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Abstract—Hybrid fuzzing, which combines the merits of both
fuzzing and concolic execution, has become one of the most
important trends in coverage-guided fuzzing techniques. Despite
the tremendous research on hybrid fuzzers, we observe that
existing techniques are still inefficient. One important reason
is that these techniques, which we refer to as non-incremental
fuzzers, cache and reuse few computation results and, thus, lose
many optimization opportunities. To be incremental, we propose
“polyhedral path abstraction”, which preserves the exploration
state in the concolic execution stage and allows more effective
mutation and constraint solving over existing techniques. We have
implemented our idea as a tool, namely PANGOLIN, and evaluated
it using LAVA-M as well as nine real-world programs. The
evaluation results showed that PANGOLIN outperforms the state-
of-the-art fuzzing techniques with the improvement of coverage
rate ranging from 10% to 30%. Moreover, PANGOLIN found 400
more bugs in LAVA-M and discovered 41 unseen bugs with 8 of
them assigned with the CVE IDs.

Index Terms—Fuzzing, constraint solving, program analysis,
sampling

I. INTRODUCTION

Hybrid fuzzing, combining the merits of both fuzzing and
concolic execution to better explore program states [1], [2],
[3], [4], [5], [6], has recently become one of the most
important trends in the coverage-guided fuzzing techniques.
Hybrid fuzzing leverages concolic execution [7] to generate
seed inputs that drive the program execution to hard-to-cover
branches, and resorts to mutation to speed up the exploration
of trivial input spaces. The efficacy of such combination has
been well demonstrated in various well-known benchmarks,
such as DARPA Cyber Grand Challenges binaries and LAVA-
M dataset, as well as the real-world applications [1], [2].

Despite this tremendous progress in achieving high cov-
erage rates, hybrid fuzzing is well known to still suffer
from efficiency issues. For instance, Driller [2] could cause
more than 100 times runtime overhead analyzing coreutils
while the coverage is lower than 20% [1]. We have observed
that one important reason for this deficiency is that hybrid
fuzzing, as far as the state of the art is concerned, is not
incremental when going deeper in nested path constraints, in
the sense that little exploration state is preserved and reused
in the successive epochs of concolic execution and mutation.
However, intuitively, the search space of the previous epoch
provides good guidance for exploring that of the next.

More specifically, in the current design of hybrid
fuzzing [1], [2], [6], two successive exploration epochs are

connected by two elements, the newly generated seed and
the symbolic snapshot, which are, unfortunately, not state pre-
serving and cause serious computational redundancies. Taking
the program in Figure 1 as an example, an earlier concolic
execution can generate a seed input (v = 20, w = 5, x =
3, y = 4, z = 30), which satisfies the predicate at Line 3. In the
next epoch, the current approaches mutate this seed randomly
to explore the nested branches at Line 4 and Line 8. This is not
effective because, even with the help of taint analysis [8], [9],
which, in this example, determines only z needs to be mutated,
the probability of satisfying the constraint 0 < z < 200 at
Line 3 is still very low since z ranges over the entire integer
domain. On the contrary, if the mutator retains not only the
seed but also the solution intervals of the predicate at Line 3,
i.e., x ∈ [3, 3], y ∈ [4, 4], z ∈ [0, 200), it should be much faster
to get pass the first branch at Line 3 and focus on exploring
branches of Line 4 and Line 8.

The same drawback also happens at the concolic execution
stage. The symbolic snapshot simply memorizes the enclosing
path constraints and the symbolic values of the environment,
which is to be set in conjunction with the nested branch
conditions and sent to constraint solvers. It is obvious that
the enclosing path constraints, e.g., x = 3 ∧ y == 4 ∧
z ∗ z < 40000, in our example, are solved repetitively, for
instance, at both Line 4 and Line 8. As a result, the concolic
execution becomes even more sluggish as the fuzzing process
goes deeper and deeper in the nested branches. However, if
we replace the enclosing path constraint with the solution
intervals, x ∈ [3, 3], y ∈ [4, 4], z ∈ [0, 200), it becomes trivial
for constraint solvers to find a new seed for Line 4 with the
new constraint z > 195.

Our example illustrates that being incremental, i.e., retaining
and reusing a summary about the solution space of a previous
epoch, in hybrid fuzzing has tremendous benefits in both
guiding the mutation of the seeds and efficiently solving nested
path constraints. We construct this summary as the bounded
ranges for the input variables and their linear expressions at the
concolic execution stage. Specifically, in addition to finding a
single feasible solution of the outer branch through constraint
solvers, we also target at obtaining the bounded ranges of
the related input variables for the target path constraint.
We describe such bounded ranges by linearizing the path
constraint as a polyhedron, denoted as the “polyhedral path
abstraction”, for guiding both the mutation and the constraint
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1 i n t main ( ) {
2 u n s i g n e d v , w, x , y , z = i n p u t ( ) ;
3 i f ( x==3 && y==4 && z∗z<40000){
4 i f (z > 195 ) {
5 . . . . . .
6 / / c r a s h 1
7 }
8 i f (15<=z+v && z+v<=25){
9 . . . . . .

10 / / c r a s h 2
11 }
12 }
13 / / o t h e r i n s t r u c t i o n s r e l a t e d t o w
14 }
15

Fig. 1: Motivating Example

solving procedure in hybrid fuzzing:
• The polyhedral path abstraction of a path constraint en-

ables us to convert the problem of mutating the seeds into
the problem of sampling over a polyhedron, which has
been well studied and has many efficient solutions [10],
[11], [12], [13], [14], [15]. In this work, we adopt a
state-of-the-art technique, the Dikin walk algorithm [15],
which can achieve the polynomial time complexity, to
efficiently generate a large number of inputs while still
respecting the target path constraints.

• Moreover, we adopt the polyhedral path abstraction to
speed up the constraint solving in the concolic execution
from two aspects. First, since the polyhedral abstraction
is a sound and simplified form of the solved constraint,
to prove the infeasibility of a new path concatenated
using the constraint from the previous epochs, i.e., the
prefix, we can safely use the polyhedral abstraction of
this prefix instead to dramatically reduce the constraint
solving complexity. Second, we can narrow down the
solution space of the path constraint for a feasible path,
by using the polyhedral abstraction of the prefix.

To evaluate the efficiency and effectiveness of our proposed
technique, we implemented a tool, PANGOLIN, and compared
it to the state-of-the-art fuzzing frameworks using both the
well-known benchmarks and the real-world systems. Our
evaluation results show that, PANGOLIN not only improves
the coverage by 10% to 38% than the state of the art, but
also finds more bugs in the benchmark dataset and discovers
previously unknown vulnerabilities. For instance, PANGOLIN
has found 500+ more bugs than the state-of-the-art techniques
in the LAVA-M dataset. For the real-world systems, although
they have been extensively examined by the state-of-the-art
fuzzers, we still can discover 41 unseen bugs with 8 of them
assigned with the CVE IDs. In summary, this work makes the
following contributions:

• We are the first to propose the concept of incremental
fuzzing, in which we compute the polyhedral path ab-
straction of an earlier path constraint to guide the later
fuzzing processes.

• We design an efficient input generation method based on
the polyhedral path abstraction, which accelerates both
the concolic execution stage and the mutation stage in
hybrid fuzzing.

• We evaluate our approach and the experimental re-
sults demonstrate that it outperforms the state-of-the-art
fuzzers in terms of both achieving a high coverage rate
and finding previously unseen bugs.

