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Abstract—Middleware platforms, such as Web services, J2EE, CORBA, and DCOM, have become increasingly popular during the

last decade. They have been very successful in solving distributed computing problems for a large family of application domains. The

architecture of middleware systems have gone through many significant cycles of evolution, both in terms of the completeness of

functionality and the range of adoptions for different types of platforms. However, at the same time, it is getting increasingly difficult to

achieve and to maintain a high level of adaptability and configurability because the structure of the middleware architecture is

becoming overly complicated and rigid. We attribute that problem to the limitations of traditional software decomposition methods.

Aspect-oriented programming, on the contrary, has introduced new design perspectives that permit the superimpositions of different

abstraction models on top of one another. This is a very powerful technique for separating and simplifying design concerns. In our effort

of applying principles of aspect orientation to the middleware architecture, we first pragmatically analyze the use of aspects in the

middleware architecture. We then show that aspects are the correct remedy for the above outlined middleware problems by quantifying

crosscutting concerns in the legacy implementations of several prominent middleware systems. Our aspect analysis results strongly

indicate that modularity of middleware architecture is greatly hindered by the wide existence of tangled logic. To go one step further, we

factor out a number of crosscutting concerns identified in the mining process and reimplement them with aspects, superimposed on the

existing middleware architecture. This allows us to use a set of software engineering metrics to quantify the refactorization in terms of

changes in the structural complexity, modularity, and performance of the resulting system. This aspect-oriented refactoring proves that

aspect orientation is capable of composing orthogonal design requirements. The final ”woven” system is able to correctly provide both

the fundamental functionality and the “aspectized” functionality with negligible overhead and an overall leaner architecture.

Furthermore, the ”aspectized” feature can be configured in and out during compile-time, which greatly enhances the configurability of

the architecture.

Index Terms—Aspect-oriented programming, aspects, middleware, aspect analysis, refactoring.
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1 INTRODUCTION

IN recent years, middleware systems, such as Web
services, .NET, J2EE, and CORBA, have been widely

adopted, not only on traditional enterprise computing
platforms, but also in a very large family of emerging
application domains, such as control platforms, smart
devices, and networking equipment. Many of these do-
mains exhibit a broad spectrum of characteristics, such as
specialized runtime requirements, real-time constraints,
stringent resource requirements, high availability, and high
performance.

The most prominent problem in today’s middleware
systems is that their architecture constantly struggles
between generality and specialization. That is to say, on
one hand, vendors want to support many application
domains with their middleware products that provide a
relatively complete set of features. However, these systems
usually require large memory space and abundant comput-
ing resources. On the other hand, architects often want to
optimize the architecture to support particular domains
with specialized runtime requirements, such as real-time,
embedding, and high availability. As a result of that, for the
same technology, there often exists multiple specifications,
various branches of code bases, and different implementa-
tions. Each requires a tremendous amount of effort in order

to maintain the conformity of services, which middleware is
supposed to provide.

Recent approaches, such as OpenCOM [1] and Dyna-
micTAO [2], address these issues by introducing new
software engineering techniques like a component-based
architecture and reflection to enable adaptations of the
middleware architecture to specific platforms and deploy-
ment instances. On the module level, these approaches are
designed with conventional modularization techniques and
incapable of modularizing crosscutting design concerns,
which can cause a considerable amount of logic tangling in
the code.

We recognize that one of the fundamental causes of these
problems is that middleware systems have to support many
distinct computational requirements, in addition to addres-
sing distributed computing concerns. We define these
additional computational requirements as orthogonal de-
sign requirements with respect to the fundamental func-
tionality of middleware systems. Traditional top-down
decomposition processes produces one decomposition
model. That means the abstractions of orthogonal design
requirements need to be permanently imprinted into the
model at some stages of the decomposition process.
Consequently, the logic of orthogonal implementations are
intermingled with each other and with that of the primary
functionality. It is impossible, by using traditional methods,
to completely decouple them from one another.

We think that the phenomenon of handling multiple
orthogonal design requirements are in the category of
crosscutting concerns, which are well addressed by aspect-
oriented programming techniques (AoP). Hence, we believe
that middleware architecture is one of the ideal places
where we can apply AoP methods to obtain a modularity
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level that we cannot obtain via traditional programming
techniques. To follow that theoretical conjecture, it is
necessary to identify and to analyze these crosscutting
phenomena in existing middleware implementations.
Furthermore, by using aspect-oriented languages, we
should be able to resolve concern crosscutting and yield a
middleware architecture that is more logically coherent. It is
then possible to quantify and to closely approximate the
benefit of AoP in its applications to the middleware
architecture design methodology. This paper contributes
to the aspect-oriented analysis and design of middleware
architecture in the following ways:

1. We show that middleware architectures inherently
suffer from coordinating crosscutting concerns by
performing a quantitative aspect analysis, which
reports the degree of crosscutting of various aspects
identified.

2. Our aspect analysis is based on an aspect mining
approach.Wedevelop anaspectminingmethodology
and a software tool to exercise this methodology.

3. Through rigorous aspect mining, we report several
new aspects that are specific to the platforms chosen.

4. We are the first to perform aspect-oriented refactor-
ization ofmiddleware platforms. AoP-based refactor-
ization is a process of separating certain orthogonal
features out, composing them in aspectprograms, and
weaving them back into the platform based on an
existing implementation.

5. We quantify the benefits of the AoP-based refactor-
ization by applying a set of software engineering
metrics to the original and the refactored implemen-
tation. From this evaluation, we show that aspect-
oriented technology lowers the complexity of the
architecture, increases modularity, and preserves the
original design requirements, and maintains the
performance of the overall system as compared to
the original implementation.

The rest of this paper is organized as follows: Section 2
constitutes a more detailed discussion of middleware
problems. Section 3 presents a brief overview of aspect-
oriented programming that will help to better understand
our approach. Section 4 presents the aspect analysis results.
Section 5 presents the refactorization of aspects using
AspectJ. Related approaches are discussed in Section 6.
Section 7 concludes the paper and outlines future work.

2 PROBLEMS WITH TODAY’s MIDDLEWARE

ARCHITECTURES

Generally speaking, middleware systems can be defined as
a set of services that facilitates the development of
distributed applications in heterogeneous computing en-
vironments. Prominent examples of middleware systems
include CORBA, DCOM, the Java suite of protocols, and
Java RMI and, most recently, Web services. In this section,
we briefly summarize a few observations in the evolution of
middleware, motivate the use of aspect-oriented techniques
for designing middleware architectures, and outline the
choice of our case study platform underlying this work.

2.1 Middleware Architecture Evolution

A striking change in the evolution of middleware systems is
that, in recent years, the target platforms are not limited to

traditional enterprise systems and desktop machines. New
platforms include mobile devices, network devices, control
systems, safety critical systems, and many more. The
characteristics of these platforms differ from each other in
significant ways. These platforms are referred to as the
emerging application domains of middleware. For example,
middleware systems are used on the Cisco ONS 15454
optical transport platform to deal with hardware customi-
zations and the communications between management
software and hardware drivers [3]. Middleware systems
are also adopted by the US Navy as the software bus for
subunits in the submarine combat control systems [4]. The
widening of the application spectrum has dramatically
stretched the capability of middleware systems. However,
the limitations of the traditional middleware architecture
has also been becoming increasingly eminent. These
limitations include the following:

1. One size fits all: Many middleware implementations
are collections of many features in order to support a
large diversity of target platforms. However, in
practice, for a particular instance of deployment in a
particular domain, many of these features are not
needed all the time. Some are not needed at all
during an application’s lifetime. Current middle-
ware architectures lack of methods to tailor the
architecture at deployment time or at runtime.

