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Abstract—Atomicity, a general correctness criterion in con-
currency programs, is often violated in real-world applications.
The violations are difficult for developers to fix, making
automatic bug fixing techniques attractive. The state of the art
approach aims at automating the manual fixing process but
cannot provide any theoretical reasoning and guarantees. We
provide an automatic approach that applies well-studied dis-
crete control theory to guarantee deadlocks are not introduced
and maximal preservation of the concurrency of the original
code. Under the hood, we reduce the problem of violation fixing
to a constraint solving problem using the Petri net model. Our
evaluation on 13 subjects shows that the slowdown incurred
by our patches is only 40% of that of the state of the art.
With the deadlock-free guarantee, our patches incur moderate
overhead (around 10%), which is a worthwhile cost for safety.

I. INTRODUCTION

For concurrent programs using shared memory, atomicity
is a widely used correctness criterion. It requires an exe-
cution of one thread, which involves one or more shared
memory locations, not be interrupted by other threads. In
the mainstream programming practice, atomicity is enforced
by locks, which is notoriously difficult to be programmed
correctly. Although the violations of atomicity can be de-
tected effectively ( [6], [12], [13], [25], [28], [32]), tremen-
dous difficulties still exist in fixing them properly by the
programmers, who can easily introduce new bugs such as
deadlocks or unintentional performance penalties. Studies (
[1], [10], [27]) show that it often takes more than one month
to fix a concurrency bug and nearly 70% of the patches are
still buggy in their first release.

One of the primary reasons for this difficulty, as observed
by many researchers ( [18], [30], [36]), is that writing syn-
chronization code that is both safe and performant requires
the intricate non-modular reasoning about the semantics of
the program. The desired rigorous inter-procedural reasoning
of these types of global properties is usually the strength
of the compiler-based techniques. Therefore, the research
of lock allocation ( [11], [15], [21]) aims at replacing the
manual reasoning by automatically assigning the locking op-
erations based on atomicity specifications. These approaches
can in general guarantee the freedom of deadlocks but often

result in the unsatisfactory performance ( [11], [15]), due to
the general conservativeness of static analysis techniques,
such as the thread-escape analysis [8], the array index
analysis [29], the shape analysis [14], and many others.

We believe that, for a carefully engineered concurrent sys-
tem, the programmer, who really understands its semantics,
is more likely to produce the high quality synchronization
code that has good performance as a result of the high
degree of concurrency. This is simply because performance
can be easily measured in concrete test runs, whereas safety
is difficult to verify due to the scheduling non-determinism.
An effective way of curing atomicity violations is to max-
imally respect the programmers’ designs of lock placement
and assist them in avoiding hazardous situations such as
inconsistent operations and deadlocks.

One recent work, AFix [18], is the state of the art research
in this direction. The primary goal of AFix is to automate the
manual bug fixing process for programmers and strengthen
it with the static analysis techniques such as the path
analysis, the reduction of subsumed bugs, and the merging of
overlapping bugs. However, limited by the inherent nature of
manual reasoning, approaches such as AFix essentially lack
a unified theoretical foundation to globally reason about bug
fixes together with the existing lock design. Consequently,
no guarantees are provided with respect to either the safety
or the performance of the patched program. Our evaluation
of AFix on large real systems also shows that the AFix
sometimes incurs the degraded performance and, worse,
frequent deadlocks.

Different from AFix, we propose a fully automatic bug
fixing technique that is systematic, rigorous, and providing
both safety and performance guarantees. For the end user,
our technique exhibits two distinctive and highly useful
properties. First, our technique can simultaneously reason
and fix any number of correlated atomicity violations involv-
ing an arbitrary number of variables. Second, we guarantee
that the fix not only is deadlock-free but also incurs the
minimal interference to the degree of concurrency of the
original code.

Our technique achieves these properties by modeling the
concurrent properties of a program as Petri nets [22] and
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using a branch of control theory called the Supervision
Based on Place Invariants (SBPI) [17] as our theoretical
foundation. We use novel methods to reduce the problem of
fixing atomic violations to solving a set of control constraints
on Petri nets. By solving the constraints with an SBPI
constraint solver, we compute the locking additives to the
original program, which prohibit the illegal interleavings
of threads. The SBPI theory guarantees that the solution
satisfies the constraints, i.e., preventing the violations from
happening. It also guarantees that the solution incurs the
minimal interference1 to the degree of concurrency of the
program, hence, maximally respects the programmer’s orig-
inal design. We extend the earlier application ( [33], [34])
of SBPI on the deadlock avoidance and guarantee that, if
the original program is deadlock-free, our solution does not
cause the patched program to deadlock.

We implemented our approach as a tool, Axis, and evalu-
ated it against AFix, the state of the art automatic approach
for fixing atomicity violations, using 13 subjects including
three large scale real world programs. Our evaluation shows
that, for these large scale subjects, our patched version
outperforms the AFix solution by 6% to 9%; the overhead
of our patched version is much smaller than (only 40%
of) the overhead of the AFix solution. Considering the
subjects are well engineered and AFix is efficient, such
improvement is significant. Equally important, our patched
program scales well when the thread number increases. Be-
sides, our patched version with the deadlock-free guarantee
never incurs deadlocks in our experiments while incurring a
moderate (average 10%) overhead.

We make a significant contribution to the automatic fixing
of atomicity violations, which includes the following:

1) We propose an automatic approach to fix the atomicity
violations, which guarantees the minimal interference
to the concurrency degree of the program, and no
introduction of deadlocks.

