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A Markov Random Field Approach
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Abstract—We address the problem of robust normal reconstruction by dense photometric stereo, in the presence of complex geometry,
shadows, highlight, transparencies, variable attenuation in light intensities, and inaccurate estimation in light directions. The input is a
dense set of noisy photometricimages, conveniently captured by using a very simple set-up consisting of a digital video camera, a reflective
mirror sphere, and a handheld spotlight. We formulate the dense photometric stereo problem as a Markov network and investigate two
important inference algorithms for Markov Random Fields (MRFs)—graph cuts and belief propagation—to optimize for the most likely
setting for each node in the network. In the graph cut algorithm, the MRF formulation is translated into one of energy minimization. A
discontinuity-preserving metric is introduced as the compatibility function, which allows a-expansion to efficiently perform the maximum a
posteriori (MAP) estimation. Using the identical dense input and the same MRF formulation, our tensor belief propagation algorithm
recovers faithful normal directions, preserves underlying discontinuities, improves the normal estimation from one of discrete to
continuous, and drastically reduces the storage requirement and running time. Both algorithms produce comparable and very faithful
normals forcomplex scenes. Although the discontinuity-preserving metricin graph cuts permits efficient inference of optimal discrete labels
with a theoretical guarantee, our estimation algorithm using tensor belief propagation converges to comparable results, but runs faster
because very compact messages are passed and combined. We present very encouraging results on normal reconstruction. A simple
algorithm is proposed to reconstruct a surface from a normal map recovered by our method. With the reconstructed surface, an inverse
process, known as relighting in computer graphics, is proposed to synthesize novel images of the given scene under user-specified light
source anddirection. The synthesis is made to runin real time by exploiting the state-of-the-art graphics processing unit (GPU). Our method
offers many unique advantages over previous relighting methods and can handle a wide range of novel light sources and directions.

Index Terms—Photometric stereo, Markov random fields, belief propagation, graph cuts, normal and surface reconstruction, robust
inference, real-time relighting.
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INCE Woodham [44] proposed photometric stereo, there

has been extensive theoretical and experimental research
on the problem. While approaches in photometric stereo
using two views with known albedos [44], three views [15],
four views [7], [35], [3], more views [22], complex
reflectance models [28], [37], [18], [35], lookup tables [44],
[45], reference objects [16], [13], [10], and novel object
representation [4] have been reported, photometric stereo is
still considered to be a difficult problem in the presence of
shadows and specular highlights, and for objects with
complex material and geometry.

Inspired by [24], where robust stereo reconstruction was
achieved by using a dense set of images, and by [36], in which a
Markov network was used to formulate the problem of
geometric stereo reconstruction, in this paper, we propose
addressing the problem of dense photometric stereo by
employing the Markov Random Field (MRF) approach to
reconstruct dense surface normals from a dense set of
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photometric images, which can be conveniently captured
using a very simple set-up consisting of a handheld spotlight,
a reflective mirror sphere, and a digital video (DV) camera.
Our approach not only infers the piecewise smooth normal
field, but also preserves the underlying orientation disconti-
nuities and rejects noises caused by highlight and shadows.
Asweshall see, the availability of dense data effectively copes
with non-Lambertian observations inherent in the dense set.
Using the dense data, the initial normal at a pixel is obtained,
which is used as the local evidence in a MRF network for
solving the problem. A simple surface reconstruction algo-
rithm is proposed to generate an acceptable surface from our
recovered normal maps. We shall investigate two important
MREF inference algorithms:

e  Graph cuts (GQ). In the first method, we translate the
MRF model for dense photometric stereo into an
energy function. Estimating the MRF-MAP solution is
equivalent to minimizing the corresponding energy
function. The MAP estimation can be efficiently
performed by the graph cut algorithm [20], where
the data term is encoded using the local evidence
identical to that used in our belief propagation
algorithm. We show that the smoothness term can be
encoded into a discontinuity-preserving metric, thus
making the more efficient a-expansion [6] rapidly
converge to an optimal solution with regard to the
discrete label space with a theoretical guarantee,
instead of the slower swap move [6] in a pairwise
MREF. Similar to [19], the smoothness constraint is
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enforced while geometric discontinuities are pre-
served. In contrast to [19], however, while the energy
function we minimize is still regular, our noisy
photometric data are treated asymmetrically by
resampling the dense and scattered data into an
unbiased set.

e Tensor belief propagation (TBP). Our second
method uses an MRF network where hidden nodes
receive initial messages derived using local evi-
dences. These nodes communicate among each other
by belief propagation to infer smooth structures,
preserve discontinuities, and reject noises. In this
paper, we propose a new and very fast tensor-based
message passing scheme for producing an approx-
imate MAP solution of the Markov network.
Although it is an algorithm that estimates the
solution, it produces comparable results to GC.
Besides, it allows continuous estimation of normal
directions, runs very fast and requires significantly
less memory compared to traditional message
passing used in belief propagation.

