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Abstract
Concurrent programs are still prone to bugs arising from the
subtle interleavings of threads. Traditional static analysis for
concurrent programs, such as data-�ow analysis and sym-
bolic execution, has to explicitly explore redundant control
states, leading to prohibitive computational complexity.
This paper presents a value �ow analysis framework for

concurrent programs called C����� that is practical to stati-
cally �nd diversi�ed inter-thread value-�ow bugs. Our work
is the �rst to convert the concurrency bug detection to a
source-sink reachability problem, e�ectively reducing redun-
dant thread interleavings. Speci�cally, we propose a scal-
able thread-modular algorithm to capture data and interfer-
ence dependence in a value-�ow graph. The relevant edges
of value �ows are annotated with execution constraints as
guards to describe the conditions of value �ows. C�����
then traverses the graph to detect concurrency defects via
tracking the source-sink properties and solving the aggre-
gated guards of value �ows with an SMT solver to decide the
realizability of interleaving executions. Experiments show
that C����� is precise, scalable and practical, detecting over
eighteen previously unknown concurrency bugs in large,
widely-used software systems with low false positives.

CCS Concepts: • Software and its engineering! Soft-
ware veri�cation and validation.
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1 Introduction
Hunting concurrency bugs is notoriously di�cult with the
explosive growth of code size and complexity in modern
software. Dynamically detecting such errors is hard because
it depends on intricate sequences of low-probability concur-
rent events [7, 19, 21, 28, 56]. The number of thread inter-
leavings and feasible program paths grows exponentially
with the number of threads and the length of program exe-
cution, making dynamic analysis di�cult to exercise even a
tiny fraction of all possible execution, leaving large systems
with an abundance of errors [64]. Comparatively, static anal-
ysis achieves good coverage, discovering errors in obscure
code paths di�cult for the runtime execution to reach. Un-
fortunately, static analysis su�ers considerably from being
imprecise as a result of abstracting and approximating the
runtime behavior of the program.

The precise static analysis of concurrent programs is par-
ticularly challenging, as it needs to account for the thread
interleavings together with the complicated sequential rea-
soning. Techniques of either the conventional data-�ow an-
laysis [12, 17, 18, 35, 54] or symbolic execution [4, 23, 57]
propagate the data-�ow facts along the control-�ow paths,
which, unfortunately, are often redundant and irrelevant
to the data-�ow facts of interest when interleaving comes
into play. With this inherent limitation of the state space
explosion, these techniques often severely su�er from per-
formance issues when aiming for high precision. In practice,
practitioners have little tolerance to this limitation, because
compromising either precision or scalability forms signi�-
cant hurdles of adoption.
To reduce the exponential space, one promising direc-

tion is to identify the interference dependence [27, 46, 47],
which is the additional data dependence in concurrent pro-
grams that takes place at shared memory locations between
threads. Capturing the def-use relations between statements
across di�erent threads enables the e�ective pruning of the
redundant interleaving. However, identifying the interfer-
ence dependence itself is extremely challenging as witnessed
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by a long stream of e�ort [46, 47, 51, 52, 54, 60]. The key di�-
culty is the precise pointer aliasing in the presence of thread
interference, because exhaustively and precisely computing
pointer information has not yet been proved scalable [54, 59–
61]. On the other hand, it is also unnecessary to explore
the interleaving space of a given program irrelevant to the
speci�c properties being checked.
To address these problems, we present C�����, a novel

concurrency analysis technique that tracks how values are
stored and loaded via both the data and interference depen-
dence relationships, thus able to check a diversi�ed cate-
gory of multi-threaded software safety properties. Our key
insight to mitigate the state space explosion is to reduce
concurrency bug detection to the on-demand tracking of
the source-sink value �ows. We extend the conventional
notion of source-sink properties to include values that �ow
across threads through loads and stores and refer to the bugs
detected this way as the inter-thread value-�ow bugs, such
as the inter-thread use-after-free [2, 7, 28], NULL pointer
dereference [19], double-free [7] and information leak [21].
Our checking of value �ows only follows the def-use rela-
tionships between the relevant statements across threads
and, hence, avoids explicitly enumerating all the possible
thread interleavings.
As illustrated in Fig. 1, C����� has three key phases.

It �rst performs a thread-modular algorithm to separately
capture both the data dependence and the interference de-
pendence in a value-�ow graph (VFG). Unlike the previous
interference dependence analysis [60, 61], the proposed al-
gorithm captures the interference dependence without per-
forming the exhaustive pointer analysis as a prior. Instead,
it piggybacks the pointer analysis with the resolution of
the interference dependence. To represent the condition un-
der which the value �ows qualify for a feasible execution,
the analyses encode and annotate all necessary execution
constraints [29, 31] as guards on relevant edges of the VFG,
following the de�nition of sequential consistency [36]. The
edges of the interference dependence act as “tunnels” to al-
low the values of interests to �ow in and out of the thread
scope during the on-demand value �ow searching. At the
bug checking stage, C����� checks the source-sink prop-
erties using the interference-aware VFG by extracting the
source-sink paths and proceeds to verify their realizability
(i.e., whether violate a feasible execution) by feeding the col-
lected constraints on the aggregated guards to a dedicated
SMT solver.

The noteworthy features of C����� are as follows. First,
it focuses on both the graph exploration and the SMT solving
e�ort around the source-sink value �ows that only matter to
the property to be checked. Second, it integrates and solves
the guard information that is just su�cient to characterize an
interleaving execution, judiciously delaying the disjunctive
reasoning of the realizability of the vulnerable paths until

Data Dependence 
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VFG

Concurrent 
Programs

Bug Reports

An SMT Solver

Interference Dep-
endence Analysis

Source-sink 
Checking

VFG

Figure 1. The work�ow of C�����.

the SMT solving stage. Third, the use of value �ows gener-
ates concise bug reports with a limited number of relevant
statements and conditions that cause the concurrency errors,
greatly helping to diagnose the root causes of the bugs.
We have used C����� to check critical concurrency

memory-safety properties, such as the inter-thread use-after-
free and NULL pointer dereference, on a large set of popular
open-source multi-threaded C/C++ software systems. Inter-
estingly, although these software systems have been well
examined by a crowd of both free and commercial tools, we
are still able to discover over eighteen previously-unknown
concurrency bugs con�rmed by developers with fourteen of
them �xed. Our evaluation shows thatC����� has good scal-
ability as it can build a highly precise value-�ow graph up to
>70⇥ and >500⇥ faster with less memory space, compared
to the state of the arts, namely S���� [61] and F��� [60].
Moreover, it is able to complete the path-sensitive checking
of M�SQL (around 3 MLoC code) within approximately 2.5
hours, the best in terms of scalability and precision, to the
best of our knowledge.

To sum up, the contributions of this work are as follows.
• An interference-aware value-�ow analysis technique
for modelling the checking diversi�ed concurrency
bugs as source-sink reachability problems.

• A thread-modular algorithm to identifying data de-
pendence and interference dependence for concurrent
programs.

• An implementation and an experiment that demon-
strate C�����’s good scalability as well as precision
relative to previous techniques.