2) We reduce the fixing of atomicity violations to solving
the control constraints, which brings multiple compu-
tational advantages.

3) We propose a new Petri net modeling which combines
the dynamic calling context information and the static
program code. The modeling is scalable, complete, and
precise for the violation fixing.

The rest of the paper is organized as follows. We first
briefly describe the overview of our approach in Section II.
Then, we present our approach in Section III. Section IV
and Section V state the implementation and evaluation,
respectively.

1The guarantee is referred to as the maximal permissiveness of concur-
rency degree in the control theory, we may use the two terms interchange-
ably.

(a) (b) (c) (d)

Figure 1: Basic Petri subnets. (a) Branch. (b) Loop. (c) Start and Join.
(d) Lock.

II. OVERVIEW

We present our technique in a nutshell by giving a primer
on the Petri net modeling of program control flows first,
followed by high level steps of our technique.

Petri Net Primer. Petri net [22] is a compact repre-
sentation of state machines that avoids the state explosion
problem. A comprehensive overview of Petri net models
and their applications is given by Murata [22] and we
briefly outline the Petri net models of the basic control
flow constructs including branch, loop, fork, join, and lock,
as illustrated in Figure 1. Petri net is a bipartite directed
graph, which contains two types of nodes, places (circles)
and transitions (horizontal bars), connected by the arcs.
Each place may contain tokens (black dots), each of which
marks the current position of the execution flow of a thread.
Each transition can be triggered independently of each other.
When being triggered, the transition removes the tokens
from each of its input places and replenishes tokens to each
of its output places. Each arc is associated with a weight, i.e.,
a number that determines the number of tokens to remove
or to replenish. If any input place does not contain sufficient
tokens, the transition is not triggered.

Petri net models program statements (or basic blocks) as
places and the control flow as the transitions. For instance,
in Figure 1(a), the branch is modeled using a single token
in place p1 that flows to either p2 or p3 through a simple
transition (one source and one target), t1 or t2. As in
Figure 1(c), the start operation is represented by the split
transition (one source and two targets), t1, removing the
token in p1 and simultaneously replenishing tokens to p2 and
p3. Locks are modeled using two tokens, one representing
the program flow and the other the availability of the lock,
as illustrated in Figure 1(d). The merging transition (two
sources and one target), t1, says both tokens need to be
available to enable the triggering of the transition, and the
triggering of t1 removes the tokens, simulating the lock
operation. The splitting transition t2 returns the token back
to L, simulating the unlock operation.

Our Technique. We use a slightly simplified ver-
sion of the well-know atomicity violation from the
StringBuffer class in JDK 1.4 to highlight the essential
steps of our technique. The interleaving sequence and the
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1 public class StringBufferTest {
2 public static StringBuffer s1,s2 = null;
3 static Thread th1= new Thread(){
4 public void run(){ // inlined s1.append(s2):
5 synchronized(s1) {
6 int len = s2.length();
7     // s2 is cleared by the thread t2
8 s2.getChars(0, len, s1.value, s1.count);
9                     }
10 }
11     };
12 static Thread th2= new Thread(){
13 public void run(){
14 s2.delete(0, s2.length());
15             }
16 };
17 …
18 th1.start(); th2.start();
19 th1.join(); th2.join();

(a) (b) (c)

1 public class StringBufferTest {
2 public static StringBuffer s1,s2 = null;
3 static Thread th1= new Thread(){
4 public void run(){ // inlined s1.append(s2):
5 synchronized(s1) {
6 lockM.lock();
7 int len = s2.length();
8 s2.getChars(0, len, s1.value, s1.count);
9 lockM.unlock();
10                  }
11 }
12    };
13 static Thread th2= new Thread(){
14 public void run(){
15 lockM.lock();
16 s2.delete(0, s2.length());
17 lockM.unlock();
18             }
19      };
20 }

(d)

Figure 2: (a) The original code. (b) The Petri net model with offending places shaded. (c) The augmented Petri net. (d) The patched code.

offending statements are indicated by the arrows in Figure 2.
Given a violation report containing the offending program
statements, such as line 6, 8, and 14 in our example, we first
construct a Petri net model for this program, illustrated in
Figure 2(b). We next encode this Petri net and the offending
places (statements) as a set of control constraints, which can
be mathematically solved to yield an augmented Petri net as
shown in Figure 2(c). Our technique guarantees that, if the
new lock M and the arcs (dashed lines) are added, the new
program has the following properties: 1. the violation will no
longer happen (correctness); 2. there is no deadlock between
the new lock M and the existing lock L (deadlock-freeness);
3. the new lock is used only when the interleavings of the
threads trigger the specific bug (maximal permissiveness).
The augmented Petri net in Figure 2(c) corresponds to the
patched code in Figure 2(d).

The key to achieve these salient properties is to model the
absence condition of each atomicity violation as a control
constraint and to satisfy the constraint by augmenting the
Petri net with new lock places and new arcs. For instance,
the absence condition of the exemplary violation is, line 14
cannot interleave between line 6 and line 8, which is equiv-
alent to two control constraints: 1. places p7 and p3 cannot
simultaneously contain tokens; 2. places p7 and p4 cannot
simultaneously contain tokens. Then, we express these con-
straints in succinct linear inequalities (Section III-B), and use
the SBPI constraint solver to compute an augmentation to
the Petri net, to guarantee that all constraints are satisfied. In
addition, we extend the siphon analysis of Wang et al. [34]
to eliminate any possible deadlocks introduced by the aug-
mentation. Treating atomicity violations with a constraint
solving system has many computational advantages over
existing approaches. The solver considers all correlated bugs
and produces the optimum (maximal permissive) solutions,
rather than simply relying on merging heuristics. The solver
computes automatically, without any ad hoc treatments for
loops or branches, the lock placement that guarantees to

be free of bad lock practices. In addition, the mathematic
form of the constraints allows further algebraic optimizations
such as the rank reduction. We now describe our constraint
solving approach in detail.