2. Evolving too fast: Although the networking commu-
nication model is relatively stable (consider TCP/IP
stack implementation), models or abstractions in
middleware systems rarely stay the same. That is
because the middleware architecture needs to con-
stantly accommodate new computational character-
istics of target domains. For example, the object
adapter is a key component in CORBA [5] platforms.
Even though the role of the object adapter has not
changed significantly since the dawn of CORBA, its
architecture has gone through a series of evolutions
from the basic object adapter to object adapters
supporting portability, interception, and multiple
threads. The evolution of middleware abstraction
models is necessary and unavoidable. But, at the
same time, it is also essential to maintain backward
compatibility with applications developed on top of
the older models.

3. Same technology, multiple flavors: Another problem is
that there has been a proliferation of middleware
specifications to accommodate different require-
ments that stem from many application domains.
For instance, the Object Management Group (OMG),
in addition to defining CORBA standards, also
defines the Real-Time CORBA specification in order
to address execution predictability, Fault Tolerant
CORBA to address high availability, High Perfor-
mance CORBA to address data and compute
intensive applications, and Minimum CORBA for
embedded platforms. Java platform exhibits the
same syndrome by having different types of JVMs
for different platforms. The former DCOM architec-
ture and the new Microsoft .NET platform is
following similar trends. These tendencies cause
challenges to vendors, who must rearchitect the
system differently according to a particular specifi-
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cation, as well as to the adopters who, at the same
time, find the platform very complex to comprehend
and to use.

2.2 Applying AoP to Middleware
Architecture Design

Zhang and Jacobsen [6] have established that one of the
fundamental causes for the problems in today’s middle-
ware architecture is that the software decomposition model
obtained using vertical decomposition (i.e., designs based
on functional or object oriented decomposition) is incapable
of simultaneously modularizing coexisting orthogonal de-
sign requirements.

Aspect-oriented programming, on the contrary, allows us
to decompose software systems in different dimensions. We
can use a vertical decomposition process to establish the
primary decomposition model of the architecture. We then
use aspect-oriented techniques to ”horizontally” compose or
to ”superimpose” the implementation for orthogonal design
requirements onto theprimarymodel,withoutmodifying the
existing architecture. We refer to that decomposition process
as the horizontal decomposition. For a more detailed
discussion, refer to Zhang and Jacobsen [6].

There are many limitations of applying a vertical
decomposition process to the design of software architec-
ture, in general, and middleware architecture, in particular.
The object-oriented paradigm and design patterns facilitate
powerful decomposition of software, such as levels of
abstraction and advanced modeling methods, as found in
the MDA.1 However, it is still difficult and sometimes
infeasible to apply these if the abstractions at higher levels
need to be modified. In the middleware domain where
requirements are constantly changing, it is extremely hard
to get the initial abstraction correct. Another limitation is
due to the presence of orthogonal design requirements. Two
design requirements are orthogonal to each other if one can
be implemented without coordinating with the other, such
as in the case of the requirements for efficiency and the
requirements for location transparency. Since each of the
orthogonal requirements must have its own most appro-
priate decomposition model, the vertical decomposition
process, which generates one decomposition model, may
not be an optimized solution for both requirements. In fact,
it generates a model with tangled logic, as indicated by
Gregor Kiczales et al. [7].

We think horizontal decomposition is a logical approach
based on the assumption that vertical decomposition
unavoidably causes concern crosscutting in the decom-
posed model. To confirm that and to further understand
orthogonal design requirements in middleware systems, we
need to open up existing legacy implementations to conduct
quantitative analysis of the tangling phenomenon. The
method we have employed to perform such tasks is called
aspect mining. We explain our aspect mining methodology
in the following section.

2.3 CORBA as Case Study

We have chosen CORBA implementations as case study for
the following reasons: CORBA has been addressing middle-
ware concerns formore than adecade. Its architecture reflects
distinct evolution cycles in the domain of middleware and
can be treated as an excellent case study of the traditional
functional decomposition approach. CORBA is an open

standard by which we are able to achieve a better under-
standing of its behavior. There are many open source
implementations available for CORBA. All conform to the
same OMG standard. That allows us to cross-analyze our
results. The core of the CORBA middleware is the object
request broker (ORB). The ORB provides a standardized
middleware platform to allow transparently locating objects
and to invoke methods on these objects. The distributed
objects can be specified using the interface definition
language (IDL). The IDL compiler converts these definitions
to a specific language, such as C++ or Java, according to the
standardized IDL languagemapping specifications. TheORB
uses the portable object adapter, the interface of which is also
standardized, to process invocation requests. The ORB uses
the interorb protocol (IOP) as the communicationmechanism
on the network to transfer information about the distributed
data and operations with other ORBs. The omg:CORBA:ORB
interface is a standardized facade [8] for providing abstrac-
tions of complicated broker functionalities.

3 ASPECT-ORIENTED PROGRAMMING

Aspect-oriented programming offers an alternative para-
digm for software development [7]. It aims at achieving a
high degree of separation of concerns. Examples of aspects
include security, reliability, manageability, and further
nonfunctional requirements, often simply referred to as a
system’s “ilities” [9]. The existence of aspects is attributed to
handling crosscutting concerns in software development
using the traditional “vertical” decomposition paradigm.
AOP overcomes the limitations of traditional programming
paradigms by providing language level support to mod-
ularize these systematic properties as separate development
activities. The final system results by merging the aspect
modules and the primary functionalities together. This
development process is commonly supported by a compo-
nent language, such as Java or C, to implement the primary
decomposition of a system, an aspect language to modularize
crosscutting concerns as aspects, and the aspect weaver
(also known as aspect complier) that instruments the
component program with aspect programs to produce the
final system. Representative aspect languages are AspectJ2

and Hyper/J.3 In addition to conventional Java language
features, AspectJ defines a set of new language constructs to
model the aspects. A joinpoint represents an interception
point in the execution flow of the component program. For
convenience and elegance, a pointcut construct can be
used to denote a collection of joinpoints. Actions can be
triggered before, after, or in place of the program execution
when a joinpoint is reached. These actions are defined using
AspectJ specific constructs before, after, and around.
These constructs are called advices. An aspect module in
AspectJ contains pointcuts and the associated advices.
It also contains intertype declarations which are reused to
declare new members (fields, methods, and constructors) in
other types.

4 QUANTIFYING ASPECTS IN MIDDLEWARE

In aspect-unaware legacy implementations, it is difficult to
reason about aspects due to the code scattering problem.
That is because the particular aspect is not localized at one
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point in the code, but rather, distributed all over the code.
However, if the scattering phenomena can be captured in a
way to allow observation and quantification, effective
means to identify aspects for particular application domains
become possible. From the identification and quantification
of high degrees of code scattering, we infer the existence of
aspects, however, the reverse inference is not always
possible. This will become obvious in the analysis below,
where architecture crosscutting concerns are identified as
aspects that do not give rise to high degrees of scattering.

Aspect analysis consists of the activities that aim at
capturing and analyzing the scattering phenomenon in
legacy implementations. To correctly perform aspect dis-
covery, it is very important to identify the roles involved in
the logical tangling. We consider the concept of the aspect
as a relative term with respect to the primary functionality
or, equivalently speaking, the primary decomposition
model. Therefore, in order to analyze the scattering
problems in middleware systems, we need to first of all
define a decomposition model, which represents the most
fundamental properties of the middleware substrate. We
are then able to identify aspects by using that model as the
reference point to think about tangling in terms of code and
orthogonality in terms of design requirements. We refer to
this process as aspect orientation.