The preliminary versions of this paper have appeared in
[38] and [46], where the two inference algorithms were
developed independently and were based on different MRF
models. In this paper, we evaluate and compare the
robustness and efficiency of the two inference algorithms
based on the same MRF formulation and using the same
input. For high precision normal reconstruction, the graph
cut algorithm converges with a theoretical guarantee to an
optimal solution in a few iterations. We have improved the
graph cut algorithm in this paper, making the system run
much faster than the algorithm presented in [46]. The metric
proof has also been revised due to the use of a robust metric in
encoding the smoothness term. On the other hand, because
the traditional belief propagation is intractable due to the
prohibitive size of a message encoded in the conventional
way, we propose tensor message passing to approximate the
MAP solution by transforming the estimation from discrete to
continuous. While results comparable to those produced by
graph cuts are obtained, both running time and storage
requirement are significantly reduced. Comparing with [38],
[46], this paper presents a complete coverage of the two
methods. More quantitative evaluations are performed using
real as well as synthetic data. Finally, we propose a novel and
real-time method on relighting based on our photometric
stereo reconstruction.

The organization of this paper is as follows: Section 2
reviews the related work. Section 3 describes the image
capturing system for collecting our dense data. Section 4
details the initial normal estimation and the MRF approach
for dense photometric stereo. The two inference algorithms
are then described in detail. Section 5 describes the energy
minimization by graph cuts. Section 6 describes our tensor
belief propagation. We present our algorithm on surface
reconstruction from normals in Section 7. Based on the same
MREF formulation and identical dense input, the two normal
reconstruction methods are evaluated and compared in
Section 8. We present results of normal and surface
reconstruction on real and noisy data in Section 9. Finally,
in Section 10, using the reconstructed surface, we propose
an inverse process to synthesize novel images for the input
scene under user-specified lighting directions. By making
use of recent hardware technology, the process is made to
run in real time. The process is alternatively and better
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known as real-time relighting in computer graphics. Our
method provides many unique advantages in comparison
with previous relevant relighting methods.

2 RELATED WORK

Woodham [44] first introduced photometric stereo for
Lambertian surfaces. In this work, three images are used
to solve the reflectance equation for recovering surface
gradients p, ¢ and albedo p of a Lambertian surface:

lop+1lg+1.

VTPt e
where p=2¢, = 3—; are the unknown surface gradients,
Iz 1 ZZ]T is the known unit light direction. Later, Belhumeur
and Kriegman [5] showed that the set of images of a convex
Lambertian object forms a convex polyhedron cone whose
dimension is equal to the number of distinct normals and that
this cone can be constructed from three properly chosen
images. Many approaches have been proposed to address the
photometric stereo problem:

Four images. Coleman and Jain [7] used four photometric
images to compute four albedo values at each pixel, using the
four combinations involving three of the given images. In the
presence of specular highlight, the computed albedos will not
be identical, which indicates that some measurement must be
excluded. In [35], four images were also used. Barsky and
Petrou [3] showed that [7] is still problematic if shadows are
present and generalized [7] to handle color images. In these
methods, little neighborhood information is considered, so
they are sensitive to noise caused by incorrect estimation in
light directions or violations to the Lambertian model.

Reference objects. In [16], a reference object was used to
perform photometric stereo, in which isotropic materials
were assumed. In this approach, the outgoing radiance
functions for all directions are tabulated to obtain an
empirical reflectance model. Hertzmann and Seitz [13] used
a similar technique to compute surface orientations and
reflectance properties. The authors made use of their
proposed orientation consistency to establish the correspon-
dence between an unknown object and a known reference
object. In many cases, however, a reference object for
establishing correspondence is unavailable. A simplified
reflectance model will then be used.

Reflectance models. By considering diffuse and non-
Lambertian surfaces, Tagare and deFigueriredo [37] devel-
oped a theory on m-lobed reflective map to solve the problem.
Kay and Caelly [18] extended [37] and applied nonlinear
regression to a larger number of input images. Solomon and
Ikeuchi [35] extended [7] by separating the object into
different areas. The Torrance-Sparrow model was then used
to compute the surface roughness. Nayar et al. [28] used a
hybrid reflectance model (Torrance-Sparrow and Beckmann-
Spizzichino) and recovered not only the surface gradients but
also parameters of the reflectance model. In these approaches,
the models used are usually somewhat complex and a larger
number of parameters are estimated. Basri and Jacobs [4]
used low-order spherical harmonics to encode Lambertian
objects. They assumed isotropic and distant light sources.
Lighting may be unknown or arbitrary. Shape recovery is
then performed in a low-dimensional space. Goldman et al.
[10] proposed a photometric stereo method that recovers the

R(p,q) =p (1)



1832

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11,

NOVEMBER 2006

(@)

(b) (©)

Fig. 1. Two typical noisy photometric images for Snail captured by our simple system. (a) is significantly contaminated by shadows and (b) is
corrupted by highlight. (c) A typical trajectory of the estimated light directions shows that they are scattered and very noisy.