III. FIXING ATOMICITY VIOLATIONS WITH CONTROL
CONSTRAINTS

In this section, we first explain how the Petri net models
and control constraints are constructed. We then explain how
they are solved by the SBPI constraint solver to generate
patches for fixing the violations. At last, we show the general
applicability of our approach, the deadlock-free guarantee,
and the guarantee of lock placement.

A. On-Demand Petri Net Construction
Our technique takes as input the reports of violations,

including both single-variable and multi-variable violations.
For the ease of technical discussion, we primarily discuss
the single-variable violations and briefly outline later in the
paper how multi-variables are treated.

The quality of the bug reports greatly affects the quality
of bug fixes in general. Although our technique can be
applied to statically detected violations, our current focus
is to deal with dynamically discovered bugs with both the
offending statements and their calling contexts available.
Most dynamic bug detection tools ( [16], [26]) can pro-
vide this information easily. Each single variable atomicity
violation can be characterized by three statements, sα, sβ
and sγ , where sα and sβ are executed by the same thread
and sγ is a remote statement. Given the calling contexts of
these statements, the context-sensitive Petri net can easily be
constructed starting from the entry point of the thread, by
constructing the subnets intra-procedurally and by linking
the subnets at the call sites inter-procedurally. If the thread
is created in a loop or by a recursive call, we clone the Petri
net starting from the thread entry point to represent two
threads. Note two threads are sufficient to express atomicity
violations [19].
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B. Control Constraints

Constructing the control constraints on the Petri net is a
key step in fixing the violations bugs. However, the con-
struction is not straightforward because atomicity bugs are
characterized by their dynamic behaviors, whereas control
constraints express the structural information of Petri nets,
which is static by nature. Our transformation method is
based on the following observation. For a violation, (sα,
sβ , sγ), to occur at runtime, there must exist a statement
inclusively between sα and sβ that is executed concurrently
with sγ . This is an equivalent condition of the atomicity vio-
lation [28]. We define this observation formally as Lemma 1.

Lemma 1: Three statements, sα, sβ and sγ , form an
atomicity violation (sα, sβ , sγ) at runtime ⇔ ∃ statement
sθ ∈ between(sα, sβ), sθ is executed at the same time as
sγ .

Here, between(sα, sβ) returns a set, denoted as the bset
(short for between set), of statements that may be executed
between sα and sβ locally by the same thread. One way to
compute it is to collect the statements on every path from
sα to sβ , which can be implemented efficiently using the
standard forward data-flow analysis2.

Mapping to the Petri net, Lemma 1 is reiterated as
Lemma 2.

Lemma 2: Three statements, sα, sβ and sγ , form an
atomicity violation (sα, sβ , sγ) at runtime. ⇔ in the Petri
net, where pα, pβ and pγ model the statements sα, sβ , and
sγ , respectively, ∃ place p ∈ between(pα, pβ), p is reached
at the same time as pγ by the execution flow of two threads,
or in the Petri net language, two tokens are simultaneously
in p and pγ .

To succinctly describe the tokens in the places, we in-
troduce the marking vector u, where each entry, u(p),
represents the number of tokens of a place, p.

The bset of two places can be computed similar to the
bset of two statements. It does not include the transitions
or the lock places which do not model “statements”. In
Figure 2, the bset of places p3 and p4 is {p3, p4}. Us-
ing the bset, the runtime occurrence of the violation is
equivalently described on the Petri net as: ∃ p ∈ {p3, p4},
u(p) + u(p7) = 2. The sum never exceeds 2 because each
place contains at most one token representing the execution
flow of its own thread. Remember that we make clones for
the same statements under different thread contexts

The counterposition of Lemma 2 also holds, as shown in
Lemma 3.

Lemma 3: ∀ place p ∈ between(pα, pβ), u(p)+ u(pγ) ≤
1 ⇔ the atomicity violation does not occur at runtime.

2Interested readers may refer to our technique report for the implemen-
tation details. http://www.cse.ust.hk/prism/axis/TR.pdf

Lemma 3 naturally provides the solution for constructing
the control constraints. For our running example in Figure 2,
the control constraints are shown in Equation 1.

{
u(p3) + u(p7) ≤ 1
u(p4) + u(p7) ≤ 1

(1)

As p3 and p4 are places of the same thread, at any time,
the token representing the execution flow of the thread can at
most stay in one of them. Therefore, we have an intra-thread
constraint: u(p3)+u(p4) ≤ 1. Combining the constraints in
Equation 1 and the intra-thread constraint, it is not hard to
obtain an equivalent but more succinct constraint, u(p7) +
u(p3) + u(p4) ≤ 1.

We formally generalize the succinct representation of the
constraint in Lemma 4.