II. BACKGROUND

A. Coverage-guided Fuzzing

Coverage-guided fuzzing is one of the most powerful vul-
nerability detection techniques [1], [16], and has been widely
adopted to detect various kinds of software security issues in
the industry. The general workflow of coverage-guided fuzzing
consists of three steps: 1) determining the uncovered path;
2) generating a seed input satisfying the path predicates of
the uncovered path; 3) mutating the seed to generate a large
number of inputs to further increase the coverage rate. Despite
tremendous research progresses [1], [3], [9], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [25], [26], [27], [28], [29],
we observe that all the existing fuzzing approaches spend the
majority of the efforts on finding a limited number of seed
inputs satisfying those hard-to-cover conditions, but neglecting
these efforts when it comes to mutating the seeds. Thus, the
search space for mutating the seed is always too large to find
an input for new coverage, especially for those complex and
tight constraints.

The majority of fuzzing frameworks [1], [18], [19], [20],
[21], [24], [27], [30], [31] mutate every seed randomly using
some simple heuristics. Although randomly mutating the seed
is fast to generate a large number of inputs, it is not efficient to
produce inputs satisfying tight and complex path constraints.
Take the program in Figure 1 as an example. To take the true
branch at Line 3, the inputs need to satisfy the constraint (x =
3∧y = 4∧z∗z < 10000). However, it is very hard for random
mutation to generate such inputs, because the search space of
the inputs is around 232∗5 and the probability of generating
the feasible inputs is around 90 / (232+32+32) ≈ 10−27.

To reduce the large search space of inputs, taint analysis [9],
[25], [26] is used to determine the input offsets that are
correlated with the path constraints in the target conditional
statements. As illustrated in Figure 1, the taint analysis can
determine that the variables z, i, k are irrelevant to the con-
ditional statements at Line 3. Thus, a fuzzer can focus on
mutating the variables x and y. This greatly improves the
efficiency of the mutation by reducing the search space to
232∗3. However, as taint analysis does not give any hints on
how to mutate the byte offsets of the inputs, these approaches
still rely on the random mutation to generate seeds, which
is inefficient. For example, the probability of generating the
feasible inputs for the example in Figure 1 is still 10−27.

Another category, hybrid fuzzing, leverages constraint solv-
ing [1], [2], [3], [4] to generate seed inputs to drive the
program execution to pass tight and complex path constraints,
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Fig. 2: Different types of path abstraction. In the figure, a, b, c,
and d are constants.

but, unfortunately, still resorts to inefficient mutation to speed
up the exploration of the input space. The lack of effective
guidance to mutation makes their approaches excessively rely
on the heavy-weight constraint solving to achieve a high
coverage rate. First, given a seed input discovered by solving
constraints, randomly mutating it would easily invalidate its
associated path constraints that have already been conquered
by constraint solvers, wasting the computation in exploring
the nearby nested branches. For example, suppose we have
leveraged a solver to obtain a seed input (v = 20, w = 5, x =
3, y = 4, z = 30), which satisfies the predicate at Line 3. Any
new inputs generated by mutating the variables x and y make
it difficult to explore the successive branches at Lines 4 and
8. Second, with the growth of the nested level of conditional
statements, the path constraints become increasingly restricted,
which makes the mutation less and less efficient. For example,
the predicate (z > 195) at the nested conditional statement of
Line 4 is not difficult to be satisfied by mutation. However,
the path constraint that conjuncts with the predicates at Line
3 and Line 4 (i.e., x = 3 ∧ y = 4 ∧ 195 < z < 200) becomes
challenging for mutation. Even though we already have a seed
input (v = 20, w = 5, x = 3, y = 4, z = 30) and only consider
mutating the variable z, the probability of generating a feasible
input to reach the condition at Line 4 is around 100/232, and
the probability to cover the true-branch of the predicate at Line
4 decreases to 4/232.

B. Polyhedral Path Abstraction

In this work, we use the notion “path abstraction” to denote
an approximation of a path constraint. In the existing litera-
ture, many different abstractions have been studied, such as
interval [32], octagon [33], and polyhedral [34]. As illustrated
in Figure 2, the interval abstraction only contains the value
ranges of each variable. The octagon abstraction is in the form
k1x + k2y ≤ b, where x and y are the variables in the path
constraints and ki ∈ {0,±1}. The polyhedral abstraction is in
a more general form where ki ∈ Z. In Figure 2, the black dots
represent all feasible values satisfying a given path constraint,
whereas the crosses represent the infeasible ones. The path
abstraction is the region bounded by the lines representing
multiple linear inequalities.

All the path abstractions approximate non-linear formula in
the given path constraints. All these abstractions are sound,
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Seed Input
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Fig. 3: Architecture of PANGOLIN

because the regions cover all the black dots. However, they
have different levels of the precision. According to the recent
studies [35], [36], the polyhedral abstraction has the best
precision. The example in the Figure 2 also demonstrates the
best performance of the polyhedral abstraction, as only two
infeasible values are confused by the polyhedron.

We further present the properties of the path abstraction
required by a fuzzer and detail how to convert a path constraint
into a polyhedral path abstraction in Section IV-A.

III. OVERVIEW

In this section, we describe the design philosophy of re-
alizing PANGOLIN and illustrate the workflow of PANGOLIN
shown in Figure 3. PANGOLIN is essentially a hybrid fuzzing
technique. It shares the typical components as the conventional
hybrid fuzzing techniques that have been briefly introduced in
Section II, such as seeds prioritization and tracing. We focus
on our discussion on the following ideas.

A. Path Abstraction Inference

We first identify the uncovered branches in fuzzing and
deliver them to the concolic execution engine to proceed.
Different from the concolic execution in the conventional
hybrid fuzzing which invokes the constraint solver to directly
obtain a feasible solution, PANGOLIN constructs a summary of
these uncovered branches, which we denote as the polyhedral
path abstraction. The polyhedral path abstraction describes
a sound search space of the feasible inputs with respect to
the path constraints, which is used to guide the mutation of
the seeds and speed up the solving of the subsequent path
constraints. We explain how to construct a polyhedral path
abstraction in Section IV-A.

B. Constrained Mutation

As the polyhedral path abstraction renders a bounded range
of the input variables with respect to the path constraint of a
path prefix, by sampling from such bounded search space, we
are able to quickly generate a large number of new inputs that
still satisfy this path constraint and, meanwhile, to explore the
subsequent paths sharing the same path prefix. Specifically,
in this work, we adapt an existing sampling technique, the
Dikin walk algorithm [15], to generate new inputs (See Section
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IV-B). This sampling method guarantees that the new inputs
uniformly cover the given search space, ensuring the diversity
in exploring the program states.

C. Guided Constraint Solving

After sampling the inputs, PANGOLIN still preserves the
polyhedral path abstraction offline for the successive fuzzing
epochs. Unlike the heavy-weight memory-snapshot or fork-
server method [2] that only stores the constraints themselves,
the polyhedral path abstraction is a succinct and sound me-
mento of the solution space of the path constraints we have
solved so far, which dramatically simplifies the solving of
the path constraint from the next epochs, since it uses the
previous path constraints as its prefix. Compared to the incre-
mental solving [37], PANGOLIN does not need to maintain a
heavy-weight memory snapshot, but provides a light-weight
caching mechanism that also guides input generation for
hybrid fuzzing. We further explain this technical detail in
Section IV-C.