2 C����� in a Nutshell
We use a bug-free program in Fig. 2 to illustrate the concept
of the thread interference on the shared memory locations,
to clarify the shortcomings of the previous work, and then
to highlight the essence of our approach.
The code snippet in Fig. 2(a) is bug-free, but an inter-

thread use-after-free bug can be erroneously reported by
previous techniques. In this program, the threadmain creates
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1. void main(int *a){
2. int **x=malloc(); //!!
3. *x=a;
4. fork(t, thread1, x);
5. if("!){
6. int * c=*x;
7. print(*c); 
8. }
9.   } 

10. void thread1(int **y){
11. int *b=malloc(); //!"
12. if(¬"!){
13. *y=b;
14. free(b);
15. }
16. }

(c) A source-sink path(a) Code snippet (b) A value-flow graph

o1

true

true

x@ℓ2

y@ℓ10

alloc_a

"!

true

"!

a@ℓ3

c@ℓ6

print(*c)

o2

¬"!

b@ℓ13

free(b)

¬"!

Partial Order Constraints

(O7>O6 ∧ O14> O13 ∧ O13> O3 ∧ O14> O3)

free(b)        b c        print(*c)

(O6>O13>O3) ∧ ("! ∧ ¬"!)Guard:

Figure 2. Figure (a) is a bug-free code snippet. Figure (b) is its value-�ow graph with some nodes and conditions omitted.
(0;;>2_0 denoted the memory object pointed to by 0) Figure (c) is an extracted source-sink path.

a thread C that runs the function thread1. If ignoring the
path conditions, the “bug” is triggered due to the thread
interference: when the “freed” pointer 1 is stored to the
memory object >1 via a pointer ~ at Line 13 in the function
thread1, propagated to the load statement at Line 6, and
dereferenced eventually at Line 7. However, since the two
path conditions at Line 13 and Line 6 contradict each other,
this “bug” never surfaces to bite. Previous techniques for
concurrent programs that do not understand path conditions
can report this as a false positive.

Unfortunately, the exponential number of states induced
by thread interleavings pose unique challenges to remain-
ing path-sensitivity. In the value-�ow analysis framework
of C�����, the state space of all possible interleavings is
reduced via capturing the interference dependence, formally,
de�ned below.

De�nition 1. A statement B1 is interference dependent on a
statement B2 if a de�nition of G at B1 is used at B2, and B1 and
B2 concurrently execute.

To avoid the false positive reported in Fig. 2(a), C�����
�rst performs a thread-modular algorithm to construct the
value-�ow graph for the program shown in Fig. 2(b), in
which, the algorithm begins with an intra-thread analysis
to resolve the data dependence relations, followed by an
inter-thread interference dependence analysis. The main
idea to identify the interference dependence is to discover
the pointers that point to the shared memory locations. Let ✓1
represent the statement at Line 1. For instance, after resolv-
ing the intra-thread data dependence relations (solid lines),
the VFG encodes that variables G and ~ may point to the
shared memory object >1, since both are reachable from >1.
This enables the discovery of the interference dependence
edge (dashed line), because 1@✓13 may be stored to >1 and
2@✓6 may be loaded from >1 afterwards. Next, we encode
the execution constraints on the guard of the edge that rep-
resent the sequential consistency axioms for validating the
realizability of value �ows (explained in § 3). The details of
the algorithm are explained in § 4.

After constructing the VFG, to �nd this “bug”, the analyses
only need to traverse the graph starting from the node free(1)
as a source to �nd the use site print(⇤2), a sink, along the
def-use relations. Fig. 2(c) shows the extracted source-sink
path and its simpli�ed constraints.
Take the edge from 1@✓13 to 2@✓6 as an example. The

guard of this edge is the conjunction of (1) the conditions
under which the value �ows through the same memory ob-
ject >1, and (2) the conditions enforcing that the value loaded
from a load statement (✓6) is the value stored by the most
recent store statement (✓13). The �rst conditions \1 ^ ¬\1
include conjuncting the conditions for G and ~ pointing to
an object >1 (CAD4), and the branch conditions of statements
✓6 and ✓13 (\1 ^ ¬\1). Let $2 > $1 be the strict partial order
between statements ✓1 and ✓2 that indicates “✓2 is executed
after ✓1”. The second conditions$13 < $6 indicate ✓13 should
be executed before the ✓6. We also include load-store order
$3 < $13 to ensure that another store statement at ✓3 can not
happen between lines ✓13 and ✓6, making it possible to �ow
from 1@✓13 to 2@✓6 without being overwritten by 0@✓3.
Because the interference dependence relations are not

transitive [46, 47], this value-�ow path may violate the pro-
gram order during searching. Our analysis lazily encodes the
partial order constraints over the path at the bug checking
stage, taking the correct program order into account. For
example, we have intra-thread order $7 > $6 ^$14 > $13,
following the order of control �ows. We also have inter-
thread order $13 > $3 ^ $14 > $3, following fork/join
synchronization semantics, since the thread C is forked at
✓3 and all statements in the thread C should happen after
✓3. Finally, all constraints are handed to an SMT solver, and
C����� does not report the bug when the aggregated exe-
cution constraints are unsatis�able. Note that a source-sink
path with relevant statements is very useful for debugging
a concurrency error. Also, the analyses skip the constraints
irrelevant to the source-sink properties, saving a signi�cant
computational overhead.

The example above illustrates howC�����works in a nut-
shell. Seemingly redundant, the order constraints, as a part
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of execution constraints, are important to achieve precision
by validating whether a value-�ow path is realizable at the
runtime. In § 3.2, we give details of all necessary execution
constraints, following the sequential consistency axioms.

3 Preliminaries
In this section, we present the basic terminologies and no-
tations, and formalize the key problem when considering
interference dependence.

3.1 Bounded Concurrent Programs
We �rst make a standard assumption about the analyzed
concurrent programs. We assume that the shared memory
system is sequentially consistent [36], where memory op-
erations are executed in the order in which they appear in
the program, and every memory operation is atomic. Se-
quential consistency is one of the strongest memory models
discussed in the literature. This assumption matches the nat-
ural expectation of programmers that a program behaves as
an interleaving of the memory accesses from its constituent
threads.

Language. We formalize our approach using a simple
call-by-value language in Fig. 3, similar to the previous
work [38, 39, 55]. Note that it is known to be undecidable to
analyze arbitrary concurrent programs over in�nite threads
and data types. Our analyses gain decidability by structurally
bounding the concurrent programs by unrolling both loops
and recursive functions to a �nite depth, which not only
indirectly �xes the number of threads but also �xes the size
of the heap that the bounded program may access. None of
these aspects is handled by most previous static concurrent
analysis techniques [3, 12, 57, 60, 64].

Abstract Domains. The symbols and abstract domains
are listed in Fig. 4. A thread id C 2 T represents a thread that
corresponds to a context-sensitive fork site and comprises
a �nite number of functions �+. A label ✓ 2 L indicates the
program position of a statement in the control �ow graph
(CFG). We follow the LLVM convention of separating vari-
ables into two disjoint sets of top-level E 2 V and address-
taken variables > 2 O as in the previous work [24, 37–39, 60].
A top-level variable E can point to di�erent memory objects
> on di�erent guard conditions i . The address-taken vari-
ables O are indirectly accessed via load and store statements,
which take the top-level pointer variables, V , as arguments.