Lemma 4: Suppose between(pα, pβ) consists of places
pα, pθ, . . . , pβ . They form an implicit intra-thread constraint
(Equation 2a) as well as the control constraints with a
remote place pγ (Equation 2b to Equation 2e).

u(pα) + u(pθ) + · · ·+ u(pβ) ≤ 1 (2a)
u(pγ) + u(pα) ≤ 1 (2b)
u(pγ) + u(pθ) ≤ 1 (2c)

. . . (2d)
u(pγ) + u(pβ) ≤ 1 (2e)

then, we have an equivalent but more succinct constraint,
i.e., control constraint:

u(pγ) + u(pα) + u(pθ) + · · ·+ u(pβ) ≤ 1. (3)

Proof 1: The proposition Equation 3 → Equation 2 holds
as each place contains non-negative number of tokens.
The proposition Equation 2 → Equation 3 also holds. Sup-
pose between(pα, pβ) contains k places, then we apply the
following linear transformations to get Equation 3. Multiply
Equation 2a by (k-1), we get Equation 4.

(k − 1)(u(pα) + u(pθ) + · · ·+ u(pβ)) ≤ (k − 1) (4)

Add Equation 4 with Equation 2b, Equation 2c, . . . , Equa-
tion 2e, we get Equation 5.

k(u(pγ) + u(pα) + u(pθ) + · · ·+ u(pβ)) ≤ 2k − 1 (5)

Divide Equation 5 by k, we get Equation 6.

(u(pγ) + u(pα) + u(pθ) + · · ·+ u(pβ)) ≤ 2− 1/k (6)

As each place contains integer tokens, we further get Equa-
tion 3.

Definition 1 (Danger stripe): Given a violation and its
succinct constraint in Equation 3, the places appearing in
the equation form a danger stripe for the violation. With
the assistance of an indicator vector l indicating each place’s
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presence or absence in the danger stripe with 1 or 0,
Equation 3 can be expressed in a vector form: lu ≤ 1 3.

Redundant Constraints. A constraint is redundant if it
is subsumed by other constraints. Taking the constraint in
Equation 1 for example, the constraint u(p7) + u(p3) ≤ 1
is subsumed by u(p7) + u(p3) + u(p4) ≤ 1. As the
SBPI solver works on independent constraints, we conduct
a preprocessing step to remove the redundant constraints.
In particular, we remove the constraint if the set of places
appearing in the constraint are covered by the set of places
in another constraint. Note that such reduction is essentially
a more natural and rigorous form of the heuristic-based
redundancy removal method used by AFix.

C. Solving the Control Constraints

Given the constraint in the form of lu ≤ 1, our solution
is to generate an augmentation to the Petri net to force it to
avoid violation executions, using the Supervision Based on
Place Invariants (SBPI) theory. The solution augments the
original Petri net with new places and new arcs to guarantee
that this constraint is always satisfied in the augmented net.
Before describing the SBPI technique, we first introduce the
mathematical model of both the Petri net and its dynamic
operations.

Definition 2: A Petri net is a bipartite directed graph,
denoted by a tuple 〈P, T,A,W,u0〉. P is the set of places
and T the set of transitions. A ⊆ (P × T ) ∪(T × P ) is the
set of arcs. W : A×N is a weight function which returns a
natural number for each arc. u0 : P ×N is a function which
returns the number of tokens initially hosted in a given place.

The Petri net used in our technique is a special type of
Petri net called the pure Petri net4, where tokens cannot
directly flow back to the source place (no self-loop). Besides,
the weight of each of its arcs is 1, and each place can
have at most 1 token. The movement of tokens in Petri net
is characterized by a 2-dimensional incidence matrix D.
Each cell Dij is either 0 (not connected), 1 (incoming), or
-1(outgoing), representing the direction of the transition tj
with respect to the place pi.

We state the SBPI as follows.
Theorem 1 (SBPI Theorem): If lu0 ≤ b, then we can

guarantee that the constraint lu ≤ b holds for any possible
marking u by adding a new place M . The newly added M is
characterized by its initial marking u0

M and its row vector
DM in the incidence matrix D, which should satisfy the
following condition:

u0
M + lu0 = b (7)

and
DM + lD = 0 (8)

3l is a row vector, u is a column vector.
4A standard Petri net result states that any Petri net can be reduced to

pure Petri nets [22].

The added place enforces the maximal permissiveness in the
sense that it preserves as many executions as possible while
prohibiting only the violation-inducing executions.

We interpret Theorem 1 intuitively as follows. The con-
straint that the number of tokens in the danger stripe cannot
exceed a bound b always holds if, in the augmented Petri net,
the total number of tokens initially in both the danger stripe
and M (newly added place) is b, defined by Equation 7, and
the net change of the number of tokens in the danger stripe
and M is always 0, defined by Equation 8. Based on the
two equations, we can easily compute the initial marking of
the new place as: b− lu0 and the new arcs, as well as their
directions, DM = −lD.

Let us apply the SBPI technique to fix the atomicity
violation in the running example, of which the incidence
matrix is

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 t2 t3 t4 t5 t6 t7
p1 −1 0 0 0 0 0 0
p2 1 −1 0 0 0 0 0
p3 0 1 −1 0 0 0 0
p4 0 0 1 −1 0 0 0
p5 0 0 0 1 −1 0 0
p6 0 0 0 0 1 0 0
p7 0 0 0 0 0 1 −1
p8 1 0 0 0 0 −1 0
p9 0 0 0 0 −1 0 1
L 0 −1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The initial marking is u0= [1 0 0 0 0 0 0 0 0 1]T (the
places are ordered as p1, p2, . . .p9, L.). The constraint is
u(p3) + u(p4) + u(p7) ≤ 1. In other words, the indicator
vector l is [0 0 1 1 0 0 1 0 0 0] and b = 1. Applying the SBPI
constraint solver, the transition vector of the new place M ,
DM , is −lD = [0 −1 0 1 0 −1 1] with the initial marking
u0
M as b− lu0 = 1. The new place, M , and its connecting

arcs, as indicated by DM , is shown in Figure 2(c).
As shown in Figure 2(c), the new place, M , has two

outgoing arcs to t2 and t6, and two incoming arcs from
t4 and t7. The behavior of place M is identical to a lock,
as explained in Section II. The arc connecting place M
to transition t2 essentially says, a lock operation should
be added to the transition t2, i.e., the control flow edge
represented by t2 in the CFG. We show how to achieve
this in the program code in Section IV.