4.1 Primary Decomposition of a
Middleware Architecture

We think that the fundamental functionality of a middle-
ware system, supporting remote invocations, mainly con-
sists of the following major architectural elements:

1. a standardized programming model or API with the
associated skeletons and stubs that allows applica-
tions to make abstractions of the distributed objects
or services,

2. the mechanism of publishing the representation of
an object or a service to peers,

3. the dispatching mechanism that forwards the re-
quests associated with the published representation
to its concrete instance, and

4. the commonly agreed representation of data and
operations on the network layer with their asso-
ciated interpretation mechanisms in order to ex-
change information with its remote counterparts.

To be more specific, Table 1 shows the architectural
elements that fall into the categories listed above from the
popular middleware platforms, CORBA, DCOM, Java RMI,
and .NET.

Having identified the primary architecture of a middle-
ware system, we now define aspects of middleware systems as
concerns which can be decomposed independently and yet
have to be addressed in the lines of the primary architecture.

More specifically, middleware aspects are abstractions or
implementations that crosscut any of thesemajor architectur-
al components enumerated above.

4.2 Extended Aspect Mining Tool

The aspect mining tool (AMT) [10] is designed to capture
the code scattering problem on the source code level. It was
developed at the University of British Columbia and based
on the AspectJ compiler. AMT emphasizes on visualizing
perspective aspects in program code and is therefore well-
suited to study aspects in small software projects. AMT
allows one to inspect the code scattering phenomenon by
performing type and textual analysis in building a collec-
tion of all the types used in the program in combination
with the entire source code space. We have built the
extended aspect mining tool (AMTEX) [11] to overcome the
limitation of visualization-based mining and scale the
mining process to software systems with thousands of
classes. The extended mining tool provides much larger
flexibility in terms of composing mining activities, mana-
ging mining tasks, and cross analyzing mining results. It is
designed to fit the needs of mining very large software
systems that consist of thousands of classes with millions of
lines of code.4

4.3 Mining Methodology

We have taken the following approaches to best utilize the
analysis capability of the extended mining tool in order to
identify aspects in middleware systems:

1. We first inspect well-known aspects that have been
previously identified in other software systems, such
as logging, synchronization, and others. We are
interested in finding the corresponding coding
representations in middleware systems and identi-
fying whether these aspects are also present.

2. We then apply our understanding of the function-
ality of middleware to analyze if some of the features
in middleware systems are orthogonal to the
primary functionality. To confirm our analysis, we
use AMTEX to capture the corresponding cross-
cutting structures.

3. We use the ranking feature of AMTEX to make
sensible guesses. AMTEX is able to rank the
popularities of all class types used in the system.
Types that are used relatively widely in the code
space are able to provide good hints of potential
aspects.
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4. The reference to “mining” in AMT and in AMTEX is somewhat
misleading, since patterns are not autonomously discovered by the tool.
Both tools perform an analysis, which with the user interaction may give
rise to aspect discover.

TABLE 1
Middleware Architecture Elements Overview



The aspect mining process is guided by a human miner
who knows or suspects the existance of aspects in the code
and guides the discovery process. The human miner begins
this process with the initial description of the crosscutting
structure of an aspect. This structure can be described, either
in succinct lexical and type patterns, or gradually in several
steps. We refer to such a description as the characterization.

As described in [10], the use of lexical and type-based
aspect mining works effectively with programs that have
well-defined naming conventions and follow a consistent
coding style. This method is appropriate for discovering
crosscutting structures at the granularity of statements
inside method bodies. For example, code such as log or
trace and types such as Logger or Tracer are fairly
accurate in describing the crosscutting of the aspects logging
and tracing. We use this method primarily to locate well-
known aspects such as logging, tracing, synchronization,
and others.

For aspects that have no statement-level crosscutting
structures but domain-specific semantics, it is difficult to
characterize the aspect without a good understanding of the
semantics of the program. We use a feedback-directed
approach to find a good characterization of this type of
aspects in several steps of refinements. That is, a lexical
pattern can be used to describe the miner’s intuition of what
the crosscutting structure might be. Matching results
discovered in this step serve as feedback and assist the
miner to refine the characterization. We use this approach
to locate middleware specific aspects such as type Any, for
example.

This is assisted by the type ranking feature of AMTEX,
which allows to rank the usage popularities of all class
types in the system. Types that are used relatively widely in
the code space provide good hints of potential aspects. For
example, AMTEX shows that the class type Assert is the
most used type in the ORBacus code. We then use this class
type and quantify the aspect of pre/postcondition checking
as further explained below.

Another type of crosscutting structure is the additional
control flow incurred in the code through the coordination
with an orthogonal concern. We can inspect the values
involved in conditional branches and trace all the code
involved in accessing these values through assignments,
method parameter passing, and accessor methods. We
essentially compute code slices based on the conditional
statements. If these slices are not localized, we have
identified very good candidates of crosscutting concerns.
A tool can use this technique and evaluate all conditional
statements in the system to find nonlocalized slices.
Currently, we perform this technique manually by brows-
ing through the source code with the help of Eclipse and
Feat [12]. Our ongoing PRISM project [13] will support this
functionality. With this technique, we were able to find
aspects such as oneway invocation, which produces a large
number of conditional statements for deciding if a oneway
invocation is occurring or not. Later sections present details
about such an aspect.

4.4 Mining Results

In this section, we present the mining results for a number
of aspects in CORBA implementations, including aspects
defined prior to this work, such as logging, synchroniza-
tion, exception handling, and pre/postcondition checking.
We also present aspects that are discovered through mining
with respect to the CORBA platforms. These aspects include

the dynamic programming interface and support for
portable interceptors. For each aspect, we report how it
crosscuts the primary model in the following format:

1. Definition: Explains the context and the definition of
the aspect.

2. Logic Tangling: Discusses the cause for the aspect by
identifying orthogonal design concerns.

3. Characterization: The orthogonality of design require-
ments causes the scattering of their implementations
on the code level. In these situations, one imple-
mentation can be characterized by a few class types
or special textual expressions. This section lists types
and expressions that are used to represent the
tangling logic in different implementations.

4. Mining Results: If the aspect can be characterized by a
set of types and textual expressions, we can use the
extended aspect mining tool to quantify the usage of
these types and expressions. This is expressed by
AMTEX as the degree of scattering of the aspect in both
theVendorCodeSpace (VCS)5andtheCompleteCode
Space (CCS). The degree of scattering is a measure of
the percentage of the usage of the characterization set
throughout the source code. AMTEX counts the total
number of classes in an application and the number of
classes that contain any class type from the character-
izationset.Theratioof these twonumbers is thedegree
of scattering. All our mining results are expressed as
this ratio.

5. Result Analysis: This section provides a brief analysis
of the mining data.

6. AoP Benefit: This section explains how AoP can
theoretically help improve modularity, adaptability,
and performance of middleware platforms by
composing the feature as aspect programs.

The mining data is collected over three open source
CORBA implementations: ORBacus, a commercial ORB
from IONA Technologies;6 JacOrb,7 an open source ORB,
commercially supported by OCI; and OpenOrb,8 a commu-
nity open source project. All three implementations comply
with the CORBA 2.0 specification defined by the OMG. The
sizes of these CORBA implementations, in terms of number
of classes in VCS and CCS, are listed in Table 2.

4.4.1 Dynamic Programming Model

Definition: A dynamic programming model allows an
application to be designed without prior knowledge of the
interface definitions of the invoked objects. Instead,
invocations on an interface can be composed during
runtime.
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5. Classes defined and implemented by the vendor, other than those
specified by OMG.

6. ORBacus, http://www.iona.com.
7. JacOrb, http://www.jacorb.org.
8. http://openorb.sourceforge.net.

TABLE 2
Sizes of Code Spaces (in Number of Classes)



Characterization: In CORBA, the OMG defined objects
that handle DSI/DII are the following classes in terms of
the Java language mapping: org.omg.CORBA.Any, or

g.omg.CORBA.NamedValue, org.omg.CORBA.NVList,
org.omg.CORBA.Request, and org.omg.CORBA.Ser

verRequest.
Logic tangling: The dynamic programming model (DII/

DSI) crosscuts the ORB functionality in the following ways:

1. All Helper and holder classes9 contain operations to
allow transformation and manipulation of these
server objects in the dynamic invocation context.