IV. METHODOLOGY

In this section, we explain the technical details of the
key components of PANGOLIN. Section IV-A presents the
inference procedure of the polyhedral path abstraction. Sec-
tion IV-B and Section IV-C discuss how the polyhedral path
abstraction benefits the mutation and the constraint solving
processes in hybrid fuzzing.

A. Path Abstraction Inference

We notice that retaining and reusing the solution space of
a previous epoch have tremendous benefits in both guiding
the mutation of the seeds and efficiently solving nested path
constraints. This solution space is summarized as the polyhe-
dral path abstraction (See Section II), which is a simplified
and linear approximation of the path constraint. A polyhedral
path abstraction should satisfy the following requirements to
support incremental hybrid fuzzing:

1) The path abstraction needs to be sound. The path ab-
straction needs to include all feasible inputs for achiev-
ing new coverage. As an example, in Figure 1, if the path
abstraction constructed for the variable z is an unsound
interval, e.g., z ∈ [0, 100], we then lose the opportunity
to generate a value of the variable z within [196, 199]
to cover the true branch of the condition at Line 4 and,
thus, cannot trigger the crash at Line 5.

2) The path abstraction can be inferred efficiently while
containing as few false-positive values as possible. The
precision of the path abstraction determines its effective-
ness to guide input generation. Figure 4 demonstrates the
two possible abstractions of the condition at Line 8 in
Figure 1. Although inferring the interval abstraction is
cheaper than the octagon abstraction, it contains over
60% more false-positive values.

Considering that the path abstraction should be built effi-
ciently and easy to utilize in the subsequent fuzzing process,
we take advantage of a sweet spot between precision and

Fig. 4: Example of different path abstraction.

speed by producing the path abstraction as a summary of
the current program states. To this end, the state-of-the-art
method BWAI [38] is leveraged in our approach to linearize
a path constraint to its polyhedral (or linear) form. Basically,
it regards the abstraction inference as a typical SMT-based
optimization (SMT-opt) problem [39], which computes the
minimum upper-bound value (i.e., b in Figure 2) of an objec-
tive linear expression (i.e., k1x+ k2y) subjected to the given
path constraint. Moreover, SMT-opt ensures the abstraction is
sound because it guarantees that the computed upper-bound
value is the minimum subjected to the constraint.

BWAI enumerates all possible relations between any two
variables using the predefined templates: x1, x2, x1+x2, and
x1 − x2, as the objective linear expressions. It calculates the
boundary values of these objectives through solving the SMT-
opt problem. The outcomes, which are in the form of k1x +
k2y ≤ b (k ∈ {0,±1}), constitute the approximation of the
given path constraint. As an example, for the path constraint

x ≤ 2 ∧ y ≤ 5 ∧ y ≤ x2 − 5x+ 4 (1)

the BWAI method produces the path abstraction including the
following linear inequalities:{

0 ≤ x ≤ 2
0 ≤ y ≤ 5

{
1 ≤ x+ y ≤ 7
−5 ≤ x− y ≤ 2

Since BWAI enumerates all possible relations between any
two variables as exemplified above, the number of the linear
inequalities in the path abstraction grows quadratically, on the
order of O(n2), along with the increase of the number, n,
of variables. This hinders the scalability of our method. In
practice, to reduce the overhead caused by computing the path
abstraction, we do not generate all possible inequalities, as
illustrated above. Instead, we generate a much smaller set of
the equality formulas, which, however, can still demonstrate a
better precision for hybrid fuzzing. We present our method in
Algorithm 1.

Let us use the same path constraint in Equation (1) to
illustrate the algorithm. We do not compute the boundary for
the linear expressions x+ y and x− y because, on one hand,
they do not exist in the input path constraint and, on the other
hand, the result x+ y ≤ 7 and −5 ≤ x− y ≤ 2 is a super set
of 0 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 3, thus making no contribution to
the path abstraction. Based on our algorithm, we compute the
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Algorithm 1 Polyhedral path abstraction inference.

1: procedure INFERENCE(pc , σ1 ∧ σ2... ∧ σn)
2: pc, path constraint. p̂c, polyhedral path abstraction.
3:
4: p̂c← true
5: for all input variable vi in pc do
6: min← SMToptMin(vi, pc)
7: max← SMToptMax(vi, pc)
8: p̂c← p̂c ∧min ≤ vi ≤ max
9: end for

10: for all atomic predicate σi in pc do
11: if σi contains linear expression ιi then
12: min← SMToptMin(ιi, pc)
13: max← SMToptMax(ιi, pc)
14: p̂c← p̂c ∧min ≤ ιi ≤ max
15: end if
16: end for
17:
18: return ϕ̂
19: end procedure

Fig. 5: Pangolin vs. BWAI.

boundary for every single variable (Lines 5 - 9), and compute
the boundary of every linear expression existing in the input
path constraint (Lines 10 - 16). As a result, it produces the
following path abstraction: 0 ≤ x ≤ 2

0 ≤ y ≤ 5
4 ≤ 5x+ y ≤ 15

As shown in Figure 5, our path abstraction provides a more
precise and, meanwhile, more concise approximation for the
input path constraint. In practice, it is not necessary to compute
the boundary values of each variable or linear expression indi-
vidually, as shown by the for-loops in Algorithm 1. Instead, we
can benefit from multi-objective optimization algorithms [40]
to compute boundary values for multiple linear expressions
at the same time. Such a multi-objective method can avoid
repetitively computing many intermediate results shared by in-
dividual SMT-opt procedures, thus speeding up our approach.

Our approach to computing polyhedral path abstraction is
efficient and effective because of the following two reasons.
First, the linear expressions are not predefined templates, such
as x + y and x − y, but extracted directly from the original
path constraints. Thus, they can better reveal the dependence

Fig. 6: The importance of uniform sampling. A, B and C
are the search spaces of constraints at Lines 3, 4, and 8,
respectively.

relations among program variables, thereby being capable of
guiding the mutation and constraint solving procedures more
effectively. Second, the number of the linear expressions is
linear, rather than quadratic, to the size of path constraints.
Meanwhile, there are equalities that can be extracted from
the constraints directly without further computation such as
x < 2 in Equation (1). Thus, our approach can generate
the path abstraction more efficiently. Next, we detail how
the polyhedral path abstraction benefits the mutation and
constraint solving procedures in hybrid fuzzing.

B. Constrained Mutation

As mentioned in Section I, mutation is not effective even
with the assistance from constraint solving. Specifically, this
ineffectiveness obstructs a fuzzer to generate multiple inputs to
sufficiently test a hard-to-cover branch. To tackle this problem,
the mutation method should have two properties. First, the
mutation cannot be completely random. The mutation results
should be restricted by the path constraint, so that we can
efficiently generate multiple inputs for a given branch. Second,
the mutated inputs should be uniformly distributed over the
solution space of the path constraint. It is well known that
such a uniform distribution is more likely to trigger different
program behaviors [41].

To illustrate these two properties, let us consider the exam-
ple in Figure 1 again. When the concolic engine reaches Line
4, we generate a new seed satisfying the branch conditions.
On the one hand, randomly mutating the seed may dissatisfy
the branch conditions and, thus, is not effective for testing
the behaviors in the branch. Therefore, we need to constrain
the mutation process. On the other hand, as illustrated in
Figure 6, if the inputs generated by mutation are not uniformly
distributed, a fuzzer will have a much lower probability to
cover some behaviors such as the regions described by the
constraints at Lines 4 and 8, named as Region B and Region C.