“
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Fig. 2. (a) A typical scenario of data capturing. (b) and (c) Two views of the experimental set-up under different illumination. (d) The captured images

correspond to a scattered point set on the light direction sphere.

shape (normals) and BRDFs using an alternating optimiza-
tion scheme. Unlike their earlier work [13], a reference object
is not needed, which is solved as part of the reconstruction
process. The BRDF model used is the Ward model. Since they
only used a sparse set of samples, the light calibration should
be accurate and severe highlight and cast shadows must be
absent. They built an interactive relighting system, whereas
we built a real-time relighting system that supports very fast
frame rate and more versatile lighting effects (see http://
computer.org/tpami/archives.htm for the supplementary
video). Our relighting approach does not require recovery of
material properties and any assumption on the reflectance
model.

To our knowledge, there is no previous work using belief
propagation or energy minimization via graph cuts to
address the problem of (dense) photometric stereo. The use
of a dense set of photometric stereo data (> 100) has not
been extensively explored, possibly due to the difficulty in
producing hundreds of accurate light directions, while our
approach is robust against inaccurate and scattered estima-
tions in light directions sampled by our simple capturing
system. An earlier work [22] investigated two algorithms:
the parallel and cascade photometric stereo for surface
reconstruction which use a larger number of images. A
related work using one image, that is, shape from shading,
was reported in [17], where the problem was solved via
graph cuts, by combining local estimation based on local
intensities and global energy minimization.

Note that exact inference in the Markov network with loops
isintractable. Algorithms that approximate the solution, such
as loopy belief propagation or Pearl’s algorithm [32], have
been employed. For energy minimization by graph cuts [20],
the conditions for an energy function that can be minimized
was described and a fast implementation is currently
available. The converged solution given by graph cuts is
optimal “in a strong sense” [20], that is, within a known factor
of the global optimal solution.

3 DATA CAPTURING

In this section, we first describe our very simple system for
efficiently capturing a dense set of photometric images. The
light directions and photometric images we capture are very
noisy (Fig. 1). Unlike certain approaches in photometric
stereo where high-precision capturing systems were built, we
propose resampling the dense and noisy observations to infer
a uniform set, from which robust normal plane fitting can be
performed (Section 4) to estimate IV, at each pixel s. The initial
normals will be used to encode the matching cost for belief
propagation or encoded into the robust data term in energy
minimization using graph cuts.

Our system is inspired by [13] where a reference object of
known geometry was used to find out surface normals of the
target object. They performed matching on bidirectional
reflectance distribution function (BRDF) response based on
the orientation-consistency cue, where the specular highlight
implicitly gives the surface normal direction. The reference
object should be similar to the target object in material. On the
other hand, our approach explicitly uses the specular high-
light to estimate the light direction, which is used to obtain the
initial surface normal at each pixel. No reference object of
similar material is used.

3.1 Light Calibration

Our robust dense photometric stereo requires acceptable
estimated light directions but they need not be very
accurate. In fact, our proposed light calibration method is
very simple. Shown in Fig. 2a is our experimental set-up,
where two views of the object and a mirror sphere under
different illuminations are depicted in Figs. 2b and 2c.

A video camcorder is used to capture a sequence of
images by changing the direction of the light source which
is a handheld spotlight. The auto-exposure function of the
video camcorder is turned off when the video is captured.
In our experiments, we tried to hold the spotlight at a
constant distance from the object so as to maintain a
constant irradiance impinging on the object. But, it is
difficult to achieve using a handheld spotlight and,
therefore, our images suffer various degrees of attenuation



WU ET AL.: DENSE PHOTOMETRIC STEREO: A MARKOV RANDOM FIELD APPROACH

in light intensity. To sample as many directions as
possible that cover the half space containing the object
(Fig. 2d), it is inevitable that the shadows of the wires, the
camera tripod, and the camera itself are cast onto the
target object. Missing directions are not uncommon in a
typical set of sampled images. The captured images thus
represent a coarse and scattered collection of photometric
responses over the light directions sampled on a unit
hemisphere (Fig. 2d). This mirror sphere approach was
not adopted in [10] because sparse samples were used in
their photometric stereo method, where light calibration is
more critical to the reconstruction accuracy. In our
method, we estimate the light direction by locating the
mirror reflection or the brightest point on the mirror
sphere. By searching for the maximum intensity, we can
readily localize the point of reflection. Since we know the
geometry of the sphere and the viewing direction, which
is assumed to be orthographic, by Snell’s law, the light
direction is given by L =2N(N - H) — H, where N is the
known surface normal at the brightest pixel (a,b),
H=1001]", and L is the estimated light direction. N
can be determined given (a,b), the image of the sphere
center (¢,,¢,), and the image of the sphere radius r. Under
orthographic projection, we can measure (c,;,c,) and r
directly on any captured image.

In practice, the light source direction is located on the
upper hemisphere containing the object (Fig. 2d). So, to
minimize the error caused by reflections not due to the light
source (e.g., from the table where the object and the sphere
are placed), we have to limit the search space of the
maximum intensity by considering only the pixels (z,y)
satisfying (z —c,)* + (y —¢,)” <> —r?cos(%) — ¢, where
€ > 0 is a small constant to offset the small error caused by
the measured r, ¢,, and ¢,. Using this condition, all light
coming from the half space containing the lower hemisphere
of the reflective sphere will be automatically discarded.