Note that, the four-types of pointer operations in Fig. 3 are
in the partial SSA form, and only the address-taken variables,
O, can be shared among threads and accessed via load or
store statements. The nested pointer dereferences are elimi-
nated by introducing the auxiliary variables [37], ensuring
each load and store statement is counted as at most one
shared access.

Value Flows. We say the value of a variable, 0, �ows to
a variable, 1, if 0 is assigned to b directly (via assignments,

Program % := �+

Function � := func(E1, . . . , E=){(⇤; }
Statement ( :=

| E1 = E2 | E1 = &E2
| E1 = ⇤E2 | ⇤ E1 = E2

| E1 = E2 binop E3 | E1 = unop E2
| if (E) then (1 else (2 | return (G0, . . . , G=)

| (G0, . . . , G=) = call 5 (E1, . . . , E=) | (1; (2
| fork(C, 5 ) | join(C)

binop := + | � | ^ | _ | > | = | < | · · ·

unop := � | ¬ | · · ·

Figure 3. The syntax of the language.

Threads C 2 T Labels ✓ 2 L

Objects > 2 O Variables E 2 V

Figure 4. The abstract domains.

(a) (b)

Thread t1 Thread t2

3. b=*p

1. a=*p

2. *p=a

4. *p=b

Thread t1 Thread t2

3. *q=b

2. *p=a

4. c=*q

1. q = p

Figure 5. Two examples of concrete interleaving executions.

such as 1 = 0) or indirectly (via pointer dereferences, such
as ⇤~ = 0;G = ~;1 = ⇤G). The relations between 0 and
1 are either data dependence or interference dependence,
depending on if the value �ow happens across threads. A
value-�ow graph can be de�ned as a directed graph. Each
node = is indicated by E@✓ , meaning that the variable E
is de�ned or used at the program location ✓ . An edge that
indicates the value-�ow relation can be represented as a
tuple, (E1@✓1, E2@✓2). The guard �6D0A3 annotated on the
edge indicates the condition under which the value �ow
happens. A path c = hE1@✓1, . . . , E=@✓=i on the value-�ow
graph is called the value-�ow path.
Direct �ows can be easy to identify based on the partial

SSA form of statements. Therefore, we focus on indirect
�ows from the store statements to load statements via either
the data dependence or the interference dependence, which
requires the reasoning about the pointer information.
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3.2 The Realizable Value-�ow Path Problem
When considering the interference dependence, to obtain
a precise value-�ow path, it is necessary to ensure that the
path can correspond to a feasible interleaving execution. We
call this the realizable value-�ow path problem. Ideally, one
would like to compute a value-�ow path that is the most
precise. But this is, generally, not computable [50]. We give
a practical and precise solution to characterize this problem,
which guides our subsequent approaches.

Formally, we use the de�nition of sequential consistency as
the axiomatic foundations to characterize a value-�ow path.
Let <% be the program order.

De�nition 2. A value-�ow path c = hE1@✓1, . . . , E=@✓=i is
said to be sequentially consistent if there exists a total order <c

over the program order <% subject to the following conditions:

1. Each E8�1@✓8�1 �ows to E8@✓8 through the samememory
location without being overwritten, where 8 2 [2,=].

2. For any ✓8 and ✓9 , if ✓8 <% ✓9 , then ✓8 <c ✓9 , i.e., <%)<c .

First of all, the imprecise dependence relations can lead
to an irrealizable value-�ow path c , i.e., the stored variable
E8�1@✓8�1 may not �ow to the loaded variable E8@✓8 indi-
rectly as outlined in Defn. 2(1). Compared to the conven-
tional value-�ow techniques for sequential programs, con-
sidering the interference dependence introduces additional
challenges. The analysis must cut through the tangle of the
additional aliasing information to reason about interference
dependence associated with the non-deterministic concur-
rent environment. For example, in Fig. 5(a), the solid (dashed)
lines represent possible data (interference) dependence, and
the order of statements represents a concrete execution or-
der. A variable 0@✓2 can �ow to 2@✓4 only with the thread
schedule, in which the statement ✓4 happens after ✓2 and
the statement ✓3 happens before ✓2. As a result, the analysis
should take the order relations between the loads and the
stores into account in reasoning about alias.

Second, even if a value-�ow path c is identi�ed with pre-
cise dependence relations, it may not be realizable if violating
<%)<c according to Defn. 2(2). The <c represents the total
order between each pair of successive nodes in c , while <%

represents the program order, including both the control �ow
and the synchronization semantics. In Fig. 5(b), a value-�ow
path h0@✓2,1@✓3,1@✓4,0@✓1i is not realizable, because the
value-�ow path leads to an invalid control-�ow path from
✓2 to ✓1 where <%;<c . The innate reason is the intransitive
property of interference dependence [46, 47]: if a node =8 is
interference dependent on a node = 9 , and = 9 is interference
dependent on node =: , it does not directly imply an inter-
ference dependence from =8 to =: . Therefore, the arbitrary
compositions of interference dependence relationships re-
sult in irrealizable value-�ow paths. As a result, the analysis
should take the program order into account while searching
for value-�ow paths.

In § 4, we present an algorithm to construct the value-�ow
graph with the resolved indirect �ows from the store state-
ments to the load statements. For the value �ow from@@✓1 to
?@✓2 between statements ✓1 : ⇤G = @ and ✓2 : ? = ⇤~, the key
is to decide if G is an alias of~. The main idea is to capture the
escaped objects �rst and then discover all pointer variables
that can point to these objects. The analysis encodes the
necessary conditions of the sequentially consistency axioms
as guards �guard, including (1) (Memory Alias) the condition
under which the variables G and ~ may point to the same
memory object, and (2) (Load-store Order) the condition un-
der which @@✓1 can �ow to ?@✓2 through the same memory
object without being overwritten by other concurrent store
statements, following Defn. 2(1). At the bug checking stage
described in § 5, the partial order constraints �?> over the
path are generated lazily, taking the program order <% into
account that follows Defn. 2(2). In the end, the aggregated
constraints enforcing the sequential consistency axioms, are
handed to an SMT solver to validate if the value-�ow path
enforces a feasible execution.

4 Thread-modular Dependence Analysis
This section covers the details of the thread-modular algo-
rithm, which resolves the data dependence and the inter-
ference dependence relations in the VFG by the alias analy-
sis. Our algorithm consists of both the intra-thread and the
inter-thread data dependence analysis phases, computing
the conditions of dependence on edges as the guards.

4.1 Data Dependence Analysis
At the stage of the intra-thread reasoning, the goal is to re-
solve the intra-thread data dependence edges and compute
their guards �guard, following Defn. 2(1). Fig. 6 shows the ba-
sic rules for resolving the data dependence. The core problem
is to calculate indirect �ows from @@ ⇤ G = @ to ?@? = ⇤~,
which needs the points-to facts of the address-taken vari-
ables O. The �guard of the data dependence at this stage is
the conjunction of the conditions under which G and ~ point
to the same memory object > , together with the branch con-
ditions of the statements ✓1 and ✓2. The VFG generated at
this stage serves as an input to bootstrap the interference
dependence analysis.