1) How to generate: PANGOLIN uses the “Dikin walk” [15]
to guarantee the efficient and uniform input generation. The
Dikin walk algorithm allows the uniform sampling over a
polyhedron described by a series of linear inequalities. The
core idea of Dikin walk is to ensure that the distance between
every two sampling results must be greater than a dynamic
bound, which guarantees uniform sampling in a region.
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Moreover, the complexity of the Dikin walk algorithm is
O(mn), where m and n are the numbers of inequalities and
variables in the path abstraction, respectively. It is noteworthy
that such polynomial time complexity is much lower than the
NP-completeness of constraint solving. Thus, compared to the
conventional approaches, we are more efficient to generate
multiple inputs for a hard-to-cover branch.

2) How many to generate: To determine the number of
generated inputs, we take two factors into consideration. First,
the harder a branch to cover, the more inputs we need to
generate using constrained mutation. This is because, if a
branch is not hard to cover, it is easy to use the conventional
random mutation to generate inputs for the branch. Second,
the more paths that depend on a branch, the more inputs we
need to generate to cover these paths.

For the first factor, given a branch and a seed that can
reach the branch, we calculate p as the proportion of the
successful mutation times over the total mutation times of the
seed, to measure the difficulties of covering the branch. Here, a
successful mutation means that the execution with the mutation
result can reach the branch. For the second factor, to measure
the potential number of paths depending on a given branch,
we use the solution space of the polyhedral path abstraction at
the branch to approximate. To this end, we calculate v as the
volume of the polyhedron using a state-of-the-art method [42]
defined as: v = m(n+1)+

∑m
i=1 bi+

∑m
i=1

∑n
j=1 kij , where

m is the number of the inequalities, n is the number of
the involved variables, bi and kij are the parameters of the
inequalities kijxij < bi.

Putting the two factors together, we use the formula
√
vp−1

to approximate the number of inputs to generate. Basically, this
formula follows our intuition: the smaller the value of p, or
the larger the value of v, the more inputs to generate.

3) Cooperating with random mutation: It is noteworthy that
we do not give up random mutation because it is very cheap
and can quickly cover most easy-to-cover branches. Only for
hard-to-cover branches, we then create the path abstraction and
utilize the constrained mutation to generate diversified seeds
as discussed above.

C. Guided Constraint Solving

Not only is the path abstraction able to guide the mutation, it
is also capable of speeding up the constraint solving process,
which is notoriously expensive in practice. Specifically, the
polyhedral path abstraction can speed up constraint solving
from two aspects: quickly pruning infeasible paths and nar-
rowing down the solution space of the path constraint for a
feasible path.

To be clear, we use pc(π) and p̂c(π) to represent the path
constraint and its path abstraction of a path π, and assume
that a path π is the concatenation of a prefix path π1 and the
remaining part π2.

In PANGOLIN, before solving the path constraint pc(π) of a
hard-to-cover branch, we first compute and solve a simplified
form of the constraint using the abstraction of the existing
prefix path, i.e., p̂c(π1) ∧ pc(π2). Generally, the simplified

Abstraction:		0	<=	z	<=	199

B

A

D E...

C

G

F

	z	<	200z	>	200

	15	<=	z	+	v	<=25

G

...

	z	*	z	<	40000

Fig. 7: A control flow graph to illustrate the path-abstraction
guided constraint solving. The branch condition is labeled on
the edge.

form is less complex than the original one and, thus, is easy
to solve. On the one hand, if p̂c(π1)∧ pc(π2) is unsatisfiable,
we can immediately prune the path π because pc(π1)∧pc(π2)
must be unsatisfiable. On the other hand, if p̂c(π1)∧pc(π2) is
satisfiable, we continue to solve p̂c(π1)∧pc(π1)∧pc(π2), i.e.,
p̂c(π1)∧ pc(π). Although this constraint looks more complex
than pc(π), it is also much easier to solve in practice because
the path abstraction p̂c(π1) actually narrows down the solution
space of the path constraint. Since the path abstraction contains
computed linear inequalities appeared in the path constraints,
the conjunction of path constraint and abstraction directly
narrows down the search space.

Let us use the example in Figure 7 to demonstrate the
method. In this example, we assume that we have generated
a path abstraction p̂c(AC) = 0 ≤ z ≤ 199 for the path AC,
of which the path constraint is pc(AC) = z2 < 40000. When
the concolic execution reaches the node D, PANGOLIN does
not solve pc(ACD) immediately, but reuses the abstraction
to ease the burden of constraint solving. That is, we first
compute p̂c(AC) ∧ pc(CD) = 0 ≤ z ≤ 199 ∧ z > 200,
which is apparently unsatisfiable. Thus, we save the cost of
an expensive SMT solving process.

In the other case, let us assume that the concolic ex-
ecution reaches the node G, where the path constraint is
pc(ACEFG) = z2 < 40000 ∧ z < 200 ∧ 15 ≤ z + v ≤ 25.
Instead of solving the path constraint directly, we add the
path abstraction p̂c(AC) to pc(ACEFG) so that the search
space of z can be narrowed down from (−∞, 200) to (0, 199],
thereby reducing the cost of SMT solving.

V. EVALUATION

We have built PANGOLIN on top of AFL (v.2.52b) [30]
and QSYM [1], which are the state-of-the-art fuzzing and
concolic execution frameworks, respectively. When fuzzing a
program with AFL and encountering a hard-to-cover branch,
we leverage QSYM for collecting the path constraints and use
the SMT-opt algorithms in Z3 (v.4.8) [43] to compute the path
abstractions. PANGOLIN is capable of running on both 32bit
and 64bit platforms.
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TABLE I: Baseline fuzzers.

Fuzzer Technical Description

AFL [30] Fuzzer baseline with evolutionary search
AFLFast [20] AFL + power scheduling
QSYM [1] AFL + concolic execution
Driller [2] Demand-driven concolic execution
Angora [9] Evolutionary search + taint analysis + gradient descent
T-Fuzz [46] Program transformation + symbolic execution

TABLE II: Real-world benchmark programs.

Program Version Input format Argument

readelf 2.33 ELF -agteSdcWw –dyn-syms -D @@
nm-new 2.33 ELF -C -a -l –synthetic @@
objdump 2.33 ELF -D @@

libtiff 4.0.10 TIFF @@
tcpdump commit-b5046f PCAP -evvvnr @@

jhead 3.03 JPG @@
libjpg commit-ec5adb JPG @@
libpng 1.6.37.git PNG @@
bento commit-cbebcc MP4 @@

In this section, we design a series of experiments to evaluate
the effectiveness of PANGOLIN by investigating the following
research questions:

1) Can PANGOLIN detect more bugs in comparison with
the state-of-the-art fuzzers? (Section V-A)

2) Can PANGOLIN achieve higher coverage rate in compar-
ison with the state-of-the-art fuzzers? (Section V-B)

3) How effective are the path-abstraction-guided mutation
and constraint solving? (Section V-C)

Benchmarks. First, we included the LAVA-M dataset [44],
a widely-used benchmark containing artificial vulnerabilities
with the given oracle, in our evaluation. LAVA-M is an artifi-
cial benchmark for bug detection. Each bug is identified with
a unique identifier, which is printed when the corresponding
bug is triggered. This allows us to know the exact number
of bugs triggered by the fuzzers. The LAVA-M benchmark
consists of four coreutils programs: uniq, base64, md5sum,
and who. It has been widely evaluated by the majority of the
state-of-the-art fuzzing techniques.