2. The ORB interface supports dynamic invocations by
providing the functionality of composing operations,
their parameters, and their return types.

3. The request processing classes supports dynamic
invocations through specialized request objects such
as org.omg.CORBA.Request and org.omg.COR

BA.ServerRequest, and also through extra control
logic.

4. The encoding and decoding mechanisms, which
map the program data and operations to bit streams
according to the transport protocol, support the
dynamic behavior by using value types such as Any
and NamedValue.

Although the list above is not complete, we have
observed that the support for DII and DSI is incorporated
into the static invocation model not only as a part of the
programming interface, but also in the request processing
mechanism and in the encoding/decoding process. There-
fore, we refer to the dynamic invocation mechanism as an
aspect of the ORB if its primary invocation model is static.
Similarly, we can refer to the static invocation model as an
aspect of the ORB, if its primary invocation mechanism is
dynamic.10

Mining Results: The degree of scattering for the
dynamic programming interface is reported in Table 3.

Result Analysis: The data presented confirms the above
analysis that the code handling the dynamic programming
model is not well modularized. More than a quarter of the
classes in all three implementations deal with DII or DSI in
some way. Also, the degree of scattering of the dynamic
programming model increases, with increasing code size.

AoP Benefit: Aspect-oriented programming can be
applied here to separate the dynamic programming model
from the static programming model. That is, we can write
an aspect program for the static model to support the
dynamic model, or vice versa. The use of AoP techniques
has a number of advantages over the conventional ORB
architecture. First of all, the separation of concerns liberates

the ORB architect from the effort of incorporating the
dynamic model into the static model, or vice versa. Both
models can be better designed, modularized, and opti-
mized. Second, since, in most cases, only one invocation
model is sufficient for a particular domain application,
implementing the dynamic programming interface as
aspect program gives us the option of either ”weaving”
the feature in or leaving it out. The ORB architecture,
therefore, becomes more configurable, adaptive, and com-
putational efficient.11

4.4.2 Portable Interceptors

Definition: Portable Interceptors are hooks into the ORB
through which CORBA services can intercept various stages
during the object request processing. Interceptors allow a
third party to plug in additional ORB functionalities such as
transaction support and security.

Characterization: The implementation for supporting
interceptors is characterized by the usage of the interceptor
class type.

Logic tangling: The specification for interceptors were
added to the CORBA specification at a much later time; that
is, after the basic functionality of the ORB had been defined
and implemented. The support for interceptors is incorpo-
rated in the implementation of the POA and other objects
that are directly responsible for request processing as
follows:

1. The ORB interface contains methods and data
members to allow the registration of interceptors. It
also provides methods to allow access to these
interceptors when it is necessary to notify them upon
reaching interception points.

2. During the propagation of the request, the invoca-
tion context is checked to see if it is modified by
interceptors.

3. The POA needs to bundle requests with information
of interceptors if they are registered with the ORB.

The number of objects, such as POA, is proportional to
the number of server objects in the domain applications.
Therefore, an even higher degree of scattering could
happen during runtime.

Mining Results: The degree of scattering for the portable
interceptor support is reported in Table 4.

Result Analysis: The mining results show that portable
interceptor support is a crosscutting phenomenon, mostly
in the vendor code space since the spreading in CCS is
much lower.

AoP Benefit: Portable interceptor support is typically
needed to support enterprise computing features such as
security, transaction processing, and fault tolerance.
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9. As defined in [14], all user-defined IDL types should be generated
with additional helper and holder classes to allow convenient manipulation
of these types.

10. An earlier version of the popular C++ MICO CORBA implementation
was entirely based on the dynamic invocation interface.

11. The MinimumCORBA profile, for example, leaves all dynamic object
management functionality out of the specification, arguing that, for
resource constraint embedded applications, this functionality is not
required.

TABLE 3
Degree of Scattering for Dynamic Programming Interface

TABLE 4
Degree of Scattering for Portable Interceptor Support



Implementing the support for interceptors in aspect
programs is attractive, since they can be configured out
if they are not needed.

4.4.3 Type Any

Definition: We categorize type Any as part of the support
for the dynamic programming style of CORBA. We provide
an independent analysis for this type because it is one of the
primitive data types of IDL and, hence, can be used beyond
just dynamic programming. For example, Any is also used
in representing generic information when querying the
ORB’s execution state or the interface repository.

Characterization: In CORBA, the IDL data type Any is
mapped to the class org.omg.CORBA.Any in terms of
the Java language mapping. In addition, we also include
the vendor specific implementation class for this language
mapping. The ORBacus implementation is com.ooc.

CORBA.Any, org.jacorb.orb.Any for JacORB, and
org.openorb.CORBA.Any for OpenORB.

Logic tangling: The support for the type Any crosscuts
the ORB functionality in the following ways:

1. All the helper and holder classes must support the
conversions between the statically typed classes and
the type Any.

2. The ORB interface supports factory methods for user
applications to obtain the vendor specific instance of
the type Any.

3. The encoding and decoding mechanisms, as ex-
plained in Section 4.4.1.

4. The use of Any to represent generic information
about the execution context of the ORB as part of the
portable interceptor framework.

Mining Results: The degree of scattering for the
dynamic programming interface is reported in Table 5.

Result Analysis: The data shows that the scattering of
the type Any in all three implementations are consistently
high. Therefore, we categorize the type Any as an aspect of
CORBA.

AoP Benefit: For applications that do not require the
support of the IDL type Any, it is currently not possible to
remove its support in conventional ORB architectures.
Therefore, separately decomposing the support for Any,
as a set of aspects, will lead to a simpler architecture, while
preserving the CORBA functionality.

4.4.4 Wchars and Wstrings

Definition: Wchars are characters with an expanded
number of bytes. Every wchar has an equal number of
bytes and the number is platform dependent. CORBA uses
wchar to support additional sets of character encodings
such as Unicode. A Wstring is a sequence of wchars. We
treat wchar and wstring or, more generally speaking,
primitive data types, as aspects, because each data type
represents an independent, hence orthogonal way of
encapsulating and interpreting data in the applications.

Characterization: We use the lexical pattern “wchar”
and “wstring” to locate class concern with the support for
these two data types.

Logic tangling: The implementation of wchar and
wstring crosscuts the CORBA implementations as follows:

1. The initialization process of CORBA needs to
include the loading of the encoding (i.e., Code-set)
information of wchars.

2. The encoding and decoding mechanism contains
special operations related to the reading and writing
of wchars in incoming and outgoing octet streams.

3. CORBA supports multiple encoding formats for
characters. Each encoding format also needs to
support wchars and wstrings.

4. The error handling mechanism contains error codes
and error messages related to operations with wchar
and wstring.

Mining Results: The degree of scattering for the wchar
and wstring support is reported in Table 6.

Result Analysis: The support of wchar and wstring

causes varying degrees of scattering. The degree of
scattering is generally low because the crosscutting mainly
involves operations regarding characters but not the call
processing. However, the implementation of wchar support
is still nonlocalized.

AoP Benefit: The support for wide characters and
strings, as well as other primitive data types, is not localized
and modular. Decomposing IDL data types as aspects
rather than in a scattered fashion allows us to support user
applications with the right set of data types and reduces the
complexity of the architecture, eventually offloading non-
required types for specific resource constraint applications,
for example.