D. Multi-variable Atomicity Violation

So far our discussion is focused on atomicity violations
involving a single shared variable. Our approach can be
naturally applied to fix multi-variable atomicity violations,
or the so-called atomic-set (ASET) violations [30]. Vizari
et al. [30] exhaustively enumerate 11 thread interleaving
patterns as the equivalent conditions of ASET violations. For
example, the pattern W 1

xW
2
yW

1
yW

2
x describes a violating

interleaving, where the first and the third write belong to
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Figure 3: (a) Multiple-variable atomicity violation, the dotted lines depict
the forming interleavings of the violation. (b) The deadlocks may be
introduced.

a unit of work in one thread and the second and the fourth
belong to the other. As shown in Figure 3(a), the interleaving
is equivalent to the co-occurrence of the interleavings shown
in the two squares. Following the process described above,
we can construct two constraints, u(s1)+u(s2)+u(s3) ≤ 1
and u(s2)+u(s3)+u(s4) ≤ 1 and add both of them to the
constraint solver. Our technique treats ASET violations in a
uniform manner with the same guarantees. Comparatively,
it is non-trivial to adapt AFix [18] to fix ASET violations
because the approach is designed specifically for single-
variable atomicity violations.

E. Deadlock-Free Guarantee

Our approach fixes the violations one by one to achieve
the fine-granularity concurrency control for each bug. How-
ever, due to the interplay between the overlapping bugs,
deadlocks may be introduced. For example in Figure 3(b),
there are two bugs, each involving variables x and y,
respectively. The computed controllers lx and ly (appearing
in the comments) may form the cyclic lock acquisition
orders, i.e., deadlocks. The work of Wang et al. [34] is used
as a postprocessing step to fix deadlocks. We extend the
deadlock avoidance to guarantee that our approach does not
introduce new deadlocks to the program. In particular, we
only fix those deadlocks introduced by our added locks or, in
the Petri net language, we only handle the siphons involving
the newly added lock places5.

F. Guarantee of Lock Placement

Our approach guarantees that the lock placement is free
of bad lock practices. In this section, we show the guarantee
with respect to both the intra-procedural and inter-procedural
constructs.

Lock Placement when Branches or Loops are Present.
Our approach generates only the matched lock–unlock op-
erations. It never generates bad lock practices such as dou-
ble locking, double unlocking, missed locking, and missed
unlocking. It is well known [18] that the careless manual

5More details and formal proof are in our technique report.http://www.
cse.ust.hk/prism/axis/TR.pdf

fixing easily leads to bad lock practices such as the double
locking. Surprisingly, our approach avoids bad lock practices
without any special treatments. The key insight is that, the
SBPI theory guarantees that the places in a danger stripe
together with the added supervisory place always contain
an invariant number of tokens in total6. In the case that the
bad lock practices are present, e.g., missed unlocking, the
execution along a certain path may cause inconsistencies in
the total tokens in both the danger stripe and the supervisory
place. The formal proof and a concrete example is shown
in our technique report7.

Lock Placement when sα and sβ are in Different
Functions. (Remember that sα, sβ , sγ form a violation.)
When sα and sβ are in different functions, the SBPI solver
may also place the lock acquisition and the lock release in
different functions. Such a placement can cause errors if,
for example, the method containing the lock release gets
invoked under a different calling context where no locks
are acquired. To prevent such errors, we place a restriction
on the statements sα and sβ that they must be enclosed in
the same method. In the case that they are not in the same
method, we preprocess the violations to make sure sα and sβ
are mapped to the call sites in their lowest common ancestor
(LCA) method.

G. Discussion of Limitations

A major threat to the validity of our high performance
claim is that we use the degree of concurrency as the domi-
nant factor for the performance measurement. We minimize
the number of locking operations only under the condition
that the maximal concurrency degree is achieved. In fact,
researchers ( [11], [15]) often consider the number of locking
operations as an equally important factor of the performance.
The concurrency degree may be sacrificed sometimes for
reducing the number of locking operations. Our technique
has the consequence that, the locks we introduce may be
in the hot loops, leading to many the locking operations.
We downplay the importance of locking frequency for
two reasons. First, due to the JVM optimization [4]8, the
uncontended locking operations are extremely fast, and their
cost is negligible if no hot loops are present. Second, our
empirical experience shows that atomicity violations rarely
happen in the hot loops perhaps because the high frequency
of execution can easily expose the bugs. Nevertheless, as
a mitigation measure, we conduct the cycle detection to
inform the developers that some locks are placed in loops
or recursions.

Our input violation bugs are detected by Pecan [16],
which may contain benign violations that, according to
Chew et al. [7], do not affect the correctness of the program

6Actually, this is the reason why the technique is called SBPI, and the
reason why the constraint can be satisfied.

7http://www.cse.ust.hk/prism/axis/TR.pdf
8http://blogs.oracle.com/dagastine/
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or even required in some cases. Since Pecan does not clas-
sify benign violations, fixing them may incur unnecessary
overhead. However, we think this is related to the quality of
the bug reports and does not undermine our contribution.