More speci�cally, to decompose the expensive cost of the
exhaustive points-to analysis, we follow the similar ideas as
our previous work [55] by performing the intra-procedural
path-sensitive points-to analysis to resolve the local data de-
pendence relationships. The points-to analysis is performed
along with a thread call graph in a bottom-up fashion, during
which the analyses calculate the pointer information of the
address-taken variables, O, and resolve the local data depen-
dences in the VFG. A thread call graph is an extension of
the call graph for sequential programs by collecting the call
graphs of a group of threads at their fork sites. We next give
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Instruction Code Value Flow Guard �60DA3

✓,i : ? = 0;;>2_> 0;;>2_> ! ? i
✓,i : ? = @ @ ! ? i
✓1,i1 : ⇤G = @;
✓2,i2 : ? = ⇤~

9> | (>,U) 2 %CB (G) ^ (>, V)
2 %CB (~) : @ ! ?

i1 ^ i2 ^ U ^ V

Figure 6. Basic rules for data dependence.

the details of the intra-procedural points-to computation and
the method to handle side-e�ects incurred by function calls.

Intra-procedural Analysis. The intra-procedural anal-
ysis is a fairly standard data-�ow analysis [24] that explores
the intra-procedural control �ow graph in the reverse post-
order while computing the points-to facts, Pts, at each state-
ment and propagating these facts to the successors. We �rst
perform a standard transformation (Line 3) to the function �
by introducing auxiliary variables for the objects passed into
the function by references, which is applied to explicitly ex-
pose the side-e�ects on the function’s parameters [38, 39, 55].
Because the variables V are in SSA form, the analyses di-
rectly use a global points-to graph %⌧top to hold the pointer
information for the top-level variables,V , and use the sets
�#✓ and$*)✓ to hold the propagated pointer information for
the address-taken variables, O, at the statement ✓ [24]. Dur-
ing the calculation of the four-typed pointer operations (Line
11-20), the points-to conditions are consecutively recorded
without being solved aggressively. After disambiguating the
points-to information of the address-taken variables, O, the
indirect �ows can be discovered based on the rules in Fig. 6.

Procedural Transfer Function. The procedural transfer
function for a function, Trans(� ), summarizes its points-to
side-e�ects (i.e., changes) between its formal-in parameters
and formal-out parameters (Lines 21-22), which expresses the
function’s behavior in terms of its input/output interfaces,
abstracting away from its internal details. When analyzing a
call site, the analysis reasons about the callee’s side-e�ects
on actual parameters by applying its procedural transfer
function, which bears some similarities with the work [16,
68]. However, there is no need for an equivalent reasoning
for the parameters passed to the fork sites (Lines 23-24), since
the interference dependence incurred by the parameters is
going to be identi�ed afterwards.

Example 4.1. In Fig. 2(b), the solid lines represent the data
dependence identi�ed at this stage. The VFG at this stage
contains the important pointer information for the subse-
quent interference dependence analysis. For instance, we
can identify the escaped objects, i.e., the shared memory
locations, by �nding the memory objects in the VFG that
are reachable from nodes in di�erent threads, and collect the
pointer variables pointing to them. In the example, the anal-
yses can �nd an escaped object >1 and two pointer variables
G and ~ that point to >1 by traversing the VFG.

Algorithm 1: Data Dependence Analysis
Input: A concurrent program ⇠%
Output: +�⌧ with resolved intra-thread data dependence

1 ⇠⌧  ú construct the thread call graph;
2 foreach function � in reverse topological order of CG do
3 Transform � : func(E1, . . . , v<) ) (E1, . . . , v=)(⇤;
4 ⇠�⌧  ú Build intra-procedural control �ow graph of � ;
5 foreach instruction � in reverse post-order of CFG do
6 HandleEachInst(� );

7 Record side-e�ects on E8 and construct Trans for � ;
8 Resolve local data dependence relations in VFG;

9 return +�⌧ ;
10 Procedure HandleEachInst(�):
11 if ✓,i : ? = 0;;>2_> : then
12 %⌧top  ú {? ⇢ (i,0;;>2_>)} ; // ⇢: point to

13 if ✓,i : ? = @ : then
14 PGtop  ú {? ⇢ (W ^ i,>)},8(W,>) 2 %CB (@);

15 if ✓,i : ⇤G = @ then
16 if Pts(G) is a singleton then
17 IN✓  ú (IN✓\Pts(G));

18 $*)✓  ú IN✓ [ {Pts(G)⇢ (W ^ i,>)},8(W,>) 2 Pts(@);
Propagate OUT✓ to the successor(s);

19 if ✓,i : ? = ⇤~ then
20 Let Padr (>) be the points-to set of address-taken

variables > in IN✓ , where 8> 2 Pts(~);
%⌧top  ú {? ⇢ (W ^ i,> 0)},8(W,> 0) 2 Padr (>);

21 if ✓,i : (G0, . . . , G=) = call 5 (E1, . . . , E=) then
22 PGtop  ú {G8 ⇢ (i, Trans(� , Pts(E8 )))},88 2 [1,=];

23 if ✓,i : fork(C, 5 ) then
24 Continue;

4.2 Interference Dependence Analysis
At the stage of inter-thread reasoning, the goal is to iden-
tify all possible interference dependence as edges in the
VFG, and compute the guards qualifying for the edges. Sim-
ilar to the rules in Fig. 6, the core problem is to determine
the pointer aliasing relationship of variables G and ~ for an
edge of the interference dependence, (@@✓1, ?@✓2) between
⇤G = @ and ? = ⇤~ across di�erent threads. Di�erent from
data dependence, interference dependence is associated with
the concurrent environment. Because the store at ✓1 should
happen before the load at ✓2, we also need to enforce the
order relation between the store and the load. To sum up,
the guard �guard for (@@✓1, ?@✓2) is de�ned as below:

�guard (@@✓1, ?@✓2) = �0;80B ^ �;B , (1)
where �0;80B indicates the conditions of the interference

dependence through the same memory object, and �;B en-
sures the order relations between stores and loads in a con-
current environment (as in Defn. 2(1)). We give more details
in § 4.2.2.
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4.2.1 Dependence Edges Computation. The high-level
idea underlying our approach is to identify the variables
that point to the shared memory objects, through which the
thread interference happens. Below is an extended property
of indirect value �ows via interference dependence.

Property 1. A variable @ at one thread can �ow to a variable
? at another thread indirectly via interference dependence, only
if @ is stored to an escaped memory > �rst and ? is loaded from
the same memory object > afterwards.

This property indicates that, a store statement ⇤G = @ and a
load statement ? = ⇤~ can share an interference dependence
relation if and only if these statements reside in di�erent
threads, and G and~ point to the same escaped object > . Thus,
to identify the interference dependence, it su�ces to check
load statements and store statements in di�erent threads
that can access the same escaped objects. We develop an
e�cient algorithm that discovers the set of thread escaped
objects and calculates the set of pointer variables pointing
to the objects. Let EspObj be the set of escaped objects in
the program, which are the objects in the VFG that can be
reachable from the nodes in multiple threads. The pointer
variables that point to an object > are called the pointed-to-
by set of the object, denoted by Pted(>). Given an escaped
object > 2 EspObj, we can compute Pted(>) by collecting
nodes that are reachable from > in the VFG generated by
Alg. 1.