3.2 Uniform Resampling

There are two reasons to perform uniform resampling on the
captured dense data. First, the data volume and biases will be
drastically reduced after resampling. Note that we capture a
video sequence at 30 frames/sec and, typically, we spend five
minutes to capture a data set. The second reason is to partially
leverage noise rejection to data resampling. Noise is typically
caused by inaccurate estimation of light directions and non-
Lambertian observations. As we shall see, our resampling is
implemented by image interpolation, which helps to smooth
out outliers.

The data acquired by the above setup corresponds to a
scattered point set on the light direction sphere where
undesirable biases are present. To infer a set of light
direction samples uniformly distributed on a unit sphere,
we use a uniform unit icosahedron and subdivide on each
face four times recursively [2] (Fig. 3). Suppose that the
object is located at the center of a unit sphere which
contains the uniform unit icosahedron after subdivision.
Ideally, we want to illuminate the object along the line
joining the center and the vertices of the subdivided
icosahedron to achieve uniform distribution. In practice,
for each light direction L, at a given vertex of the
subdivided icosahedron, we seek a set of light directions
L; that are closest to L, and obtain the image I, at L, by
interpolating the corresponding images I; at L; using
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(a) (b) (©

Fig. 3. Icosahedron: (a) shows the original icosahedron with 20 base
faces. In (b) and (c), each face of (a) is subdivided into four equilateral
triangles recursively, in a total of four and five times, respectively.

L, Li
Io(xay) :Z I?(I7y)7

icV ZiEV La : Ll
where V is a set of indices to the captured light directions
that are closest to L,. Typically, the input data size is
reduced to several hundred after uniform resampling.

4 INITIAL NOoRMALS AND THE MRF MODEL FOR
DENSE PHOTOMETRIC STEREO

Given a dense set of images captured at a fixed viewpoint
with their corresponding distant light directions, our goal is
to find the optimal normal vector N, at each pixel s.

4.1 Initial Normal Estimation: Dense versus Sparse
We describe how to estimate the initial N, at each pixel s by
making use of the intensity ratios derived from the dense
and noisy input. As we shall demonstrate, given noisy
input, the following method proves to be infeasible for
sparse input, but works for dense and noisy input where the
inherent redundancy is invaluable in estimating N.

Suppose that the object is Lambertian. Then, the reflec-
tance at each pixel s is described by pS(N s - Ls), where p; is
the surface albedo, N, is the normal, and L, is the light
direction at the pixel s. Note that N, s and p, are the same for
all corresponding pixels in the sampled images.

We use the ratio image approach to eliminate p, and obtain
the initial estimate N,. Ratio image was proposed in [34] for
surface detail transfer. Alternatives for estimating NS such as
the minimization of the residual ||I, — p,(N, - L,)||* are also
possible. However, because p; itself is also unknown and the
Lambertian model is often violated, the estimation of initial
normal N, would have been more complexand less stable if p;
were also considered in the estimation.

Let k& be the total number of sampled images. To
eliminate p,, we divide k£ — 1 sampled images by a chosen
image we call a denominator image to obtain k—1 ratio
images. Without loss of generality, let J;, be the denominator
image. Each pixel in a ratio image is therefore expressed by

I, N,-L

(2)

Anideal denominator image is one that is minimally affected
by shadows and highlight, which is difficult to obtain. By
adopting the simple Lambertian model, we derive the
denominator image to roughly eliminate the surface albedo
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Fig. 4. Initial normal estimation from sparse versus dense data for Teapot. From left to right: Using five images only, the five normal maps are
respectively produced by using each image as the denomlnator image. The rightmost normal map is produced using a dense set of images. The

normal map is displayed as N - L, where L =

&)
by producing ratio images. The derivation is straightforward
and is described in the footnote."

By using no less than three ratio images, we produce a
local estlmatlon of the normal at each pixel: Defme
N, = [ng nyn.)’, Li=[lisliyL.])", and Ly = [l, liy )"
For each pixel s in a ratio image 4, rearranging (2) gives the
following

Az\,snx + le,sny + Ci,snz = 07 (3)
where

Azs = Illkl _Ikli,1'7Bls = IlkL/ I, llyaCLs = Ilkz -1 llZ

are constants. Given k£ — 1 > 3 ratio images, we have k — 1
such equations for each pixel. We can solve for [n, n, n.]"
by singular value decomposition (SVD), which explicitly
enforces the unity constraint: || N,|| = 1.

To demonstrate that the ratio image approach does not
work for sparse input in the presence of shadows, highlight,
and inaccurate estimation in light direction, we randomly
pick five images from one of our data sets (Teapot) and use
each of them, in turn, as the denominator image to estimate
N, at each pixel. As shown in Fig. 4, all five normal maps
produced are unsatisfactory compared with the one pro-
duced by our dense input because no image in the sparse
subset is a good denominator image. The dense input
provides adequate data redundancy to allow us to choose
the best denominator image.