4.4.5 Oneway Invocation

Definition: The oneway invocation semantic of CORBA
supports the best-effort delivery of client requests and is of
an asynchronous nature, without any return value sent back
to the client. That is, the thread of control is returned to the
user application once the invocation is sent to the network
layer. We categorize the oneway invocation as an aspect
because it has an orthogonal semantic to the synchronous
invocation, which is typically the primary communication
mechanism in CORBA.

Characterization: As previously mentioned, the charac-
terization for the aspect of oneway invocations is the slicingof
the branching condition of whether the invoked interface is
taggedonewayornot in its IDLdefinition. SinceAMTEXdoes
not yet evaluate this type of aspect characterization, we use
the lexical pattern “response” as an approximation. We have
verified that this approximation is fairly accurate, as all three
implementations use the condition “response_expected”
to decide if the current invocation should be treated as
oneway or not.
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Logic tangling: The implementation of oneway crosscuts
the ORB as follows:

1. The oneway invocation is addressed in the stub/
skeleton layer to support the usage of the oneway

IDL keyword.
2. Depending on whether the request is oneway or not,

the client-side takes different processing steps so
that the stub will not expect a response from the
server.

3. The server issues a reply message to the client’s
request in the case of synchronous communication.
This reply is not needed if the invocation is oneway.
Therefore, the server-side call dispatching process
needs the “oneway” information of the current
request to determine the execution path.

4. The low-level transport and protocol layer addresses
the encoding/decoding information and related
socket operations regarding the oneway semantic.

Mining Results: The degree of scattering for the oneway
support is reported in Table 7.

Result Analysis: The results show that the scattering of
oneway support mainly exists in the vendor code space.
Although the degree of scattering is relatively small, the
runtime ramification of this aspect is high since the
scattering of oneway concentrates on the path of call
processing. Our metric does not capture this effect.

AoP Benefit: The oneway invocation is commonly
implemented as a set of branched executions in both the
marshalling and unmarshalling processes, regardless of
whether the current invocation is oneway or not. If the
application does not use oneway calls, these conditionals
become redundant, and yet, are still part of the execution
path of the synchronous invocation. This, in turn, degrades
the performance of synchronous invocations in CORBA
implementation not designed with aspects. Composing
oneway as aspects will make the synchronous invocations
more efficient without losing the support for oneway
invocations.

4.4.6 Common Aspects

In this section, we collectively treat the error handling, the
pre/postcondition checking, the logging, and the synchro-
nization functions. These are well-known aspects found in
most large software systems.

Definition: Error handling deals with unexpected states
of the system during execution. Sophisticated software
systems, such as middleware platforms, require a robust,
flexible, and manageable error handling mechanism such as
offered by exception handling mechanisms found in many
programming languages.

Pre/postconditions are used in applications to validate
the correct state of the data either before or after the data is
processed.

The purpose of logging is to report the running state of
the system and to aid in collecting debugging information.

Synchronization primitives, such as mutex, semaphore,
and monitors, are used to protect critical regions and the
valid state of shared resources.

Characterization: Exception-based error handling can
easily be characterized through the use of exception classes
and expressions that match ”try” and ”catch” blocks.

The implementation of pre/postcondition checking is
application specific. Typically, it can be characterized by the
use of assert-like statements.

The implementation of logging is highly application
specific. For example, JacOrb uses the method void

printLog(int mode, String message), and ORBacus
uses the following methods: info(String message) and
error(String message), warning(String message).

The use of synchronization can be characterized by the
synchronization data types such as mutexes, semaphores
and monitors. In addition, the keyword ”synchronized” in
Java programs identifies this aspect.

Logic tangling: Error handling can be considered as an
aspect because, although never being a design goal of any
application, error handling is a property that has to be
incorporated in the architecture in an ad hoc manner. More
importantly, the error handling mechanism provided by a
language, such as Java exceptions, can incur execution
overhead that cannot be overlooked in certain computing
environments. That is particularly important to middleware
because it should be designed to fit a wide range of
platforms. This clearly indicates that the error handling
mechanism, such as exceptions, crosscuts the design goal of
performance optimization.

We consider the pre/postcondition checking an aspect
because it implements the design requirements of validity.
The validation checking by nature scatters throughout the
decomposition model.

Logging can be considered as an aspect because it is
designed for ”debuggability” in sacrifice for system
performance and maintainability of the source code.

Synchronization, as a pervasive property, is applied
where resource contention exists. Synchronization is a well-
known aspect not only for middleware platforms, but also
for software systems in general.

Mining Results: The degree of scattering for the
analyzed aspects is reported in Table 8. Since logging,
pre/postcondition checking, and synchronization, other
than error handling, are implementation specific, the
mining is conducted over the vendor code space only.

Results Analysis: The mining data indicates that the
scattering degree of error handling is almost proportional to
the code size. Furthermore, the data confirms that mod-
ularity is clearly violated in the implementation. Similarly,
for the other functions, which are also widely scattered
through the code, the analysis confirms their aspectual
nature.

AoP Benefit: We briefly discuss the key benefits of
modularizing the functions discussed in this section as
aspects.

1. Although Java exceptions provide a powerful me-
chanism for error handling, it does come with a
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performance price, because not only does it increase
the code size, for the Java compiler has to generate the
exception management code, but it also elongates the
normal execution path of the application because of
the stack unwinding process. The exception mechan-
ism might not be a big factor for performance in the
enterprise or desktop computing environment. How-
ever, in the case that the computing resources are
limited, it may be desirable not to use exception
support, but to use return code-based error handling.
That greatly decreases the code size and performance
overhead. However, it is very difficult and cumber-
some to allow switching between the two error
handling schemes using traditional programming
paradigms. AoP can provide an elegant solution by
allowing us to compose the source code for the basic
functionality and the error handling functionality
separately. For example, we can write two sets of
aspect programs, one using exceptions and the other
using return code checking.Wecanconfigure theORB
statically or dynamically to use return code checking
instead of exceptions if resources are constrained.12 In
addition, anymodifications to the error handling logic
would not affect the ORB code, thus making changes
less error prone.

2. The modularization of pre/postcondition checking
with aspects offers the option of enforcing systema-
tic checks and policies, which can also be easily
modified. In the case of traditional programming
techniques, developers have to manually go through
the entire code space to make the corresponding
changes.

3. Aspects can be applied to separate the logging code
from the core logic of the implementation. In that
way, the state reporting capability can be preserve
without introducing any performance overhead in
the final system. The source code of the ORB can be
more concise and clean, while the logging code
becomes more modular and more reusable.

4. Synchronization assumes a concurrent execution
model. That assumption is not always valid for
certain platforms where it is costly to use concur-
rency for the limitation of computing resource and
power efficiency concerns. Aspect implementation
of synchronization enables the feature to be config-
ured in or out depending on the target platform.
Synchronization implementation can also become
more modularized.

4.4.7 Cross-Comparisons of Mining Results

The sections above have listed the mining results of several
individual aspects. We have used our extended aspect
mining tool to combine these individual results, which yield
statistical information that illustrates the scattering of all
these aspects in the CORBA platform from a slightly
different angle. Table 9 shows, for each of the three CORBA
implementations, the number of classes in VCS that are
crosscut by at least one aspect. It also shows the number of
classes containing three or more aspects.

These results strongly suggest that, in the investigated
platforms, tangled logic, which gives rise to aspects, is a
common phenomenon in both implemented classes as well
as the IDL-compiler generated classes. We conclude that
vertical decomposition yields architecture models that
inherently suffer from coordinating orthogonal design
requirements. Moreover, these results almost suggest that
the scattering of code in implementations of middleware
systems is consistent regardless of whether the develop-
ment model is cathedral or bazaar.13 However, further
experiments need to be carried out to more fully validate
this observation.