IV. IMPLEMENTATION

We implement our approach as a tool, Axis9, on top of the
Soot framework. Axis contains four components: the Petri
net builder, the constraint constructor, the constraint solver,
and the patcher.

The construction of Petri nets is based on the depth-
first traversal of the call graph and the intra-procedural
control flow graphs. We construct Petri nets by substituting
each node-edge-node structure with the place-arc-transition-
arc-place structure. For methods invoked under different
contexts, we clone the Petri nets of these methods to get
context sensitivity. If threads are created in recursions or
loops, we further clone the Petri subnet rooted at the run
method. The constraint construction is built on top of the
forward data flow analysis in Soot.

Our patcher works directly on the bytecode instead of the
source code. The implementation of the patcher is full of
challenges. We highlight important ones as follows.

Patching Locks. The instrumentator adds the locking op-
erations, i.e., the monitorenter and monitorexit instructions,
to the program according to the result of the solver. The
patched lock is created as a static variable of the class that
contains the program entry point (main method). Since this
class is usually loaded first, we ensure the lock variables are
always properly initialized before being used.

Exception Handling. Exceptions may be thrown between
a pair of added locking operations, which make the execution
skip the monitorexit instruction. To make sure that our
patcher works in such case, we add an exception handler
directly after the monitorexit, which captures the exceptions
thrown between the monitorenter and the monitorexit state-
ments and also from our injected exception handlers.

Control Flow Interception. As shown in Section III-C,
our solution is in the form of places connecting to the
transitions. From the view of CFG, we need to inject the
lock or unlock operations to the control flow edges modeled
by the transitions. However, the control flow edges are not
explicitly represented in the code. Given a control flow edge
E (from m to n), where we want to inject the unlocking
operation, naively injecting monitorexit just before the target
statement n is problematic because other edges with n as the
target are also affected. We explicitly represent the control
flow edges in the code and isolate the effect of monitorexit
to the control flow edges as follows. Given the edge E, we
change it to m

jumpto→ nop
jumpto→ n. In this way, the nop,

having a single parent and single child, explicitly represents
the flow edge. Then, injecting the monitorexit to just before

9We make it publicly accessible: http://www.cse.ust.hk/prism/axis

or after nop (but not across the jumping statement) will not
affect other control flow edges.

V. EVALUATION

In this section, we aim at answering the following
research questions.

1) Does our approach automatically fix the atomicity
violations?

2) How does our approach affect the concurrency degree
of the original program as compared to the state of the
art approach?

3) Does our approach introduce new deadlocks to the
original program?

To answer these questions, we implemented our approach
as a tool, Axis, and used it to fix the atomicity violations
found in a set of popularly used subjects ( [16], [25]), as
listed in Table I. The subjects contain three large scale
programs, Openjms, Derby, and Jigsaw, which are, re-
spectively, the open source implementation of JMS specifica-
tion10, Apache’s database management system, and W3C’s
web server platform. Table I shows, in column two and
three, the number of application methods (#Method) and
the number of statements (#Stmt)11. We collect the bugs
using the violation detection tool, Pecan. All studies are
performed on a x86 64 Dell workstation with 3.0GHz quad-
core Intel Xeon X5450 processors based on Core 2 micro-
architecture (8 cores total). The server has 16GB RAM and
6M L2 caches, runs Ubuntu 8.04 with a Linux 2.6.22 kernel,
and uses Sun’s 64-Bit 1.6.0 JVM. For each program, we run
20 runs to collect the data.

The first question can be answered easily by measuring
the effectiveness of Axis. We run the violation detection tool,
Pecan, upon the patched versions of the subjects with the
same program input. Pecan detected no further violations for
any of the 13 subjects. We report our investigation of the
remaining two questions as follows.

A. The Study of the Bug Fixing Process

In this section, we study various important characteristics
of the bug fixing process of Axis itself. In Table I, we first
report, for each subject, the space and time usage of Axis in
terms of the number of bugs fixed (#bug), the size of the
constructed Petri net (size), the time of fixing the violations
(Tav), and the time of fixing the deadlocks (Tdl). We show
the time of the call graph construction (Tcg) as the reference.

The data show that the constructed Petri nets, despite
being context-sensitive, contain a small number of nodes
compared to the total number of program statements. The
largest number of nodes in our evaluation (Jigsaw) is around
25K, which can easily fit into the memory of a desktop ma-
chine. The time for fixing the violations is almost negligible,

10http://java.net/projects/jms-spec/pages/Home
11We conduct the analysis on the Soot’s jimple IR. Hereafter, the

statement means the Jimple IR.
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 postAttributeChangeEvent() {
1 ...
2 if (( attrListener != null ) ) {
3     AttributeChangedEvent evt = 
4 new AttributeChangedEvent(getResource(),
5 attributes[idx],
6   newvalue);
7 fireAttributeChangeEvent(evt);
8 }
9   }

(a)

 postAttributeChangeEvent() {

         l1.lock();
if (( attrListener != null ) ) {

                  l2.lock();
AttributeChangedEvent evt = 

new AttributeChangedEvent(getResource(),
attributes[idx],

  newvalue);
                 l2.unlock();

fireAttributeChangeEvent(evt);
}

          l1.unlock();
    }

(b)

 postAttributeChangeEvent() {

          l.lock();
if (( attrListener != null ) ) {

AttributeChangedEvent evt = 
new AttributeChangedEvent(getResource(),

attributes[idx],
  newvalue);

fireAttributeChangeEvent(evt);
}
  l.unlock();

    }

(c)

Figure 4: The fixing of the violations in Jigsaw. (a) The violation. (b)
The fixing of our approach. (c) The fixing of AFix approach.

less than 1 second in all subjects. The deadlock avoidance
analysis also scales well with respect to the program size,
taking 30 seconds in the worst case.

