of
a particular forum to discover additional latent relation-
ships among forum threads and, consequently, significantly
improves the quality of the expert search. We evaluated
G-Finder using the real world data from active program-
ming forums and compared our approach to the state of the
art forum analysis techniques. As the future work, we plan
to employ more sophisticated techniques to more accurately
extract the semantic characteristics of the threads. We also



seek more latent relationships among forum threads in addi-
tion to the source code based ones that we currently use.
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