Example 4.2. In Fig. 2(a), we �rst capture the escaped ob-
ject >1 via the escape analysis. We can then compute the
pointed-to-by sets %C43 (>1) and %C43 (>2) by traversing the
VFG, which are {G,~} and {1} respectively. This information
enables the adding of an edge of interference dependence,
(1@✓13, 2@✓6), in the VFG by reasoning G is an alias of ~.

A non-trivial question that immediately emerges is how to
soundly compute these two sets, EspObj and Pted, to identify
all the interference dependence edges. Note that, since the
VFG is updated dynamically during the interference depen-
dence analysis (i.e., new inter-thread value �ows between
stores and loads are introduced), the set of EspObj and their
Pted information are also dynamically enlarged accordingly.
In the example above, after the edge (1@✓13, 2@✓6) is updated
in the VFG, the pointed-to-by set %C43 (>2) can be updated
from {1} to {1, 2}, considering the set of nodes that are reach-
able from >2 in the VFG. Thus, %C43 (>2) increases after the
edge is added. Additionally, the memory object >2 is escaped,
because the >2 becomes reachable from nodes in di�erent
threads and, thus, the size of ⇢B?$1 9 also increases. To sum
up, the newly introduced value-�ow edges of the interference
dependence may enlarge the sets of both escaped objects
and their pointed-to-by variables, which may, in turn, intro-
duce new edges, forming a cyclic dependence problem, as also
revealed in the previous work [52, 54].

Algorithm 2: Interference Dependence Analysis
Input: A +�⌧ generated by Alg. 1
Output: An interference-aware VFG

1 EscapeAnalysis(VFG);
2 do
3 foreach store node ✓1,i1 : ⇤G = @ in C 2 T do
4 foreach load node ✓2,i2 : ? = ⇤~ in C 0\C 2 T do
5 if (G,U), (~, V) 2 Pted(>),> 2 EspObj then
6 Compute the dependence guard �guard;

7 ✓1 : ⇤G = @
�guard
�! ✓2 : ? = ⇤~ in VFG;

8 Update EspObj and their Pted accordingly;
9 Update data dependence relations;

10 while No more interference edges are introduced;
11 return Interference-aware VFG;
12 Procedure EscapeAnalysis(VFG):
13 Initialize EspObj ; // objects passed to the fork calls

14 foreach node = in VFG do
15 if = is a store node ⇤G = @ then
16 Let > and > 0 be the objects G and @ point to;
17 if > 2 EspObj then
18 EspObj ú EspObj [ {> 0};

19 foreach escaped object > in EspObj do
20 Find the set of nodes N that reachable from > ;
21 Let f the aggregated guards of edges during traversal;

foreach node = in N do
22 Pted(>)  ú Pted(>) [ (=,f);

23 return EspObj and their Pted;

Thus, we develop an algorithm that updates the VFG by
iteratively computing the escaped objects and their pointed-
to-by set based on the updated edges, which terminates at
a �xed point where no more value �ows can be introduced.
The set of escaped objects, EspObj, and their corresponding
pointed-to-by set, Pted, thus are not �nally updated. Com-
pared to the previous escape analysis [11, 63], our analyses
can capture the escaped objects due to the thread interactions
between threads. Also, unlike in the previous work [60], our
algorithm identi�es the combined e�ects of thread interfer-
ence by iteration, without using an exhaustive and expensive
pointer analysis as a prior.
Alg. 2 describes the key steps. Lines 12-23 present the

escape analysis. It �rst initializes the escaped objects, EspObj,
by �nding the objects passed to the fork calls, and then
identi�es the objects that are stored to an already escaped
object via store statements (Lines 14-18). Next, the algorithm
computes the pointed-to-by sets %C43 of ⇢B?$1 9 by �nding
nodes reachable from ⇢B?$1 9 and records the aggregated
guards during the graph traversal (Lines 19-23). The guards
represent the conditions of the pointed-to-by relations.
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After the escape analysis, the algorithm identi�es the in-
terference dependence based on ⇢B?$1 9 and %C43 (Lines 3-9).
Speci�cally, an edge (@@✓1, ?@✓2) is identi�ed in the VFG, if
G and~ are both in the pointed-to-by set of an escaped object
and these statements ✓1 and ✓2 are in di�erent threads C and C 0
(Line 7). Next, we update EspObj and their Pted based on the
updated edges (Line 8). The algorithm iteratively identi�es
new edges based on the dynamically updated EspObj and
their Pted, which terminates until there are no more edges
introduced. The analyses also update the intra-thread data
dependence due to the side-e�ects of the identi�ed inter-
ference dependence, in the measures similar to Alg. 1 (Line
9), so this stage is not a strict inter-thread analysis. How-
ever, the approach is thread-modular since it separates the
intra-thread and inter-thread reasoning.

4.2.2 Dependence Guard Computation. We next give
the details of how to compute the guard �guard qualifying for
an interference dependent edge in Alg. 2, followingDefn. 2(1).
The guard �guard is the conjunction of the alias constraint
�alias and the load-store constraint �;B .

Alias Constraint �0;80B . Consider a value-�ow edge
(@@✓1, ?@✓2) between ✓1,i1 : ⇤G = @ and ✓2,i2 : ? = ⇤~. The
alias constraint �alias comprises two parts: the conditions
under which G and ~ point to the same memory object > , and
the branch conditions of the statements ✓1 and ✓2. Equally, the
conditions of G and ~ pointing to the same memory object
> are the conditions under which the object > is pointed to
by the variables G and ~ simultaneously. In Alg. 2, we know
that the pointed-to-by conditions are U and V , which are the
aggregated guards from the memory object > to the nodes G
and ~, computed while identifying the variables pointing to
the escaped objects. To sum up, the alias constraint �0;80B is
i1 ^ i2 ^ U ^ V .

Example 4.3. In Fig. 2(a), the alias constraint �alias for
the edge (1@✓13, 2@✓6) �rst includes the conjunction of the
branch conditions of these two statements ✓6 : 2 = ⇤G and
✓13 : ⇤~ = 1, which is \1 ^ ¬\1. It should also include the
conjuncted conditions of the pointer variables G and ~ in
Pted(>1). By examining the aggregated guards in the VFG,
we know that the condition is CAD4 . As a result, we conclude
that �alias = \1 ^ ¬\1.

Load-Store Constraint �;B . According to the sequential
consistency axioms in Defn. 2(1), if a stored variable @@✓1
�ows to a loaded variable ?@✓2, we need to enforce that (1)
the execution order of ✓1 should be smaller than that of the
load statement ✓2, and (2) there are no other concurrent store
statements happening between them. Let B and ; represent
the store at ✓1 and the load at ✓2, and let ( (;) be the set of all
stores that ; is data dependent on. Formally, we use $; > $B

to denote the strict partial order between statements ; and B ,
i.e., ; is executed after B . Then, for an indirect value-�ow edge
from the store B to the load ; , the �;B is encoded basically as

€
B,B0 2( (;)

 
$B < $;

€
8B0<B

$B0 < $B _$; < $B0

!
, (2)

where the constraint $B < $; ensures that the store B hap-
pens before the load ; , and the constraint$B0 < $B_$; < $B0

ensures that other concurrent stores B 0 can not happen be-
tween B and ; . Note that, in practice, it is unnecessary to
encode some order constraints between statements in the
same thread, because we can quickly determine their order
by traversing the control �ow graph.
The load-store constraints �;B between the succes-

sive nodes ✓8�1 and ✓8 over a value-�ow path c =<
E1@✓1, . . . , E=@✓= > result in the total order <c . Note that
since <c may violate the program order <% , we will intro-
duce additional constraints to enforce the program order <%

(detailed in § 5.1).