The two columns under the category of Locks reports the
number of locks introduced by Axis and AFix, respectively.
For the three large subjects, to fix the same number of
bugs, AFix on average generates 70% fewer locks compared
to Axis. This is because, its heuristics-based merging step
cannot precisely reason about the interplay between the
overlapping bugs and conservatively protects several unre-
lated bugs with the same lock. This directly translates to
the coarse-granularity concurrency control and the longer
blocking time on the locks. We use a real example in the
subject Jigsaw to further clarify this point.

Figure 4(a) is a simplified code snippet from Jigsaw that
shows the interplay between two atomicity violations. In
the first bug, local statements line 2 and line 7 accessing

the variable attrListerner, are interleaved by a remote
statement (not shown), sγ , that also accesses this variable.
In the second bug, line 5 is the remote statement, accessing
the variable attributes, that interleaves with a pair of local
statements (not shown), s′α and s′β , that access the same
variable. Note that the two local statements in the second
bug can be executed in parallel with the statement, line 7, in
the first bug because they modify unrelated program states.
As shown in Figure 4(c), AFix merges the two violations as
one and protects them with a common lock. As the result,
line 7, a long computation, and the sequence between s′α
and s′β cannot be executed concurrently. Our fix, as shown
in Figure 4(b), generates two locks, one for each bug. Line 7
can be allowed to execute because s′α and s′β now acquire a
different lock. Our approach, without any fear of deadlocks,
makes use of nested locking to reduce the lock contention.

B. Performance of the Patched Code

In this study, we assess the performance impact of the
generated patches. For each subject, we compare the per-
formance of four versions, the original version (Orig), the
version generated by AFix, the patched versions by our
technique with Axis (Axis-DA) and Axis with the deadlock
avoidance disabled (Axis-noDA). Since the original AFix
tool was developed for C programs, we have reimplemented
its algorithm faithfully and released our implementation for
further scrutiny12. Our performance study consists of two
experiments: the first studies the computational throughput
of patched versions compared to the original, the second
studies the scalability of the throughput with an increasing
number of threads.

In the performance category of Table I, we show the
performance measurements of the subjects with the number
of threads fixed at eight, which is the number of cores on
our test platform. The first seven subjects use few synchro-
nization operations and have no more than three violations to
fix. For this reason, the patches generated by Axis-noDA and
AFix are almost identical. The performance of each version
is, therefore, more or less the same with minor fluctuations
due to the thread scheduling. For subjects Cache4j, Hedc
and Specjbb, The Axis-DA version, however, introduces a
higher overhead of 20%, 5% and 4%. This overhead is the
cost of deadlock-freeness through the use of additional locks.

The result for the three large subjects shows the superior-
ity of Axis. For the subject OpenJMS, the patched version
with no deadlock avoidance (Axis-noDA performs almost
as well as the original version, which contains violations.
And, it outperforms the AFix version by 8%. With the
deadlock-free guarantee, our Axis-DA version is 4% slower
than the AFix version, which does not provide a deadlock-
free guarantee. For the subject Jigsaw, we are unable to
obtain the stable throughput data for Axis-noDA and AFix

12AFix Java implementation. URL: http://www.cse.ust.hk/prism/axis

306



Table I: The metrics of the fixing process and the performance of the patched programs. In the performance column, we use millisecond (ms) as the
unit. One exceptional case is Specjbb, where we use its own specific unit to measure the performance, bops (business operations per second). Higher
performance corresponds to higher bops value.

Program
Program properties Metrics of the fixing Locks Performance
#Method#Stmt #bug size Tcg(sec) Tav(ms) Tdl(ms) Axis AFix Orig Axis-noDA Axis-DAAFix

MergeSort 59 695 1 494 49.6 9 29 1 1 20 21 20 20
StringBuffer 39 361 1 148 51.2 9 16 1 1 10 10 11 11

ArrayList 24 221 2 328 31.7 3 24 2 2 13 15 15 14
LinkedList 43 347 2 336 31.9 3 32 2 2 10 11 13 11
HashSet 10 78 3 264 31.3 2 11 2 2 23 28 28 29
TreeSet 17 115 2 432 33.4 2 24 1 1 25 27 27 25

RayTracer 59 695 2 378 33.2 18 22 2 1 17 19 20 21
Cache4j 197 2948 2 352 50 121 362 2 2 35 36 42 37

Hedc 136 1187 3 386 59 113 384 2 2 5441 5513 5720 5533
SpecJBB 757 21244 31 450 61 134 371 2 2 80337 78078 75263 77970
OpenJMS 19476 302004 296 17972 128 574 1835 87 28 5415 5501 6193 5936

Jigsaw 11227 222118 754 25570 65.5 577 32492 50 10 960 - 1135 -
Derby 20964 321142 330 16529 79.4 603 24034 74 13 503 520 557 548

because the patched versions easily lead to deadlock with
eight threads running. This case shows the importance of
the deadlock avoidance in the patch. For the subject Derby,
the Axis-noDA version is 6% faster than the AFix version.
The Axis-DA version, with deadlock-free guarantee, incurs
only 2% higher overhead compared to the AFix version. In
general, the overhead incurred by the Axis-noDA version is
around 40% of the overhead of the AFix version.