5 ASPECT REFACTORING MIDDLEWARE

USING AOP

Our aspect mining results have shown that aspects are
inherent properties of middleware implementations. How-
ever, it is still not clear how AoP techniques could improve
the architecture and result in implementations that, at least,
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preserve the design requirements. Obviously, that question
cannot be answered without quantitative comparisons
between two instances of implementations, one using
traditional decomposition techniques and the other using
the aspect-oriented approach. Our long term research goal
is an aspect-centric design of a middleware platform. Here,
we base our comparative evaluation on a refactored legacy
implementation. That is, if we identify a certain function-
ality, which constitutes an aspect as the result of aspect
mining, we should be able to separate that functionality
from the original implementation, compose the function-
ality as an aspect, and weave it back into the architecture.
All design requirements should still be satisfied transpar-
ently to the user. We believe that ”refactoring” closely
resembles what happens in a completely aspect-oriented
approach. The following sections will present the set of
software engineering metrics we have used in order to
quantify the architectural differences. We then describe our
refactoring approach, the detail of the aspect-oriented
implementations, and the results of the evaluations.

5.1 Quantification Metrics

Metrics are measures for the quality of software. In [15], the
following software metrics are used based on the static
information available in the implementation. These are

1. cyclomatic complexity,
2. size,
3. weight of the class (in number of methods),
4. coupling between classes,
5. DIT (depth of inheritance tree),
6. number of immediate children, and
7. lack of cohesion in methods.

These metrics can be applied to assess the design quality of
both component programs as well as aspect programs in
general. In our analysis of the benefit of AoP as compared
with the traditional programmingmethodology, not all of the
above metrics apply. In addition, while applying these
metrics, our reference is the primary program (i.e., imple-
mentation of the primary decomposition), with the recogni-
tion that the sumof complexities of both theprimaryprogram
and aspect programs might not necessarily decrease. We can
mainly put the primary program under our consideration
because aspect programs are to be configured in and out and
are maintained separately. We think it is appropriate to use a
combination of metrics to address various properties of the
aspectized architecture, including both the static properties,
which directly tie to the cost of development and main-
tenance, and the runtime characteristics, which reflect the
cost of adopting the technology. The following is a list of
metrics that are used to quantify aspectization in our work.
For each metric, we also provide analysis of the expected
change due to aspectization and the rationale for the change.

1. Cyclomatic complexity: Cyclomatic complexity is a
measure of alternative execution paths in code
segments caused by control flow statements. It is
an index obtained through heuristics and is inde-
pendent of specific languages. The SEI defines the
following measures for cyclomatic complexity [16]:
A cyclomatic complexity number (CCN) between 1
to 10 refers to simple programs without much risk; a
CCN between 11 to 20 refers to more complex
programs indicating moderate risk; and a CCN

between 21 and 50 identifies complex programs that
are highly risky. A lower CCN, that is, fewer
alternative execution paths, makes the program
easier to understand and to maintain. More im-
portantly, it could also improve the runtime char-
acteristics of the program in significant ways, such
as better cache performance and less coverage tests.
AoP refactoring should lower the cyclomatic com-
plexity because it takes the handling of crosscutting
properties out from the primary decomposition.

2. Size: In [15], several methods are mentioned to assess
the size of a software system. In this paper, we
define size as the total number of executable lines in
all measured classes. The size of a software system
directly ties to the development and maintenance
cost. AoP refactoring decreases the number of
comments and blank lines of code, as well as the
count of executable statements of the primary
program.

3. Weight of a class: The weight of a class is the average
number of methods per class. It reflects the complex-
ity of classes. AoP refactoring decreases the weight
of classes.

4. Coupling between classes: Coupling is a measure of
how much the types in the system are related to each
other. A good architecture is always less coupled
due to good modularization. AoP refactoring de-
creases coupling by separating the primary program
from the knowledge of the types, which implement
the crosscutting logic. In this paper, we measure the
average number of classes that a class has connec-
tions to in the call graph.

5. Response time: In the context of middleware, response
time can be defined as the time taken to respond to
an invocation request by the request broker. This is
defined as the total time a message traverse through
the middleware stack during its round-trip. We
divide that into four intervals of time as messages
are processed in the middleware stack:

a. Interval A: client-side marshalling;
b. Interval B: server-side unmarshalling and dis-

patching;
c. Interval C: server-side marshalling; and
d. Interval D: client-side unmarshalling.

It is necessary for the aspect-oriented refactoring to
at least preserve the performance measure. In the
case of having crosscutting features factored out,
aspectization is expected to decrease the processing
time due to the simplification of the program logic.

6. Scattering degree: The scattering degree is measured
as, for a specific aspect, the number of classes that
carries the characteristics of that aspect normalized
by the total number of classes in the project under
investigation. Theoretically, the aspectization should
decrease the scattering factor to zero as these
crosscutting classes or types are modularized in
aspect programs.

To ease our discussion, we classify these metrics into two
categories, structural and behavioral. Structural metrics
include cyclomatic complexity, size, weight, coupling, and
the degree of scattering. Behavioral metrics reflect the
runtime characteristics of the system, such as, in our case,
the response time.
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The structural metrics are collected over classes that are
involved in the refactorization. We use JavaNCSS,14 an open
sourcemetric collection tool, to collect cyclomatic complexity,
average class size, and weight. We use our extended aspect
mining tool to collect the coupling index and the degree of
scattering. Tomeasureperformance, a simpleC-based timing
tool is written based on the JavaNative Invocation interfaces.
It is integrated with AspectJ programs to insert various
measurement points into the ORBacus execution stack. The
stack traversal intervals are measured in microseconds and
computed as the average of 100,000 remote invocations on a
Pentium III 1G NT workstation. Each remote invocation
involves an integermessage sent from the clientprocess to the
server. The server also respondswith an integermessage.We
have carefully chosen themeasurement points to exclude the
socket operation. Therefore, the influence of the size of the
message is minimal.

5.2 The Refactoring Approach

There are a few key artifacts in an aspect-oriented system,
namely, thecomponentprogram, theaspectprogram,and the
aspect weaver. We use AspectJ as the aspect language for its
maturity and its natural integration with the Java program-
ming language. We pick ORBacus, the CORBA implementa-
tion used previously for the aspect mining, as the component
program. To verify the correctness of the refactorization, we
adopted the demonstration code, which is a part of the
standard ORBacus source distribution, to serve as test cases.
The test programs invoke CORBA functionality without
being aware of the refactorization that is performed. The test
programs are also used for performance measurements. As
the first step of refactorization of the ORBacus implementa-
tion, we need to identify the presence of the crosscutting
property in two forms, the implementation structure for the
property and the crosscutting points in the primary decom-
position model for that property. By using that model, the
tangled code is transformed to three types of groupings of
classes in the aspect-oriented implementation, namely,
primary classes, aspect implementation classes, and the
weaving classes. The transformation is illustrated in Fig. 1,
where the outside box on the left depicts that the original
implementation is one monolithic entity. The primarymodel
and the aspect model coexist in a single structure with parts
intersecting each other. The package diagrams on the right
presents a cleardivisionof structures. The importance of such
division is that it allows all three components to be designed,
tested and evolved with unprecedented independence and
freedom.

5.3 Aspect-Oriented Refactored Implementation

In this section, we present our refactored implementation of
a number of crosscutting features of ORBacus in AspectJ,
including the dynamic programming interface, support for
portable interceptors, collocated invocation, and logging.
For each feature, we first provide the rationale of the
construction of the package scheme, which is described in
the previous section. We use the package diagrams in Fig. 2
to illustrate the hierarchical structure and the major types of
relationship between aspect packages and the component
program, using the dynamic programming interface as an
example. We then present the evaluation of the metrics as
the result of factoring out that specific feature from the
ORBacus implementation. A detailed presentation, includ-
ing code snippets and discussion of the aspects, of our
refactoring is presented in Zhang and Jacobsen [17] which,
due to space limitations, cannot be included here. At the
end of this section, we will look at the overall change of the
metrics after we factor out all the ”aspectized” features. For
clarity purpose, we use the term ”client” to denote a role
that is requesting a service and the term ”server” to denote
the role for providing that service, with the observation
that, in the middleware context, the classification of client
and server is a relative one.