Second, we evaluated PANGOLIN on nine real-world pro-
grams shown in Table II. We used the newest version of
each program. All of the programs have been widely-evaluated
by the state-of-the-art fuzzers in both academia [1], [9],
[31] and industry [45] and, thus, are expected to have high
quality. These programs also have diverse functionalities and
complexity, which demonstrate the usefulness of our approach
in practice.

Baseline Approaches. Following the evaluation instructions
provided by the previous work [1], [16], we compared PAN-
GOLIN with the state-of-the-art fuzzers in different categories
listed in Table I.

• AFL [30] is a well-known fuzzing framework with indus-
trial strength. We used two instances of AFL (afl-master
and afl-slave) during the comparison.

• AFLFast [20] optimizes AFL by powerful seed schedul-
ing method. Similarly, we set up two instances of
AFLFast (afl-master and afl-slave).

• QSYM [1] is one of the state-of-the-art hybrid fuzzing
frameworks that optimize the performance of constraint
emulation. For QSYM, we ran it with one concolic engine
and one fuzzer engine, i.e., AFL.

• Driller [2], another state-of-the-art hybrid fuzzer that only
solves path constraints in a demand-driven way. We ran
the approach using the interface shellphuzz [47] pro-
vided by the authors, which launches one AFL instance
and one Driller instance.

• Angora [9], which is one of the most recent greybox
fuzzers, leverages an effective gradient descent method
to quickly satisfy complex path conditions. For Angora,
we used two runtime workers (-j 2).

• T-Fuzz [46] bypasses the hard-to-cover conditions by
erasing them from the original programs. It wraps AFL
and the symbolic execution engine Angr [48]. Since there
are no parameter settings in T-Fuzz, we directly run T-
Fuzz to collect the experimental results.

Experimental setup. The initial seed corpus plays an im-
portant role in the overall performance [22]. We prepared our
initial seed corpus for each benchmark in the following ways.
For the LAVA-M benchmark, we ran each fuzzer with the
seed provided by the authors. For the real-world projects, we
followed the standard instructions in the previous paper [16].
To construct this corpus, we first collected the seeds for libtiff,
libpng, libjpg, and jhead from the official website of AFL [49].
The seeds for tcpdump and bento4 were provided by their
Github repositories1,2. The seed corpus for binutils come from
its own testsuite3. We ran all the fuzzing techniques using the
same initial seed corpus for each target program.

With the initial seed corpus, we then ran AFL to fuzz the
target programs for an hour. This process generates inputs to
cover the easy branches and, thus, we can focus on the hard-
to-cover branches in the subsequent experiments. Note that,
during the fuzzing process, we applied afl-cmin on the
seeds to prune the duplicates.

We followed the setting of the existing studies [1], [9] to
set the time limits for evaluating the benchmarks. We used
twenty-four hours time budget for both LAVA-M and real-
world projects. To avoid the influence brought by randomness,
we ran each experiment ten times and used the average as the
final results. In addition, we also employed the Mann-Whitney
U Test [50] to demonstrate the statistical significance of the
contribution made by each part of our framework.

All experiments were conducted on an Intel Xeon(R) com-
puter with an E5-1620 v3 CPU and 64GB of memory running
Ubuntu 16.04 LTS.

1https://github.com/the-tcpdump-group/tcpdump/tree/master/tests
2https://github.com/axiomatic-systems/Bento4/tree/master/Test
3binutils-gdb.git/binutils/testsuite/
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TABLE III: Average results of 24 hours experiment on LAVA-
M for 10 times. The data is shown in the form of +/∗, where
+ stands for the bugs detected by each fuzzers and ∗ stands
for the bugs listed by the authors.

uniq base64 md5sum who

PANGOLIN 30/28 48/44 60/57 2021/2136
QSYM 28/28 44/44 57/57 1353/2136
AFL 11/28 2/44 0/57 2/2136
AFLFast 25/28 28/44 1/57 4/2136
Angora 29/28 48/44 59/57 1619/2136
T-Fuzz 26/28 40/44 49/57 61/2136
Driller 12/28 4/44 8/57 24/2136

A. Discovering Bugs

The main purpose of fuzzing is to detect bugs. Therefore,
we first evaluated the bug detection capability of PANGOLIN.

1) The LAVA-M dataset: Within the time budget of twenty-
four hours, we observed that PANGOLIN significantly out-
performs the baseline fuzzers in terms of the number of
bugs detected, as shown by Table III. Especially, for the
subjects, uniq, base64, and md5sum, PANGOLIN detected all
the injected bugs within five minutes and even found new
bugs unlisted in the oracle. For the largest program who, AFL,
AFLFast, Driller, and T-Fuzz detected only a few bugs while
PANGOLIN found nearly all the listed bugs in the LAVA-M
dataset. For instance, as shown in Figure 8, PANGOLIN found
600 more bugs than the state-of-the-art hybrid fuzzer QSYM.
The improvement shows the effectiveness of PANGOLIN for
satisfying hard-to-cover conditions, which benefits from our
constrained mutation and guided constraint solving method.

We further analyzed the reason why PANGOLIN could not
detect all the bugs in LAVA-M. Since PANGOLIN was built
on top of the concolic engine of QSYM, PANGOLIN naturally
inherits some of its limitations, such as the lack of modeling
the low-level system calls and supporting the floating-point
constraints. These limitations lead to the missing of detecting
some bugs in the program who. For example, we noticed that
who applies the low-level system function wrapper x2nrealloc
to reallocate memory for parsing the input structure. Without
the precise memory modeling of this function, we cannot
generate the precise path constraint and, thus, cannot generate
effective inputs either. However, these limitations are not the
problem we attempt to address in this work and we leave them
as our future work. Nevertheless, we still triggered far more
unique bugs than all the baseline fuzzers.

2) The real-world benchmark: We evaluated PANGOLIN on
the real-world projects and examine whether PANGOLIN can
also find more bugs. These projects receive different kinds of
inputs such as images, binaries, and network packages.

Despite that these projects have been extensively evaluated
by many state-of-the-art fuzzers, PANGOLIN still can discover
new bugs. For instance, the subjects libtiff, libjpeg, libpng, and
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Fig. 8: Evaluation on who in 24 hours comparing with QSYM
of 10 times repeated experiment with p-value < 10−6.

binutils have been fuzzed by OSS-fuzz4 with a tremendous
amount of inputs. Still, with few hours of running, PANGOLIN
found 41 new bugs including buffer overflow, null pointer
dereference, and exhaustive memory usage. All of the bugs
were confirmed by the original developers and eight of them
have been assigned with CVE IDs due to their security
impacts. The results are shown in Table IV.

We further provided the details of the comparison in terms
of the number of detected bugs and the number of unique
crashes triggered by different fuzzers. Simply speaking, since
a bug often can be triggered in multiple ways, a bug may
correspond to multiple unique crashes. The unique crashes
provide a more comprehensive picture of a bug to help
developers fix it. Thus, evaluating both the number of bugs and
the number of unique crashes are necessary and meaningful,
just like the evaluation in the previous literature [9], [20]. In
the evaluation, we filtered duplicate crashes by afl-cmin
-C, followed by a manual analysis with the following standard:
a crash is unique if and only if the path, which consists of
multiple edges, to the crash point has a unique edge sequence.