In practice, however, the best denominator image is not
perfect because the input can be very noisy. Moreover, N,
estimated at each pixel does not take any advantage of
neighborhood information. Smoothing technique cannot be
done because the underlying discontinuities will also be
smoothed out. By using an explicit discontinuity-preserving
function, in this paper, we propose performing MRF
refinement to infer the piecewise smooth normal field
while preserving discontinuities. In the following sections,
the estimated IV, is used to encode the data term for energy
minimization using graph cuts (Section 5) and the local

1. Our denominator image is derived by the following simple method:
1) We stack the sampled images to form a space-time volume {(z,y,t)}.
2) For each pixel location (z,y), we sort all space-time pixels (z,y,t) in
nondescending intensities along time ¢. The intensity rank of each pixel is
thus known. 3) Since pixels with intensity adversely affected by shadows
and specular highlight go to one of the two extremes of the sorted list, for
each location (z,y), if the intensity rank at (z,y, t) is higher than the median
and smaller than some upper bound, it is highly probable that pixel (z,y) is
free of shadows and highlight. Thus, given a sampled image I;, we count
the number of pixels whose intensity rank satisfies rank > Ry, where R >
50th percentlle Let K, be the total number of pixels satisfying this
condition, 7 be the mean rank among the pixels that satisfy this condition.
The denominator i image is defined to be the one with 1) maximum Kp, and
2) Tg, lower than some threshold Rj. Currently, we, respectively, set R,
and Ry to be the 70th and 90th percentiles in all our experiments.

is the light direction.

evidence for tensor belief propagation (Section 6). Now, let
us define the MRF model for dense photometric stereo.

4.2 The MRF Model for Dense Photometric Stereo
Shown in Fig. 5 is a Markov network which is a graph with
two types of nodes X and Y: A set of hidden variables
X = {x,} and the set of observed variables Y = {ys}. The
posterior probability P(X|Y") is defined by:

P(X|Y) O(H‘pb zous) [[ H ost(Ts, 1), (4)

s teN(s

where ¢4(z5,ys) denotes the local evidence and ¢y (s, 2+)
denotes the compatibility function. N(s) denotes the first-
order neighborhood of node s.

To derive the MRF formulation for dense photometric
stereo, we set X = N, where N is the set of normals visible to
the camera (normal configuration) and Y = 7, where 7 is the
dense set of input images. We obtain

( ¢9f N X} N 1)>
203 ’

P(./\/|Z)O<Hexp< b (NS’N )H H exp
(5)

s teN(s
where N, is the normal at node s, IV; is the normal at node ¢
where (s, t) are neighboring nodes. The os are used to control
the extent of the corresponding Gaussians. We define

¢5(Ns,]\~75) = ||Ns - NSH (6)

to measure the conformity NN, to the initial normal estimate N,
at location s.

We use a robust function, the Lorentzian function, to
model ¢g:

=8 =%
my @
¥
O e O
mbr m
o S
Ng-s) e Ny

Fig. 5. The graph model of the Markov network. The observation
nodes y, and y; use the initial normal estimates. In graph cuts, they are
encoded into the data term in the energy minimization function. In tensor
belief propagation, they are encoded as tensor messages m, and m;. A
second-order symmetric tensor can be interpreted as a 3D ellipsoid. A
stick tensor is an elongated ellipsoid and, hence, the shapes of m, and
m; shown above. Messages are updated and propagated during the
iterative procedure, where the shapes of the tensor messages m,; and
mys change progressively.
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(a) (b) (©)

Fig. 6. The robust function for encoding the dlscontmuny preserving
function: Plotting the Lorentzian function log(1 + 1 ( %) versus = with
(a) 0—0000, (b) o =0.0005, (c) Our modified Lorentzian function
log(1 + 1 (1)) with o = 0.05. In all cases, the curves are bounded when
T — ioo which is more robust than the usual norm-squared function
(i.e., the unbounded z?) in terms of encoding the error term.

Ry(z,0) = log(l +% (g)z) (7)

where z = ||[N, — Ny|| is a discontinuity-preserving metric
[20]. Fig. 6 shows some plots of the Lorentzian function whose
shape can be controlled by adjusting the o parameter. ¢, is
defined as

¢st(Ns, Nt) log (1 + - 2 (M) ) B (8)

g

which penalizes the assignment of significantly different
normal orientations.

5 ENERGY MINIMIZATION USING GRAPH CUTS

The graph cut algorithm is a widely adopted MRF
technique in computer vision. Despite the desirable proper-
ties and the availability of a fast and simple implementation
with a theoretical guarantee [20], there has been no previous
work on the use of graph cuts to address the (dense)
photometric stereo problem.