5.3.1 Dynamic Programming Interface

Aspect mining revealed that the dynamic programming
interface can be treated as an aspect of the CORBA
implementation, which mainly supports stub and skele-
ton-based static invocation methods in its primary decom-
position model. Our AoP-based refactorization of the
dynamic programming interface consists of two parts, the
client side dynamic invocation interface (DII) and the server
side dynamic skeleton interface (DSI).

Dynamic invocation interface (DII):

. Aspect implementation: The client-side facility for the
dynamic programming model, is supported through
the implementations of the interface org.omg.

CORBA.Request and MultiRequestSender.
These two class types are taken out of the original
implementation and grouped under the aspect
implementation package for the DII.

. Crosscutting points: We then identify, in the primary
decomposition model, the places where operations
of classes need to acquire or to exploit the knowl-
edge of these class types identified in step one.
These places are the crosscutting points of the DII
aspect. In AspectJ, these crosscutting points can be
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implemented as “joinpoints” instead. To be
more specific, the crosscutting points of the aspect
DII is summarized below in terms of how to change
the original model using AspectJ.

- Weuse the “introduction” construct to factor
out a number of methods to handle multiple DII
requests in the ORBacus implementation of the
org.omg.CORBA.ORB interface.

- The “introduction” construct is used to
factor out the downcall creation logic for
dynamically composed downcalls.

- “introduction” is used to factor out the code
in the object delegates [14], which creates
dynamic invocation request objects.

- We group the aspect classes that contain
implementations of these “joinpoints” in
the weave package.

. Evaluation: The structural metrics are collected on
the ORBacus implementation prior to AoP refactor-
ing and after the DII is factored out. The response
time is measure using both the original implementa-
tion and ”woven” implementation. The data indi-
cates that the structural change as the result of
factoring out the DII is same as predicted and
runtime performance of the aspectized DII is
equivalent to that of the original implementation
(see Table 10).

Dynamic skeleton interface (DSI):

. Aspect implementation: The server side facility of the
dynamic programming model is supported through
the ORBacus implementations of the interface
ServerRequest and the user specific implementa-
tion of the interface DynamicImplemenation. We
first remove these two class types and group them
under the aspect implementation package.

. Crosscutting points: We implemented the crosscutting
points of the aspect DSI in the primary decomposi-
tion model as follows:

- We first removed the code segments, which
dispatches client requests to a dynamic server
implementation, from the request dispatching
code. Then we use the ”around” construct to
replace the request dispatching call with an
alternative implementation, which appropri-
ately handles dynamic server implementations.

- ORBacus prohibits the direct invocations for DSI
server implementations. We moved the logic of
checking whether an invocation is toward a
dynamic implementation or not into the aspect
implementation. The ”before” construct is
used to precede the normal invocation process
in order to prevent direct invocations.

. Evaluation: For this evaluation, we used the static
invocation interface on the client-side. The client-
side processing times, interval A and interval B, are
therefore dramatically decreased as compared with
the DSI. However, that change is irrelevant to our
AoP refactorization. The data shows that factoring
out the DSI has simplified the control flow and
decreased the class size. The average weight of
classes dose not change because server-side support
for the dynamic programming interface is much
simpler. No additional methods are used to support
the DSI in the original implementation (see Table 11).

5.4 Support for Portable Interceptors

. Aspect implementation: In ORBacus, the functionality
for portable interceptors is implemented through
three categories of classes. They include the classes
related to implementing the interceptor interfaces
defined by the OMG. They also include the ORBacus
specific interceptor initialization classes and request
processing classes that support portable interceptors.
We separated classes in these three categories from
ORBacus, and grouped them under the aspect
implementation package.

. Crosscutting points: We implemented the crosscutting
points where the primary ORB model tangles with
support for portable interceptors in AspectJ. These
crosscutting points correspond to the specified beha-
vior of portable interceptors. That is, an ORB
implementationmust allow interceptions of the client
request process, of the server request process, and the
of the creation process of server objects. The following
is a summary of our AoP implementations:

- The portable interceptor allows the processing
of request sending to be intercepted before it is
completed. Therefore, in ORBacus, the request
sending process, e.g., the downcall creation
process, needs to check if any client request
interceptors are registered. If yes, a downcall
class initialized with the portable interceptor
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information is created instead of a plain one.
However, ORBacus performs the checking re-
gardless of whether portable interceptors are
used. We moved the code segments into the
aspect program in an ”around” construct. As
the result, the ”aspectized” ORBacus only per-
forms necessary checks if portable interceptors
are required for a particular application.

- A similar situation occurs in the server side
request dispatching process, e.g., the upcall
creation process. We moved the checking and
upcall creation code into the aspect implementa-
tion. That makes the server request processing
leaner and more precise. That is, it only needs to
know and to handle portable interceptors when
it is required to do so.

- The portable object adapter (POA) plays a key
role in the process of object creation. It needs to
notify all the interceptors if there are intercep-
tors registered for intercepting object creation
processes. Consequently, the POA code needs to
have extra control paths in order to support that
requirement. We moved that checking logic into
the aspect code and implemented the same logic
via the “after” construct. That is, following
the completion of object creation, the checking
code is executed only if the support for portable
interceptors is required.

- The ORB also contains the initialization code for
loading portable interceptors and registering
them with the ORB. We moved the correspond-
ing code into the aspect implementation such
that, if interceptor support is not needed, it is no
longer necessary for the ORB to perform the
extra initialization procedures.

. Evaluation: This section presents the measurements
of structural metrics and the response time. The
response time is measured as the time for a message
to traverse through the four intervals with and
without the presence of the support for portable
interceptors. The data of structural metrics show the
same direction of change as in the case of the
dynamic programming interface. The coupling
factor exhibits a larger drop because interceptor
support is implemented by a larger number of
classes. The runtime performance is equivalent to
the original implementation (see Table 12).

5.5 Invocation of Collocated Objects
The key abstraction provided by middleware systems is the
transparency of the location of server objects. Location
transparency allows remote services to be invoked in the
same fashion as calling a method on an object while
performing marshalling and unmarshalling behind the
scene. Some CORBA implementations optimize the calling
process to avoid unnecessary marshal/unmarshal work, in
the case where server objects are deployed or migrated into
the same process as the client. In ORBacus, the optimization

logic is an integral part of the request processing process,
which is designed primarily for making remote invocations.
We believe the optimization for in-process server objects in
ORBacus is logically orthogonal to its remote invocation
mechanism. Therefore, we identify the optimization for
local invocations as an aspect of the ORBacus implementa-
tion of CORBA. Since we treat it as an ORBacus specific
phenomenon, we omitted the corresponding aspect mining
analysis due to the lack of generality.

. Aspect implementation: In ORBacus terms, in-process
objects are referred to as collocated objects. To
distinguish between normal remote invocation calls
and calls to collocated servers, ORBacus uses
CollocatedClient and CollocatedServer to
handle corresponding request processing for the
client and server, respectively. We completely
decouple these class types from the ORBacus source
and move them into the aspect package.

. Crosscutting points: In ORBacus, the collocated
invocation is mainly implemented in the object
initialization phase for both the client and the server.
We have used AspectJ to reimplement the collocated
invocation in aspect programs as follows:

- We use the ”after” construct to create the
server-side objects that are responsible for
processing collocated requests, after the objects
for servicing remote invocations are created.