As the results shown in Table V, we detected 33 and 29 more
bugs than the hybrid fuzzer QSYM and the gray-box fuzzer
Angora, respectively. PANGOLIN can also detect more bugs
than other fuzzers. In terms of unique crashes, PANGOLIN also
detected more in comparison with other fuzzers. Some crashes
lead to severe problems, demonstrating the effectiveness of our
approach. For example, we have detected two buffer overflows
in readelf related to the incomplete fix issue of CVE-2017-
9038 (details in Section V-D). Although it had been patched
for more than two years, PANGOLIN can still detect two
different feasible paths that can trigger this bug. This shows
the effectiveness of the optimized input generation method in
PANGOLIN. Note that T-Fuzz finds the same number of bugs
as PANGOLIN on djpeg but fewer bugs in other benchmarks.

4https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
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TABLE IV: Bugs detected by PANGOLIN.

CVE/bugs Bug Type

tcpdump Patched buffer overread * 2
tiff2ps Confirmed buffer oveflow * 6

Pending memory leak
readelf CVE-2018-20623 use after free

Confirmed buffer overflow * 3
Patched integer overflow

objdump Patched null pointer dereference * 4
nm CVE-2019-9070 buffer overflow

Confirmed buffer overread
bento CVE-2018-20186 buffer overflow

CVE-2019-6132 buffer overflow
CVE-2019-13238 buffer overflow
CVE-2019-13959 buffer overflow
Confirmed buffer overflow * 7

libjpg CVE-2019-13960 exhaustive memory usage
libpng Pending buffer overflow * 2
jhead CVE-2019-1010302 buffer overflow

Confirmed buffer overflow * 5

TABLE V: Unique crashes/bugs detected by PANGOLIN.

PANGOLIN AFL AFLFAST QSYM Driller Angora T-Fuzz

tiff2ps 216(7) 22(1) 20(1) 3(1) 0 71(2) 0
readelf 350(5) 0 0 0 0 (2) 0
nm 18(2) 0 0 2(1) 0 0 0
objdump 169(4) 0 0 2(1) 0 1(1) 0
tcpdump 22(2) 0 0 0 0 0 0
libpng 36(2) 0 0 0 0 0 0
jhead 853(6) 63(1) 42(1) 551(2) 31(1) 580(3) 39(1)
bento 132(11) 0 3(1) 40(3) 42(3) 62(4) 0
djpeg 12(1) 0 0 0 0 0 11(1)

B. Coverage Comparison

Existing studies on fuzzing techniques often use the edge
coverage criterion to measure the proportion of the program
behaviors examined by a fuzzer. We followed this convention
to evaluate the coverage rate of PANGOLIN and other baseline
fuzzers. Figure 9 illustrates the number of edges discovered by
different fuzzers against the running time. Note that we discov-
ered some scalability issues when applying T-Fuzz to large-
scale programs. Thus, the results of T-Fuzz are not included
in Figure 9. We confirmed with the authors of T-Fuzz that it
is currently fine-tuned for the CGC and LAVA-M benchmark
programs and not for the programs used in our evaluation.
Overall, PANGOLIN outperforms QSYM, and Angora, with
the average coverage improvement 21.4% and 16.8%, within
twenty-four hours. We used the one-tailed hypothesis for the
Mann-Whitney U test to calculate the p-value of the results.
There are two significance levels of the test: 0.01 and 0.05. The
majority of the p-values are smaller than 0.01 which shows the
results of PANGOLIN are significant compared with the other
fuzzers. The project jhead is rather small with fewer edges
so that PANGOLIN achieved the edge coverage with a small
difference. The results were also influenced by randomness
which, sometimes, makes the p-value larger than 0.01 but still

TABLE VI: Average increase of the edge coverage com-
paring the two configurations of PANGOLIN and QSYM in
10 repeated experiments. The columns PANGOLIN(P ) and
PANGOLIN(P̂ ) denote PANGOLIN with and without guided
solving, respectively. The p1 stands for the p-value between P
and P̂ . The p2 stands for the p-value between P̂ and QSYM.

PANGOLIN(P ) PANGOLIN(P̂ ) p1 QSYM p2

readelf 10624(+26%) 9358(+11%) 0.00009 8402 0.00009
nm 4026(+38%) 3609(+24%) 0.00009 2909 0.00009
objdump 7492 (+21%) 6850 (+10%) 0.00009 6205 0.00009
djpeg 6147 (+21%) 5571 (+8%) 0.00009 5169 0.00009
pngimge 1861 (+10%) 1701(+3%) 0.00139 1651 0.00453
tiff2ps 5703 (+18%) 5212 (+8%) 0.00009 4824 0.00009
bento 1889 (+31%) 1640 (+14%) 0.00009 1439 0.00009
tcpdump 8973 (+19%) 8289 (+10%) 0.00009 7506 0.00009
jhead 2490 (+10%) 2343 (+3%) 0.00078 2261 0.02680

smaller than 0.05.
It should also be noted that PANGOLIN requires an initial

warm-up time for generating the path abstractions, and, thus,
may not perform the best at the very beginning. For example,
for the program objdump in Figure 9c and libjpg in Figure 9d,
Angora achieved better code coverage than PANGOLIN in the
first five hours. However, with the path abstraction generated in
the first few hours, PANGOLIN began to reap the benefits from
the path-abstraction-guided input generation and achieved a
higher coverage rate. We further monitored the fuzzing process
and found out the reason behind it. These two programs divide
the input into multiple sections. After loading the inputs,
the programs start parsing these sections simultaneously. This
design requires PANGOLIN to infer more path abstractions at
the early stage, whereas, for later input generation, the fuzzer
can take benefits from these generated path abstractions.

We remark that, compared with other hybrid fuzzing tech-
niques, PANGOLIN takes advantage of the path-abstraction-
based input generation method to achieve not only a higher
coverage rate but also better bug detection capability. Specif-
ically, the diverse inputs generated by the sampling method
have more potentials to trigger the vulnerable program behav-
iors hidden behind complex path conditions. Taking QSYM as
an example, it mainly aims to cover more branches and only
generates one seed for each branch. This leads to some false
negatives because covering a branch does not mean triggering
the vulnerabilities in the branch.

C. Key Feature Evaluation

To thoroughly understand PANGOLIN, we set up two more
experiments to evaluate the two key techniques in PANGOLIN:
the constrained mutation and the guided constraint solving.

1) Guided constraint solving: To evaluate the effectiveness
of guided constraint solving, we built an extra version of
PANGOLIN without reusing the path abstraction to guide
constraint solving and re-run the previous experiments. We
compared with the original PANGOLIN using the following
two metrics: the time cost of constraint solving; and the edge
coverage rate.
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(a) readelf, p1 = 0.00009, p2 = 0.00009
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(b) nm, p1 = 0.00009, p2 = 0.00009
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(c) objdump, p1 = 0.00009, p2 = 0.00009
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(d) libjpg, p1 = 0.00009, p2 = 0.00009
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(e) tiff2ps, p1 = 0.00009, p2 = 0.00009
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(f) tcpdump, p1 = 0.00009, p2 = 0.00009
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(g) libpng, p1 = 0.00139, p2 = 0.00009
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(h) jhead, p1 = 0.01578, p2 = 0.03216
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(i) bento, p1 = 0.00009, p2 = 0.00009

Fig. 9: Average edge coverage(ten runs) in twenty four hours evaluation on real-world projects. The p1 stands for the p-value
compared with QSYM, the p2 stands for the p-value compared with Angora.