Example 4.4. In Fig. 5(a), the �;B for (0@✓2, 2@✓4) is $✓2 <
$✓4 ^$✓3 < $✓2 . We do not need to encode $✓3 > $✓4 , since
the statement ✓3 can only happen before ✓4 by the control
�ow information. Similarly, the �;B for (1@✓3,3@✓4) is$✓2 <
$✓3 _$✓4 < $✓2 .

Summary. The thread-modular dependence analysis is
e�cient because it avoids explicitly enumerating exponential
thread interleavings and generates the execution constraints
without solving them eagerly. Instead, they are determined
altogether at the bug checking stage. In addition, the algo-
rithm iteratively identi�es interference dependence by only
reasoning the shared memory locations, avoids using an ex-
haustive and expensive pointer analysis as a prior, while
remaining path sensitive, thereby signi�cantly leading to a
more e�ective algorithm than the previous [51, 54, 60].

5 Guarded Reachability Detection
Once the interference-aware value-�ow graph is built, a
number of concurrency bugs can be reduced to solving
source-sink reachability problems over the guarded value-
�ow graph. For instance, to detect an inter-thread use-after-
free bug, the source, BA2 , is a 5 A44 statement, the sink, B8=: ,
is a DB4 statement, and the checking follows the value �ows
that connect BA2 to B8=: across two or more threads. In this
section, we address two problems to achieve precision and
e�ciency. The �rst is how to address the program order
violation of a value-�ow path, <%;<c , due to the intran-
sitive interference dependence in Defn. 2(2). The second is
how to e�ciently solve the constraints that qualify for the
value-�ow paths.

5.1 Partially-ordered Value Flows Searching
A value-�ow path connecting a source and a sink can be ex-
tracted by searching and transitively conjuncting the edges
of both data dependence and interference dependence in
the VFG. The searching of value �ows is in similar ways
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to the previous work [10, 55, 61]. The intra-thread context-
sensitivity is maintained using the clone-based function sum-
mary [39, 55]. Formally, a value-�ow path c can be computed
as follows:

c = hE1@✓1, E2@✓2, . . . , E:@✓: i,

src = E1@✓1, B8=: = E:@✓: ,

(E8@✓8 , E8+1@✓8+1) via either 33 or 83, 1  8 < : ,

(3)

where the : represents the number of nodes in the value-
�ow path. We use33 and 83 to represent the data dependence
and the interference dependence relationships, respectively.
Due to the intransitive property of interference depen-

dence, the orders between the successive nodes over c may
violate the program order, i.e., <%;<c . To solve this prob-
lem, the analysis has to take the correct program order into
account, such as the control �ows and the synchronization
constructs (e.g., fork/join) semantics. Our main idea is to
introduce the additional partial order constraints to enforce
the program order <% . The partial order constraints, denoted
as �?> , together with the aggregated guards of value �ows,
are handed to an SMT solver to validate the realizability of
the value-�ow path c .

Partial Order Constraints �?> . The partial order con-
sists of both the intra-thread partial order and the inter-
thread partial order. The encoding schema is similar to the
prior work [30, 31]. The intra-thread partial order follows
the control �ows of each thread. For instance, consider two
successive nodes E1@✓1 and E2@✓2 in the same thread C . Their
partial order constraint is written as $✓1 < $✓2 , if there is a
valid control-�ow path from ✓1 to ✓2. The inter-thread par-
tial order follows the synchronization semantics between
threads, which are related to the thread fork and join calls. A
5 >A: call is the corresponding start operation of the newly
forked thread, and a 9>8= call is the exit operation of the
joined thread. Therefore, the order of the nodes before a fork
operation in the parent thread is smaller than all of the nodes
in the corresponding child thread. Similarly, the order of the
nodes after a join operation in the parent thread is larger
than all of the nodes in the corresponding joined thread.
We encode these constraints �?> for each pair of succes-

sive nodes in a value-�ow path c . For a pair of successive
nodes, the analyses generate the corresponding partial order
constraints if they share the program order relations above.
Formally, we introduce a function %$ (E8@✓8 , E8+1@✓8+1) that
returns the program order relations between statements ✓8
and ✓8+1 based on the rules above.

�po (c) =
€

82 [1,:�1],

©≠
´

€
9 2 [8,:�1]

%$ (E8@✓8 , E 9@✓9 )
™Æ
¨
. (4)

Note that the partial order constraints �?> do not attempt to
identify all the program orders enforced by other synchro-
nization semantics like lock/unlock and wait/notify. How-
ever, the framework is generic enough to allow new synchro-
nization semantics to be plugged in easily.

Example 5.1. In Fig. 5(b), �?> consists of program or-
der $✓1 < $✓2 ^ $✓3 < $✓4 . For a value-�ow path
h0@✓2,1@✓3,1@✓4,0@✓1i, the �;B is $✓2 < $✓3 ^ $✓3 <
$✓4 ^$✓4 < $✓1 . Since $✓1 < $✓2 and $✓2 < $✓1 con�ict with
each other, this irrealizable value-�ow path can be pruned.

5.2 Constraints Solving
Finally, we encode all the constraints of a value-�ow path
into a formula �0;; , which is the conjunction of the con-
straints �6D0A3B qualifying for the def-use edges on the path,
and the partial order constraints �?> enforcing Defn. 2(2).

�0;; (c) = �6D0A3B (c) ^ �?> (c) , where

�guards (c) =
€

82 [1,:�1],
�guard (E8@✓8 , E8+1@✓8+1) . (5)

Next, the analysis feeds the collected constraints �0;; to
an SMT solver. Due to the complicated thread interference,
we observe that the number of generated constraints can
be extremely large, and some of those constraints can be
complex to solve if without any optimization.

Our analysis optimizes the performance of constraint solv-
ing by three means. First, when resolving the data depen-
dence and interference dependence (§ 4), we follow the pre-
vious work [8, 55] that uses lightweight semi-decision pro-
cedures to �lter out conditions having any apparent contra-
dictions. The optimization signi�cantly reduces the compu-
tational and memory overhead for the subsequent analysis.
Second, the constraints on di�erent source-sink paths are
independent of each other, which gives us the ability to lever-
age parallelization. This capability is important given the
prevalence of multi-core processors. Third, for a complex
query, our analysis can solve the constraints by the cube-
and-conquer parallel SMT solving strategy [26].

Summary. There are two salient advantages to aggregate
guards qualifying for value-�ow paths and solve these con-
straints from di�erent analysis domains together. First, a
combined domain allows a more precise solution than one
obtained by solving each domain separately [14]. Second,
the better scalability is achieved by judiciously delaying the
disjunctive reasoning of the realizability of the vulnerable
paths until the phase of source-sink checking. Speci�cally,
we avoid explicit case-splitting over the feasible thread in-
terference with the exhaustive points-to information. Our
approach is more scalable, since the SMT solver typically
bypasses the analysis of all cases to prove a constraint satis-
�able or unsatis�able.