In this section, we formulate the problem of dense
photometric stereo into one of graph cuts. Let N =
{aq,9,---,ap} be the pixelwise normal configuration of
the scene, given a set of photometric images
T ={N,I,---,I;}, each has a total of D pixels. Recall from
(4) that the MRF model for photometric stereo for normal
reconstruction is:

P(N|T) KH% No NI T ¢s(Ne, N (9)

s teN(s)

If we take the logarithm of (9), we obtain

E(N) = Z _log@s(NﬂNe) + Z _log¢st(Ne7Nt)
s (s,t)
= ZD N, N+ > V(N, V)
(s:t)
- Edutu (N) + Esmuot/mcss (N)7

(10)

where the functions D and V are energy functions to be
minimized by graph cuts. D and V are, respectively, called
the data term and the smoothness term in graph cuts, which
relate, respectively, to the local evidence and compatibility
function of the corresponding MRF model.

In the realm of graph cuts, we seek an optimal normal
configuration N". Let £ be a set of labels corresponding to
the set of all discrete normal orientations. The discrete labels
correspond to the vertices on a subdivided icosahedron

1835

which guarantee uniform distribution on a sphere [2]. To
increase precision, we follow [2] to subdivide each face of
an icosahedron recursively a total of five times (Fig. 3) so
that |£]| = 5,057. From our experimental results, it gives
seamlessly smooth surface normals on a sphere.

5.1 Energy Function
Our energy function for graph-cut minimization consists of
the data and the smoothness terms.

Data term. Because our input consists of images and light
directions only, our data term should measure the per-pixel
difference between the measured and the estimated ratio
images by using (3). However, this will produce a large
number of summations in the data term due to plane fitting.
As pixel intensity is significantly governed by the pixel’s
normal, we can instead measure the difference between the
initial normal N, and the normal N, at pixel s estimated in the
current iteration during the graph-cut minimization (i.e., the
current a-expansion [20]). Let N,, be the normal indexed by the
label w € £. We define our data term as the following;:

ZD o) = D [IN, = No |

Smoothness term. On the other hand, the smoothness
term should measure the smoothness of the object surface
while preserving the underlying discontinuity. To define the
discontinuity-preserving smoothness term, we employ the
modified Lorentzian function as the robust function (cf. (7)):

Ry(z,0) = log(1+2 ('(f'))

This function has a similar shape to the original Lorentzian
function (Fig. 6). The modified Lorentzian function is
necessary to make the energy function regular so that it
can be graph-representable. The proof is given in the next
section. We define our smoothness term as:

Edala N) (11)

(12)

Esm{mthnms‘ _)\ Z ‘/91‘ a9>af (13)
teN(s)
— N, ||
=\ 1 1 ! 14
> 0g< ) (1)
teN(s)

where \ :j—i is a constant resulting from the logarithmic
transformationin (10)and Nis the first-order neighborhood of
s. The setting of A depends on the scene and how much
discontinuity is to be preserved. For Teapot, \=0.5and 0 =0.4.

5.2 Graph Construction and Proof of Convergence
To perform multilabeling minimization, the expansion move
algorithm [20] is one suitable choice. Here, we have a quick
review on this algorithm:

a-expansion. For each iteration, we simply select a normal
direction label o € £ and then find the best configuration
within this a-expansion move. If this configuration reduces
the user-defined energy, the process is repeated. Otherwise, if
there is no « that decreases the energy, we are done.

According to [20], the user-defined energy function has to
be regular and, thus, graph representable so that it can be
minimized via graph cuts (in a strong sense). This is also true
for |£]-label configuration if a-expansion is employed. More
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precisely, for our |£|-label case, the energy function has to be
regular for each « displacement. In this connection, we will

prove that our ene 2g%l function F is regular in the following:
For any class F~ tunction of the form defined in [20]:

ZE" T +ZE (:rl,xj

i<j

E(xq,...,x (15)
where {z;li=1,...,6} and z; € {0,1} is a set of binary-
valued variables. E is regular if and only if

EY(0,0) + EY(1,1) < EY(0,1) + E*(1,0).  (16)

From [20], it is known that any function of one variable is
regular and, hence, the data term Ejq, is regular. Therefore,
it remains to show that the smoothness term FE,,oothness
satisfies (16) within a move. We prove the following claim
on V which makes F regular. This claim also allows for the
more efficient a-expansion which runs in ©(|£|) time [20].
Claim. V; is a metric.

Proof. In order that V' is a metric, for any label a;, a2, a3 € L,
the following three conditions have to be satisfied:

V(ai,a3) =0 a3 = ag
V(ar,a2) = V(az,a1) >0
V(ar,a2) < V(ay,az) + Vas,az).
Since the first two conditions are trivially true for our
Epoothness, we shall focus on the third condition here.
Let K;j = ||N,, — ]\A]uj||. For any adjacent pair of pixels s
and ¢, we write:

Vielar, az) + Vii(as, az) — Vis(ar, a2)

1g<1+_)+log<1 K) g(H%) (17)

1 Ky I\_x§
:log(< + 3 (1L + 58\

1_|_1\12

20?
If the expression inside the logarithm of (17) is greater
than or equal to 1, (17) is greater than or equals to zero. It

is in fact true:

K3 K3 Ky
<1 +F) (1 +F> — <1 +F)
1 Ki3K. (18)
1343232
[ — — > 0.
957 (K13 + K39 — K19 + 257 ) >0
Note that N, —N,, N, —N,, and N, —N,, are

three vectors pro]ected onto the same plane defined

by the points Nal, Naz, and Nm, which form a triangle

on the plane. By the triangle inequality, K3+ K33 —

K15 must not be less than zero and, hence, the third

metric condition holds. ]

Since V;; is a metric, V,;(a,a) =0, and V;(as, o) <
Viilas, @) + Vii(a, o), the smoothness term Ejgppothness 1S
regular [20]. To minimize our energy function in each
a displacement, we can construct a graph by using [20],
followed by applying the max-flow algorithm [8].
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6 Maxivum A POSTERIORI ESTIMATION BY
TENSOR BELIEF PROPAGATION

Although the graph-cut minimization described in the
previous section for dense photometric stereo has a
theoretical guarantee in which the minimized energy
corresponds to the global optimal solution “in a strong
sense” [20], as we shall show in the comparison and result
sections, the algorithm takes considerable amount of time
(in minutes) to run due to the large number of a-expansions
necessary for minimizing the energy function.

In this section, we study an alternative MRF inference
algorithm to address the dense photometric stereo problem.
In belief propagation, messages are propagated and com-
bined in a Markov network. There are two common
estimators for belief propagation: MAP and MMSE (mini-
mum mean square error). In discrete labeling, the MAP
estimator assigns discrete labels as messages, which are
propagated and updated in each iteration. The max-product
algorithm is often used in combining the propagated
messages. MMSE estimator weighs marginal probabilities
and produces an optimal solution at subpixel precision.
MMSE uses sum-product to compute the marginal probabil-
ities. Comparisons with MAP and MMSE on geometric stereo
were made in [39].

In photometric stereo, the traditional belief propagation
is inefficient if discrete labels are used in encoding a
message. Suppose we still subdivide an icosahedron to
produce 5,057 labels for each message, gigabytes of memory
is required for a typical image (256 x 256). The memory
required by sum-product and max-product are similar.

Inspired by tensor voting [26], we propose applying
tensor belief propagation, which uses a very compact
representation for a message by encoding it into a compact
symmetric tensor to store the second-order moment collec-
tion of the estimated normal directions. Note that the light
source used in photometric stereo is located above the
object, so the normals inferred should have a consistent
orientation toward (or away from) the light source and,
hence, the orientation is known in advance. Second-order
moments are used in our message passing to simplify the
inference by making the tensor symmetric. We can simply
flip the inferred normal after the estimation if needed.

In fact, tensor belief propagation is a special case of tensor
voting where the spatial neighborhood is restricted into the
first-order neighbors (given by the image grid structure).
Although tensor belief propagation does not have a strong
theoretical guarantee similar to graph-cut minimization, for
all our experiments, we found that the normal maps
produced by tensor belief propagation and graph cuts are
comparable, while tensor belief propagation runs much faster
(in a few seconds) than graph-cut minimization.

Since 3D normals are inferred, the tensor we use is a
3 x 3 symmetric matrix. Hence, the storage requirement for
each message is drastically reduced to 100 bytes or less.
Using tensor as messages also changes our solution space
from discrete to continuous.

Given a Markov network where X = {xz,} is the set of
hidden nodes and Y = {y,} is the set of observed nodes
(Fig. 5), let m4(z,) be the message received at node z, from
node y; and my(x,, 2;) be the message that node z, sends to
node z;. Initially, each pixel has an estimate of the normal
direction N, (Section 4). We represent m,(x) by the stick
tensor of N, i.e,, N,N!. The message passing algorithm is
described below:
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6.1 Algorithm

1. Initialize all messages mg/(zs,x;) as a 3 X 3 identity
matrix (i.e., a ball tensor without preferred orienta-
tion is used to denote uniform distribution) and
ms(z5) = NyNT (i.e., a stick tensor to indicate initial
belief in the normal orientation for pixel s).

2. Update messages my(xs,z;) iteratively for i =1:7T,
where T is the number of iterations:

2.1. Find the current normal with the highest
probability

bi(z) = ma(w) + D mi (o), (19)

2,€N(z5)

N =& [b ()], (20)

where € [bs(z,)] is the unit eigenvector associated
with the largest eigenvalue of the tensor b,(x;).