In Figure 5, we show a study of the scalability of the
patched code by both our technique and AFix with respect
to the increasing number of threads, using the large scale
subjects OpenJMS, JigSaw and Derby. For the subject
OpenJMS, when the thread number is larger than 4, the
Axis-noDA version outperforms the AFix version by around
9%. The Axis-DA version incurs 3% (2 threads) to 20% (12
threads) overhead. Compared to the AFix version, it is 1%
(4 threads) to 6% (12 threads) slower, but it guarantees the
deadlock-freeness. For the subject Jigsaw, both the Axis-
noDA and AFix versions easily lead to deadlocks. The Axis-
DA version incurs a slowdown of 9% (4 threads) to 24%
(2 threads). For the subject Derby, the Axis-noDA version
outperforms the AFix version by around 6% when the thread
number increases to 8. The Axis-DA version, incurring 6%
(2 threads) to 11% (12 threads) overhead, is slightly slower
than the AFix version by 2% on average. As seen, our
technique exhibits a better performance than AFix as the
thread number increases. An explanation for the observation
is our approach leads to fewer contentions of the same locks
and allows higher concurrency degree.

One interesting observation from Figure 5 is that, when
the thread number is 1, the performance of all versions is
similar. Such an observation illustrates that the added lock-
ing operations are often not in the hot loops, and introduce
negligible overhead, if we do not consider blocking time,
as compared to the original version. This confirms with our

assumption that the locking frequency is not a key factor
that influences the performance of our subjects.

To conclude, our Axis-noDA outperforms AFix approach
by 6% to 9% in the realistic applications. For conservatively
guaranteeing deadlock-freeness, our Axis version often in-
curs a moderate (average 10%) overhead.

C. Safety of the Generated Code

In this study, we aim to assess if our patches introduce
deadlocks in the subjects. We could use existing deadlock
detecting techniques to quantify this property. However, we
found that simply by sampling the runs for a fixed number
of times is already sufficient to reveal interesting insights.
We run each patched program 20 times and observe whether
deadlocks happen without any interference to the scheduling
mechanism.

As shown in Table II, the deadlocks can easily happen
with even 20 uncontrolled runs. For Openjms, each of the
version with the Axis-noDA patch and the version with the
AFix patch gets 2 deadlocks when the thread number reaches
8. When the thread number reaches 12, more deadlocks (7
and 5) incur in these two versions. For Jigsaw, the two
patched versions of Jigsaw always get deadlocks at runtime
when there are multiple threads. For Derby, when the thread
number reaches 12, the patched versions by Axis-noDA
and AFix incur 11 deadlocks and 7 deadlocks, respectively.
Comparatively, we observe no deadlocks for the patched
version by Axis-DA. This observation shows the deadlock
is a serious problem to treat while fixing of violations. It is
worthwhile to pay a higher cost in the Axis-DA patches to
avoid them.

VI. RELATED WORK

Lock allocation ( [11], [15], [21]) is akin to the automatic
fixing of violations. Its goal is to infer the synchronization
constructs to guarantee the specified atomicity properties
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(a) (b) (c)

Figure 5: (a) Openjms. (b) Jigsaw. (c) Derby.

Table II: The fixing process of Axis-noDA and AFix introduce deadlocks.
For a subject, we show the deadlocks for both its Axis-noDA version and
AFix version.

Patched Program T = 2 T = 4 T = 8 T = 12

Openjms Axis-noDA 0 0 2 7
AFix 0 0 2 5

Jigsaw Axis-noDA 20 20 20 20
AFix 20 20 20 20

Derby Axis-noDA 0 0 0 11
AFix 0 0 0 7

and the high performance. Recent lock allocation work (
[14], [29]) makes use of the shape properties to generate
the fine-granularity locks, so that multiple operations can
simultaneously access different parts of a data structure.

Automatically inferring the atomicity property, i.e., the
atomic region, is orthogonal to our approach. Vechev et
al. [31] propose an assertion-directed approach to iteratively
enlarge the atomic region until the assertion is satisfied.
Besides, trace analysis ( [23], [35]) can also be used to
extract the atomicity property from the correct runs.

Self-healing approach [5], [7] detects the faults or er-
rors at runtime and generates dynamic patches so that the
executions recover from the anomalies. However, it lacks
the comprehensive off-line analysis required to generate
high-quality patches. Lucia et al. [20] propose a specific
architectural support for dynamically avoiding atomicity
violations.

Deterministic execution system [3] or deterministic lan-
guage support [2] guarantees deterministic behaviors of the
program by construction. They still face many challenges
such as high runtime overhead or extra manual annotations.
An alternative approach, checking the determinism through
the testing [24], complements our approach as it can be used
to filter out the benign violations.

Petri net is widely applied to various software engi-
neering tasks, e.g., analyzing the performance of software

system [9], modeling the protocol of software systems [37],
modeling the concurrency programs ( [12], [34]).

VII. CONCLUSIONS

We have presented an automatic approach to fix atomicity
violations through solving the SBPI control constraints,
using the SBPI control theory as the theoretical foundation.
Given the bug reports of dynamically detected violations, our
technique models the offending program statements and their
calling contexts using Petri nets. The violations themselves
are transformed to a set of linear inequalities with respect
to the Petri net structures, which we call control constraints.
We then use the SBPI constraint solver to generate an
augmented Petri net that: 1. maximally respects the degree
of concurrency in the original design; 2. guarantees not to
introduce new deadlocks. We implemented our technique
as a tool, Axis, and evaluated it against a set of popular
concurrent programs. The evaluation shows Axis is both
more scalable and effective when compared to the related
work.
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