6 Implementation
We have implemented C����� on top of the LLVM com-
piler infrastructure and the Z3 SMT solver [15]. While the
language in Fig. 3 has restricted language constructs, our
implementations support the most features of C/C++, such
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as classes, dynamic memory allocation, references, and vir-
tual functions. Arrays are considered monolithic. Currently,
C����� supports POSIX thread in C and std::thread in C++.

Performance. When analyzing the interference depen-
dence in Alg. 2, we have implemented a may-happen-in-
parallel (MHP) analysis to prune the non-interference load
and store statements for e�ciency. Speci�cally, if a load state-
ment and a store statement in two threads do not share MHP
relations, by Defn. 1, it is impossible for them to share an
interference dependence relation, thereby avoiding unneces-
sary reasoning. The MHP analysis itself has been studied for
decades, and many highly scalable algorithms can be directly
leveraged, which is orthogonal to our Alg. 2 but important
to achieve high e�ciency.
Practical programs often make asynchronous fork/join

calls via function pointers. Thus, it is impossible to construct
thread call graphs directly from the syntactic program de-
scription without analyzing function pointers. As shown in
the previous work [25, 44], a precise call graph for C-like
programs can be constructed only using the �ow-insensitive
analysis. Thus, we use Steensgaard’s analysis for the thread
call graph construction, which can be completed in almost
linear time [59]. We also adopt the class hierarchy analysis
to resolve the virtual function calls.

Soundiness. We follow the previous bug-�nding tech-
niques [55, 65] to engineer a soundy [41] bug detector, which
means C����� is designed to �nd as many bugs as possible
with low false positives, potentially at the cost of missing
some bugs. C����� handles most language features in a
sound manner, while it also applies some unsound choices as
in the previous work [1, 55, 65]. For instance, we unroll each
loop twice on the control �ow graph, ignore inline assembly,
and manually model parts of the standard C/C++ libraries.
Besides, we assume the distinct parameters of a function do
not alias with each other.

7 Evaluation
We evaluate the e�ciency and the e�ectiveness of C�����
in constructing the interference-aware value-�ow graph and
detecting concurrency bugs, by comparing it against two
most related static tools, namely S���� [61] and F��� [60].
The subjects we adopt include twenty real-life open-

source C/C++ projects such as F���F��, M����DB, and
M�SQL, which are commonly used in the concurrency analy-
sis literature. Many of these projects are regularly and exten-
sively scanned by the commercial tools as well as academic
tools and, thus, are expected to have very high code quality.
The sizes of these projects range from a few thousand LoC
to close to nine million, with 936KLoC on average.
C����� is quite promising: it can �nish a path-sensitive

scan for about nine million lines of code in just 4.67 hours,
with an average false positive rate around 26.67%. At the time
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Figure 7.Time andmemory cost for building the VFG: S����
v.s. F��� v.s. C�����.

of writing, it has found eighteen previously unknown con-
currency bugs that have been con�rmed by the developers
with fourteen already �xed. This performance and precision
are aligned with its design objectives and the common in-
dustrial requirement of detecting millions-of-LoC code in
5-10 hours with less than 30% false positives [5].

All the experiments were performed on a computer with
two 20 core Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
and 256GB physical memory running Ubuntu-16.04.

7.1 Comparison in Value-�ow Graph Construction
First, we evaluate C�����’s thread-modular data depen-
dence analysis by comparing against two recent pointer-
analysis-based techniques, S���� [61] and F��� [60]. S����
performs an Andersen-style, �ow-insensitive points-to anal-
ysis, which can trivially model the thread interference. F���
is an Andersen-style, �ow-sensitive pointer analysis for
multi-threaded programs. They both perform an exhaustive
points-to analysis to build the value-�ow graph. To the best
of our knowledge, these are the most precise and e�cient
tools for C/C++ multi-threaded programs we can get our
hands on. We con�gure S���� and F��� with their default
settings. The timeout is set to twelve hours and the number
of running threads is set to 1.
Fig. 7 shows the comparison of time and memory costs

among C�����, S����, and F��� for constructing the value-
�ow graph. We can observe that C����� is much more
scalable than S���� and F���. C����� can �nish scanning
all projects, but S���� times out on 9 projects and F��� times
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Figure 8. Scalability of C����� for bug hunting. The G-axis
stands for the size of the project (KLoC) and the~-axis stands
for the time cost (minutes) or the memory cost (GB).

out on 15 projects. To be speci�c, when the code size is larger
than 50KLoC and 100KLoC, respectively, F��� and S����
always run out of the time budget. In comparison, C�����
can �nish building the value-�ow graph for 16 projects in
less than one hour. On average, C����� is >15⇥ and 180⇥
faster than S���� and F���, respectively. At most, C�����
is up to >70⇥ and >500⇥ faster than S���� and F���.

Besides, C����� requires signi�cantly less memory com-
pared to S���� and F���, as shown in Fig. 7b. For the subjects
larger than 100 KLoC, S���� uses 130G additional memory
compared to C�����. For the subjects larger than 50 KLoC,
F��� uses almost 200G additional memory, but it is still
unable to �nish building VFG for these subjects. Since our
algorithm does not need to compute the exhaustive points-to
results, C����� is much more e�cient.

7.2 Comparison in Concurrency bug Detection
We evaluate the scalability and precision of C����� in the
whole process of VFG construction and concurrency bug
detection. The number of nested levels of calling context is
set to six. For scalability, we do not list the runtime and mem-
ory consumptions of S���� and F��� in the bug checking,
because we have shown that they su�er from the scalability
problem in the VFG construction. For precision, we compare
the false positive rates among C�����, F���, and S����.
We planned to evaluate other bug-�nding detection tools,
such as R���� [12] and DCUAF [2]. However, they are either
publicly unavailable or outdated for running in the envi-
ronments we are able to set up. Among the inter-thread
value-�ow bugs, we choose to check inter-thread use-after-
free, as it has become the most exploited memory errors,
leading to many zero-day serious vulnerabilities [28, 67].