- We use the ”around” construct to weave in the
client-side logic of checking whether the object
reference is pointing to a collocated server. If
yes, a different communication model is set up
to avoid marshalling and network operations.

. Evaluation: The response time is measured by
running collocated client/server communications
on the original ORBacus and the ”aspectized” ORB
(see Table 13).

5.6 Logging

. Aspect implementation: Logging in ORBacus is carried
out mainly by two class types, Logger for perform-
ing the logging operations and CoreTraceLevel

for setting the levels of logging. We remove all
instances of these two class types from the ORBacus
implementation and group them under the aspect
package.

. Crosscutting points: The crosscutting points for
logging includes the following three categories:

- Recording of the error information in exception
handling code.

- Tracking of the request processing.
- Recording of network connection activities, such

as close of connection, decoding of data, and
others.
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We use various AspectJ constructs to implement
these crosscutting points in the aspect program.

. Evaluation: The response time is measured by using
the client and server that are both based on the static
invocation interface. From the measurements, it is
easy to observe that, while refactoring of logging
decreases all structural metrics, it has a particularly
high impact on the size of the program. The runtime
performance does not change significantly (see
Table 14).

5.7 Overall Assessment and Analysis

We have presented comparative results with respect to each
individual feature that is refactored by using AspectJ. We
are also interested in the overall effect of the collective
refactoring of ORBacus, in terms of change in its structure
and the response time. In particular, we want to verify that
ORBacus is able to, at least, maintain the same level of
service in terms of handling remote object invocations. We
use the same experiment settings as in the individual
evaluations. The response time data are collected over three
ORB implementation instances, the original one, the one
with all the ”aspectized” features factored out, and the
implementation with all the features ”woven” in. The
structural metrics are collected on the set of all modified
classes.

The structural metrics indicate that, to implement the
primary functionality of the ORB, we have significantly
lowered the complexity of the architecture via the aspect-
oriented approach. The data show that the same function-
ality can be implemented at least by 9 percent less code,
12 methods fewer in total, and 70 instances fewer in terms
of coupling with other classes.

From the observation of the response time measurements
for the overall refactoring as well as individual ones, we
draw the conclusion that the ”aspectized” architecture is
equivalent to that of the original architecture. The difference
is in a few microseconds, which is negligible for Java

applications. AspectJ implementations hardly incur any

overhead because we are simply moving the code from the

original program into the aspect program. In other words,

the original ORB is executing the them code anyway (see

Table 15).

5.8 Limitations

During our aspect-oriented refactoring of ORBacus, we

have realized some limitations in our approach due to

insufficient research in the area, overwhelming program-

ming effort and limitations in tool support.

1. We did not completely factor out class types such as
Any and NVList, which are used widely for other
purposes in addition to the dynamic programming
interface, such as for request context passing. While
failing to factor these types out does not prevent us
from evaluating the aspect-oriented approach, we
defer the work until future research when it becomes
necessary to exactly quantify all aspects tied to the
dynamic programming interface aspect.

2. We decided not to change the IDL-to-Java mapping
portion of the implementation, since we believe the
appropriate approach is to make the IDL code
generator aware of the existence of aspects. We
defer the discussion until future works. As a
consequence, the user code is still able to use the
corresponding OMG interfaces for a feature that is
possibly factored out. The ORB throws exceptions
during runtime to flag these features do not exist.

3. We decided not to collect the memory usage due to
the fact that our ”aspectization” experiment is
conducted on the Java platform. We do not have
an accurate memory profiling tool that allows us to
the monitor memory usages of the application
objects. Also, the expense of running the full JVM
makes the memory improvements achieved by our
AoP refactoring almost trivial. Memory footprint
will become a more important metric for non-Java-
based aspectization projects.
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6 RELATED WORK

Although we do not have knowledge of any research
project that is directly related to applying aspect-oriented
programming to improve the internal architecture of
middleware to achieve customization, there are numerous
projects that are looking into using AoP to improve the
modularity of software systems in general.

Putrycz and Bernard [18] present an aspect-oriented
approach to add load balancing functionality to ORBacus
using AspectJ. Load balancing code is written in aspect
programs to detect server replicas and to redirect requests
from the clients to the replicas. Similar functionality is also
added to naming servers where repeated naming service
requests are intercepted and distributed among replicas.

A conceptual analysis of using aspect is presented by
Kienzle and Guerraoui [19], who investigate the aspectiza-
tion of concurrency and failure in distributed systems. Their
analysis indicates that these two properties do lend
themselves well for an approach supported by aspects. In
our approach, we do not address these two properties, so a
comparison is not possible.

Atlas [20] provides one of the earliest case studies of
applying aspect-oriented programming as a general archi-
tecture approach for building a Web-based learning envir-
onment. Atlas uses aspects to support different architectural
configurations to implement design patterns and to help the
development process by writing modular tracing code. It
also presents a notation system for aspects and a set of style
rules in designing aspect-oriented systems.

In the middleware field, there are a number of new
approaches to improve configurability and adaptability of
the middleware platform. Astley et al. [21] achieves
middleware customization through techniques based on
separation of communication styles from protocols and a
framework for protocol composition. Further aspects that
crosscut the system implementation are not explicitly
addressed. Several projects exploit reflective programming
techniques to allow the middleware platform to adapt itself
to changing runtime conditions. This includes projects such
as openCOM [1], openCORBA [22], and dynamicTAO [2].

Jacobsen and Krämer [23] have developed design
patterns to extend middleware platforms with at the
interface exposed concerns. This inspired the discussion
by Jacobsen [24], [25] who outlined the use of nontraditional
programming paradigms for middleware system design.

7 CONCLUSION

We believe that adaptability and configurability are
essential characteristics of middleware substrates. These
two qualities require a very high level of modularity in
middleware architecture. Traditional software architectural
approaches, which we refer to as “vertical decomposition,”
exhibit serious limitations in preserving the modularity of
decomposition models for multiple orthogonal design
requirements. Those limitations correspond to the scatter-
ing phenomena in the code. The aspect-oriented program-
ming approach has brought new perspectives to software
decomposition techniques. The concept of an aspect allows
us to compose, with respect to the primary decomposition
model, the modular solution for each orthogonal design
requirement. Although it is conceptually intuitive that AOP
is beneficial to solving the problems of middleware
architecture, we still need to apply quantitative analysis to

justify our motivation. We perform aspect mining over
several legacy implementations of middleware systems. We
discover that the scattering of tangled logic is indeed very
common as more than 50 percent of classes handle
crosscutting logic of some sort. Therefore, if aspect-oriented
programming can be successfully applied to modularize the
scattered code, the structural complexity of middleware
system architecture can be simplified tremendously. As an
empirical study, we use AspectJ to refactor a number of
aspects identified through the mining process. The im-
plementations, which exist in multiple places of the original
code, are grouped within a few aspect units. The successful
refactorization shows that middleware systems are able to
provide the fundamental services regardless of whether
certain pervasive features are factored out or factored in.
Aspect-oriented refactorization has shown its superb cap-
ability of loading and unloading pervasive features of the
system, which is not possible in legacy implementations.
The “woven” system transparently supports these refac-
tored features. The runtime performance is equivalent to
the original implementation.

In the light of our experimentation, we are very
optimistic that aspect-oriented programming will show
more promises in conquering the complexity of middleware
architectures. It will promote the adaptability and the
configurability of middleware systems to an unprecedented
level to satisfy a broader range of computing needs. In
future work, we will aim at developing more experience in
terms of applying aspect-oriented development methodol-
ogies to this problem context. We are exploring various
techniques to help us define horizontal decomposition
procedures more concretely. This experience will be used
toward designing a completely new aspect-oriented mid-
dleware platform.
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