Table VI demonstrates the overall comparison on the pro-
gram coverage. PANGOLIN(P ) and PANGOLIN(P̂ ) represent
our tool with and without reusing the path abstraction in
the constraint solving, respectively. Comparing PANGOLIN(P )
with PANGOLIN(P̂ ), we observe that PANGOLIN(P ) achieved
7% to 15% higher edge coverage rate. PANGOLIN(P̂ ) achieved
3% to 14% higher edge coverage rate than QSYM. All the
p-values are smaller than 0.01 which shows the results are
significant. Moreover, from Figure 10, it is clear that, reusing
the path abstraction for constraint solving reduced the solving
overhead from 20% to 30%. Similar to the coverage compar-
ison, small projects such as jhead with fewer constrains took
fewer benefits (about 7%) from the guided constraint solving
method.

Overall, the experimental results confirm that the path ab-
straction can successfully reduce the cost of constraint solving,
and has a significant impact on the improvement of edge cov-
erage rate. Since guided constraint solving can solve the path
constraint efficiently, PANGOLIN(P ) can reach the vulnerable
program points earlier than conventional approaches and, thus,
detect more bugs as shown in Figure 11.

2) The performance of constrained mutation: To evalu-
ate the performance of constrained mutation using the path
abstraction, we compared our implementation with the most
recent SMT model sampling tool SMTSampler [51], which
also aims to generate multiple solutions of a given path con-
straint by solving the constraint. For a fair comparison, we first
exported the path constraints which were processed during the
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TABLE VII: Evaluation results of constrained mutation. The column “N” stands for the average number of path constraints
exported during fuzzing. The columns “T ” stand for the average time costs of transforming the constraint into the path
abstraction with different time budget. For each program, we calculated the average number of unique and feasible inputs nt
for all the constraints with different time budget t = 3s, 5s, 10s. The column “ratio” stands for the proportion of constraints
which constrained sampling in PANGOLIN can generate more inputs than the SMTSampler in the program.

n3 n5 n10
Programs N T ratio PANGOLIN SMTSampler ratio PANGOLIN SMTSampler ratio PANGOLIN SMTSampler

readelf 721 1.3021 0.95 13889 9177 0.96 22288 14166 0.99 35689 22208
objdump 790 1.1682 0.96 3168 2020 0.96 5318 3123 0.99 9562 5173
nm 480 1.1262 0.96 12825 7827 0.98 18474 10016 1.00 29015 15542
libjpg 972 1.0415 0.98 2494 692 0.99 3508 1068 0.99 9226 2845
jhead 467 0.9074 0.97 7734 2067 0.98 10499 3974 0.99 22594 9424
bento 674 1.3009 0.87 12263 3400 0.93 18707 3870 0.94 22391 6649
tiff2ps 814 1.5493 0.96 9280 4542 0.96 11781 5549 0.99 13280 7030
libpng 460 1.1003 0.96 5883 3029 0.98 10507 5132 1.00 20662 14726
tcpdump 961 1.8821 0.97 3423 1720 0.98 5668 2935 0.99 11320 5902

Fig. 10: Average proportion of time reduction comparing with
the original solving in different real-world projects.

0 5 10 15 20 25
Times(h)

0

5

10

15

20

# 
of

 c
ra

sh
es

Original Solving
Guided Constraint Solving

Fig. 11: Comparison of crash detection in tcpdump in 24 hours
using original solving and guided constraint solving.

constrained mutation in PANGOLIN. Then, we leveraged our
constrained mutation approach and SMTSampler to generate
inputs that satisfy the exported constraints, respectively. We
used the number of unique and feasible inputs generated within

the given time budget to evaluate the performance of the two
approaches. To be more specific, for each constraint, we gave
the same time budget t for the two methods and evaluated
the number of inputs nt satisfying the constraint. We repeated
each experiment five times and compared the average results
using three sets of cut-off time t (3s, 5s, and 10s). If we could
not infer the path abstraction within the given time, then we
placed t for the solving time of this constraint.

The results are shown in Table VII. PANGOLIN outper-
forms SMTSampler almost in all the constraints. On aver-
age, PANGOLIN generated 93.78% more feasible inputs than
SMTSampler. Meanwhile, our method performed better on
more than 95% of the constraints within 3 seconds. This
ratio increases along with the growth of the time budget since
some constraints require a longer time for path abstraction
inference. In our experiments on the nine real-world programs,
we also found that over 99% of the constraints can be
transformed into the path abstraction within 10 seconds and
the average path abstraction inference time is 1.264s. This
also shows the practical effectiveness of our method. Overall,
our implemented constrained mutation achieves both efficiency
and effectiveness compared with SMTSampler.

The key reason for this improvement is that our approach
reduces the invocations of the constraint solver. Specifically,
PANGOLIN only queries the constraint solver to obtain the
path abstraction once, so as to narrow down the search space
and offload the input generation to the sampling engine.
Different from PANGOLIN, SMTSampler does not obtain the
approximated search space of the feasible inputs and its
mutation is based on the solutions generated by the solver.
Therefore, SMTSampler has to frequently query the solver to
generate multiple solutions. Moreover, the sampling algorithm
in PANGOLIN (i.e., Dikin walk) guarantees the uniform distri-
bution of the generated inputs while SMTSampler does not.
The feature of uniform distribution improves the bug-finding
capability [41].
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1 / / r e a d e l f b i n u t i l s / d rawf . c : p r o c e s s s c u t u i n d e x
2 / / s a n i t i z a t i o n , f i l t e r t h e malformed i n p u t s
3 i f ( ( s i z e t ) n s l o t s ∗8 / 8 ! = n s l o t s
4 | | phash<phdr | | phash>l i m i t
5 | | pindex<phash | | pindex>l i m i t
6 | | ppool<p i nd ex | | ppool>l i m i t
7 . . . .
8 v e r s i o n ==2){
9 u n s i g n e d c h a r ∗ p o f f s e t s = ppoo l + n c o l s ∗4 ;

10 / / s a n i t i z a t i o n , f i l t e r t h e malformed i n p u t s
11 i f ( p o f f s e t s<ppoo l
12 | | ( p o f f s e t s−ppoo l ) / 4 ! = n c o l s
13 | | t y p e ==1 . . . . ) {
14 r e t u r n ;
15 }
16 / / CVE−2017−9038 w i l l be t r i g g e r e d i f t h e
17 / / v a l u e n c o l s i s l a r g e .
18 }
19

Fig. 12: Incomplete fix of CVE-2017-9038.

D. Case Study

Among the bugs found by PANGOLIN, we pick an interest-
ing and representative one which conveys our design intuitions.
As mentioned above, the example shown in Figure 12 contains
a buffer overflow vulnerability (CVE-2017-9038) related to the
variables ppool and ncols at Line 16. The sanitization at
Lines 11 - 13 can filter the majority of, but not all, malformed
inputs that can trigger the vulnerability. Since covering a
branch does not mean we can trigger a vulnerability, a bug-
triggering input needs to satisfy a very complex path constraint
to cover the branch and, meanwhile, satisfy the overflow
constraint. Since it is expensive to solve complex constraints
and it is also hard for a random mutation to generate inputs
satisfying the complex bug-triggering constraint, conventional
approaches like QSYM cannot detect it.