Scalability. To study the observed time and memory com-
plexity of C�����, we adopt the curve �tting method. Fig. 8
reveals the �tting curves and their coe�cients of determi-
nation '2. The '2

2 [0, 1] depicts the statistical measure of
how close the data are to the �tting curve. The closer '2

is to 1, the better the �tting curve is. The �gure suggests
that C�����’s time and memory cost grow almost linearly

Table 1. Results of bug hunting.
Project Size (KLoC) S���� F��� C�����

FP Rate #Reports FP Rate #Reports #FP #Reports
1. lrzip 16 96.82% 63 93.75% 32 0 2
2. lwan 20 98.87% 89 100% 44 0 1
3. leveldb 21 100% 0 100% 0 1 1
4. darknet 29 100% 3,636 100% 144 0 0
5. coturn 39 100% 1,477 100% 368 0 2
6. httrack 49 100% 134 NA NA 1 1
7. �nedb 51 100% 421 NA NA 0 1
8. tcpdump 85 100% 0 NA NA 0 0
9. transmission 88 99.33% 299 NA NA 0 2
10. celix 107 100% 3,782 NA NA 0 0
11. redis 219 100% 0 NA NA 0 0
12. git 239 NA NA NA NA 0 0
13. zfs 367 NA NA NA NA 0 1
14. HP-Socket 426 NA NA NA NA 0 0
15. openssl 451 NA NA NA NA 1 1
16. poco 705 NA NA NA NA 0 0
17. mariadb 1,751 NA NA NA NA 0 1
18. �mpeg 2,003 NA NA NA NA 0 0
19. mysql 3,118 NA NA NA NA 0 0
20. �refox 8,938 NA NA NA NA 1 2
NA means the analysis runs out of the time budget (12 hours).

with '2 around 0.8, and, thus, can scale up quite elegantly.
Speci�cally, C����� can �nish checkingM�SQL (3 MLoC)
and F���F�� (9 MLoC) in approximately 2.5 hours and 4.67
hours, respectively.

Precision. C����� reports �fteen inter-thread use-after-
free bugs with a false positive rate of 26.67%. All of the
true positives are previously unknown and have been con-
�rmed by our carefully checking manually. A stark contrast
is that,C����� generates very few reports as shown in Tbl. 1,
whereas S���� and F��� report nearly 9,896 and 586 warn-
ings, respectively. Since we are unable to manually inspect
all of them, we randomly sample a hundred warnings for
inspection if a project generates more than 100 warnings.
Unfortunately, S���� and F��� only found �ve and two true
positives after the manual �ltering, which were all found by
C�����. However, because we can miss true bugs during
manual checking the warnings found by F��� and S���� due
to subjectivity, we plan to make the implementation of inter-
thread use-after-free checkers of F��� and S���� available
for the interested readers to examine. Concisely speaking,
C����� is more precise because it builds more precise de-
pendence relations and only takes the feasible interleaving
executions into account.

7.3 Detected Real Concurrency Bugs
We have been using C����� to scan open-source projects
extensively and continuously. At the time of writing, there
were already eighteen concurrency bugs from dozens of
open-source projects con�rmed by developers, including
the famous software systems such as �������, �������, and
������������. Among the eighteen con�rmed bugs, four-
teen bugs have been �xed in the recent release versions of
the software. A few vulnerabilities have been discovered on
the key modules of the software and immediately �xed after
being reported.
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C����� found an old and latent inter-thread UAF vulner-
ability in ������������, missed by the developers, users, re-
gression testing, and prior static analysis techniques. ������
������� is a popular BitTorrent client widely used by many
Unix and Linux distributions including Ubuntu and Solaris.
We retrospectively searched the commit history and found
this bug has remained in concealment for almost eight years.
C����� can detect bugs of high complexity for which

the original developers had to spend a considerable amount
of time to con�rm and even complained of the di�culty
of �xing. For example, C����� detected an inter-thread
use-after-free vulnerability in F���F�� and L����DB, respec-
tively. The control-�ow paths of these two bugs span across
several functions and compiling units and the bugs may only
be triggered in the rare thread schedules. The con�rmation
of the bugs was a team e�ort, through rounds of rejections
before the �nal con�rmation.

8 Related Work
Analysis of Concurrent Programs. The conventional

data-�ow analysis alternates between reasoning over intra-
thread and inter-thread semantics, which is inherently waste-
ful since the analysis engine has to repetitively conduct rea-
soning over the similar intra-thread program regions [18].
Although many proposed algorithms account for the data
dependence between the interleaved threads, the data-�ow
analysis itself still needs to propagate data-�ow facts fol-
lowing intra-thread control �ows [12, 17, 35, 60]. An early
pointer analysis algorithm [54] for Clik programs only tar-
gets structured parbegin/parend parallelism, which solves
data-�ow problems and discovers the thread interactions
by repeatedly reanalyzing each thread in each new analysis
context until reaching a �xed point. However, non-lexically-
scoped parallelism such as the fork/join model can signi�-
cantly complicate the analysis. R���� [12] resorts to a data
race detection engine to ensure the soundness of the sequen-
tial analysis by invalidating the data-�ow facts in�uenced
by concurrent writes. F��� [60] follows the pre-computed
thread-aware def-use chains to conduct pointer analysis. In
comparison, C����� does not need an exhaustive Andersen-
style pointer analysis as a prior and is also more precise than
F���. To sum up, C����� checks bugs only following data
and interference dependence in a value �ow graph sparsely,
thereby achieving more e�ciency [55].
Model checking for concurrent programs has a long

history. The key task is to identify redundant thread in-
terleavings. A classical approach is partial order redunc-
tion [13, 20, 22]. Huang [27] proposes MCR (Maximal causal-
ity reduction) that captures the value of writes and reads in
an execution trace to predict new traces. However, previous
approaches target at the stateless model checking that could
be considered as a form of systematic testing with a �xed
input, as opposed to static analysis. C����� has a �avor of

bounded model checking in the sense that it checks bugs as
source-sink problems by exploring a value-�ow graph under
the �nite unrolling of loops.
Symbolic execution, systematically exploring all feasible

execution paths, also su�ers seriously from state space ex-
plosion when being applied to multi-threaded programs [4,
23, 57]. Our approach allows the reduction of the redundant
thread interleaving by checking value �ows (a.k.a data depen-
dence) without explicitly enumerating thread interleavings.

Concurrency Bug Detection. Concurrency bugs such
as deadlock and race-like bugs are among the most notorious
defects to deal with [42, 67]. Yang et al. [67] reveal that many
concurrency vulnerabilities can be exploited to conduct se-
vere attacks, such as privilege escalation and malicious code
execution. This paper aims at detecting a category of concur-
rency bugs that could be expressed as source-sink properties.
In the context of static approaches, much work on detecting
data races has been done [6, 33, 40, 45, 62]. However, only
10% of true data races are harmful while most of them are
benign [48]. O�� [69] relies on various data race detectors
to disclose all possible racy program spots and further ex-
amine concurrency bugs. This work discovers 36 con�rmed
concurrency bugs among all 24,645 reported races in the
Linux kernel. DCUAF [2] detects inter-thread UAF speci�-
cally for Linux drivers with a new method to �nd concurrent
interface functions. Dynamic approaches typically include
systematic testing [9, 10, 32, 66] or predictive analysis. For
predictive analysis, they are based on approaches includ-
ing the SMT-based methods [19, 27–29], partial-order-based
methods [34, 43, 49, 53, 58], and distance-based exchange-
able events [7] to predict additional executions from a single
one. However, they can only predict other thread schedules
under a speci�c input.

9 Conclusion
We have described C�����, our novel, principled approach
to conducting interference-aware value-�ow analysis for
checking inter-thread value-�ow bugs, which achieves both
good precision and scalability for millions of lines of code.
C����� is promising, having already pinpointed over eigh-
teen previously-unknown concurrency bugs on a dozen of
well-known open-source C/C++ projects.

Future work includes (1) enhancements to support
more synchronization semantics like lock/unlock and sig-
nal/notify; (2) extension to relaxed memory models such as
TSO/PSO; and (3) deployment of customized decision proce-
dures to improve the e�ciency of constraint solving.
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