Our approach can quickly cover the vulnerable branch by
leveraging the polyhedral abstraction of the path before Line
11 to accelerate the constraint solving process. After covering
the branch, we leverage the constrained mutation to generate
diversified inputs that can reach the vulnerable branch, thus
having a high probability to trigger the bug. The evaluation
results demonstrate that PANGOLIN successfully detected this
bug very quickly.

VI. RELATED WORK

To make a thorough comparison with related work, in this
section, we discuss the differences between PANGOLIN and
recent advances in gray-box fuzzing (Section VI-A), symbolic
execution (Section VI-B), and hybrid fuzzing (Section VI-C).

A. Gray-box Fuzzing

Fuzzing becomes one of the most effective vulnerability
detection methods nowadays. With the success of AFL, which
can quickly explore a program through simple mutation,
fuzzing has been developed and optimized to become more
powerful. We discuss two optimization directions as below.

1) Seed prioritization and scheduling: Seed prioritization
aims to find those seeds that are more likely to trigger
new vulnerabilities. AFL [30] prioritizes seeds according to
coverage information. The more uncovered branches a seed
can cover, the higher priority the seed has. AFLFast [20]
prioritizes the seeds based on the Markov chain. AFLGo [21]
uses simulated annealing to calculate the distance of a seed
towards the target program points. CollAFL [24] distinguishes
the seeds with more precise coverage information to alleviate
the collision problems. However, these scheduling methods are
only based on the program structure but ignore the actual value
space of related inputs. PANGOLIN not only uses the program
structure information but also considers the value space with
the path abstraction.

2) Mutation strategy: The other optimization direction is
to take advantage of some advanced mutation strategies to
generate inputs for complex path constraints. The basic idea is
to only mutate the related inputs or input offsets to satisfy the
uncovered branch conditions. Rather than random mutation,
BuzzFuzz [52] uses a taint analysis to narrow down the muta-
tion search space. It focuses on the input bytes that can flow
into the potentially vulnerable points. Angora [9] adapts byte-
level taint tracking to discover the related input bytes of the
target condition, then applies a gradient-descent-based search
strategy. To make the gradient-descent-based search more
reasonable, Neuzz [28] proposes to use the neural network to
smooth the search progress. There are also some techniques
involving a lightweight program analysis and transformation
to improve the effectiveness of mutation. Vuzzer [25] utilizes
the so-called “magic-value-comparison” method to identify the
input offsets where the values are not necessary to change
and, thus, improves the efficiency of mutation. Steelix [53]
splits a magic-value comparison into single-byte comparisons
in order to increase the probability of generating proper
inputs. Different from the mutation methods discussed above,
the constrained mutation in our approach makes use of the
path abstraction to generate diversified inputs for a covered
branch, so that the branch is thoroughly tested. This method
is orthogonal to the aforementioned existing approaches. We
believe their combination will be more powerful.

B. Symbolic Execution

We discuss the incremental mechanisms in existing sym-
bolic execution techniques from two aspects: the incremental
mechanisms in SMT solvers and the incremental mechanisms
specially designed for the symbolic execution engine.

1) Incremental mechanisms in SMT solvers: Modern
SAT/SMT solvers have incremental solving facilities, which
cache intermediate solving states such as the learned
clauses [54] or final solutions such as the satisfying models
or unsatisfiable cores [55] to accelerate the solving procedure
of new constraints. However, these methods are not specially
designed for fuzzing. Although the intermediate results they
cache can accelerate constraint solving, it is hard to directly
use the intermediate results to guide the mutation procedure.
In comparison, the intermediate results in our approach, i.e.,
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the path abstractions, can facilitate both the mutation and the
constraint solving procedures.

2) Incremental mechanisms in symbolic execution engines:
Symbolic executors can maintain different forms of cache
explicitly. For instance, KLEE [56] caches the solved con-
straints to reduce unnecessary constraint solving for the same
constraints. Instead of the original constraints, our approach
caches a simplified form of the original path constraints, i.e.,
the path abstraction, to reduce the irrelevant mutation and
accelerate the constraint solving procedure. The fork-server
mode [56] aims to save the effort from reconstructing the
system environment for a concolic engine. It cannot directly
reuse previous solving results and needs to re-execute the
program in a symbolic manner. Savior [6] and Driller [2]
utilize the idea of fork-server mode to preserve the previous
symbolic states. However, these methods aim to cache the
states after the initialization of the concolic engine to avoid
the time-consuming environment setup. They are orthogonal
to PANGOLIN since path abstraction in our approach caches
the intermediate results of the concolic execution.

C. Hybrid Fuzzing

Hybrid fuzzing combines the advantages of efficient mu-
tation and precise constraint solving to evaluate the target
programs. The original hybrid fuzzing [3] uses concrete values
to aid the concolic execution so that the complexity of the
path constraints can be reduced. With the development of fuzz
testing, the majority of the path exploring demand offloads to
the fuzzers to avoid the path explosion problem of concolic
execution. In a word, the state-of-the-art hybrid fuzzing selec-
tively solves the path constraints to improve the performance.
For example, Driller [2] proposes to solve those uncovered
paths for fuzzing rather than exploring all paths with concolic
execution. Dowser [26] uses a constraint solver to generate
input for the program paths potentially containing buffer-
overflow vulnerabilities. T-Fuzz [46] uses symbolic execution
to verify the infeasible path constraints and prune the related
paths from the fuzzing scope.

However, how to effectively integrate concolic execution
with fuzzing is always under consideration. For example,
Pak [4] proposes to generate multiple inputs for the deepest
branches that can be reached by symbolic execution and
leverage fuzzing for the rest. DigFuzz [5] collects the exe-
cution frequency of each branch during fuzzing as the path
prioritization metric for the constraint solver. SymFuzz [57]
analyzes the path constraint to determine the number of bytes
that a fuzzer needs to mutate each time. QSYM [1] solves
part of the path constraint for a basis seed and leverages
mutation for validated inputs satisfying the actual condition.
These approaches are different from ours because none of
them are incremental.

Using seeds to cache the progress may be adequate for
fuzzing, but it cannot well-represent the progress in hybrid
fuzzing. The fundamental factor in concolic execution, the
analyzed path constraint, is not preserved for later fuzzing pro-
cesses. The new seeds cannot represent the complex constraint,

and the fuzzer still suffers from the inefficiency caused by the
complex path constraint. Although there are some memory
snapshot mechanisms attempting to preserve the program
states [7], they are too expensive to improve the effectiveness
of mutation in hybrid fuzzing [1]. In contrast, PANGOLIN
optimizes this caching mechanism in hybrid fuzzing. We
preserve a sustainable path abstraction, which is a simplified
form of an analyzed constraint. The path abstraction can both
guide the mutation in a fuzzer and reduce the computation
in later concolic execution. Therefore, this cache-and-reuse
mechanism optimizes the performance of hybrid fuzzing.

VII. CONCLUSION

We have presented PANGOLIN, the first incremental hybrid
fuzzing framework using the polyhedral path abstraction to
support effective constrained mutation and guided constraint
solving. The incremental mechanism aids the fuzzer to ef-
fectively take the benefits from both worlds of fuzzing and
concolic execution. Our evaluation results demonstrate that
PANGOLIN outperforms the state-of-the-art fuzzers in terms of
both the edge coverage rate and the bug-detection capability.
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