2.2. Compute new messages

mifl(:vm T) = @st(Né: Ntl)

m;es(xk‘?ms) )

>

2R EN(xy)\ 2t

normalize | mg(xs) +

(21)

where the normalization of a tensor scales all
eigenvalues so that the largest one equals to 1.
Notice that the compatibility function ¢ (N, N;)
controls the strength of the message passed to x;.
When the angle between N! and N is small,
¢st(Ns, Ny) in (8) tends to 0 and, hence, ¢ (N!, N;)
tends to 1 and vice versa. Therefore, discontinuity
between z; and z; can be preserved via control-
ling the strength of the messages passing between
them. Furthermore, in the presence of disconti-
nuity, the behavior of the compatibility function
¢st(N!, N}) can be adjusted by the o in (8), where
o= 0.5.
3. Compute beliefs

bs(zs) = ms(zs) + Z mz;s(xk'7x5)7

€N (as)
Ns - Al [bi‘(xb)]

(22)

(23)

In Steps 2.1 and 3, we perform eigen-decomposition on b,
to obtain the majority direction, given by e, the eigenvector
corresponding to the largest eigenvalue. It is similar to tensor
voting [26] for inferring the most likely normal in surface
reconstruction from a 3D point set. Fig. 5 illustrates the
Markov network (graph) with messages passing in a
neighborhood. The initial normal estimates N, N, are passed
to the hidden nodes, which will be encoded, respectively, into
astick tensor for representing m () and my (z;), respectively.
Messages are updated and passed among xs accordingly.

The computational and storage complexities of our
algorithm are O(TD) and O(D), respectively, where D is
the number of pixels and T'is the number of iterations. For an
image of size 512 x 512, it only takes roughly 2 seconds for
each iteration on a Pentium-IV 3.2G PC with 512M memory.

It is worth noting that a method based on belief
propagation was proposed in [33], which enforces surface
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integrability for surface reconstruction from normals. A
Markov graph model was used where local evidence at
each observation node is encoded by an initial surface
gradient estimated by any photometric stereo or shape-
from-shading algorithms. Message passing is implemented
by the sum-product algorithm which computes the MAP
estimate of the unknown surface gradient at each pixel.
Note that both [33] and our method use a graph model. Our
tensor belief propagation directly estimates normals and
explicitly preserves discontinuities via a robust function,
while [33] refines the initial noisy surface gradients by
enforcing the integrability (smoothness) constraint and does
not use explicit discontinuity-preserving function.

6.2 Analysis

In our tensor message passing scheme, the tensors interact
with each other when a new message is generated. Let us
consider the following scenarios, using 2D tensor for
illustration because the 3D case is analogous. After
summing up the tensor messages and performing eigen-
decomposition, a 2D tensor has the form

N0 Ter

1 &] ,
0 x| ler

(24)

where A1, A2 (A1 > Ay > 0) are the eigenvalues and €, €, are
the associated eigenvectors. Graphically, a 2D tensor can be
represented as an ellipse with Aje; and Ase» corresponding
to the oriented semimajor and semiminor axes, respectively.

Note that a stick tensor is one with Ay = 0, which is used to
encode absolute orientation certainty. A ball tensor is
characterized by A = Ay and is used to encode absolute
orientation uncertainty. Let us consider the following
combinations when tensor messages in the extreme cases
are added together:

1. Both messages are stick tensors. There are two
scenarios: a) When both ¢;s in the two tensors are
identical, the resulting tensor will have the same
eigen-vector but a larger )\, indicating that we have
a higher confidence for e; being the most likely
normal direction. b) Otherwise, the tensor becomes
an ellipse, with the resulting e; after eigen-decom-
position still being the most likely direction and with
an uncertainty in direction, encoded as the orthogo-
nal direction e, with uncertainty A;.

2. One message is a stick tensor, the other message is a ball
tensor. This case is similar to scenario b) of Case 1.

3. Both messages are ball tensors. The resulting tensor is
still a ball tensor because the two tensors do not have
any preferred direction.

7 SURFACE RECONSTRUCTION FROM NORMALS

The normals obtained after MRF refinement are used to
recover the underlying surface. In this section, we propose a
simple height generation algorithm which is empirically
shown in the result section to produce an adequate surface
given the normals recovered by our method.

Suppose the height at location s is h,. The normal at s can
be rewritten into:

1

T
—_p57_q571 b
\/1+p§—|—q§[ ]
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(@) (b) ©

() ) ()

Fig. 7. Three spheres. (a) and (b) Two views of the input images. (c), (d), and (e) Normals reconstructed by graph-cut minimization. (f) The ground
truth. For ease of visualizing the recovered normals, in (c), (d), (e), and (f), we make the object Lambertian by displaying IV - L for each pixel, where

N is the recovered normal observed at a pixel, L = [z %]T for(), L=[-%-% ﬁ]T for (d), and L = [0 0 1]” for (e) and (f).
where p, = %};7‘ =—2 and ¢, = fgi; = —=. Many traditional 8.1 TBP versus GC: Synthetic Data

approaches for surface reconstruction from normals are
based on integration and the integrability or the zero curl
constraint needs to be enforced. Very often, enforcing
integrability is translated into minimizing || g—z - % ||” at each
pixel [9]. Assume that all partial derivatives satisfy the
integrability constraint, integration [9] can be applied to
reconstruct the surface.

However, the normal maps obtained by using our method
are not guaranteed (or needed) to be integrable everywhere
because fine details and discontinuities are preserved in the
map. To reconstruct the surface, one may apply [33] to alter
the surface normals when necessary to satisfy the constraint.
Another way to reconstruct the surface is to apply the shape
from shapelet approach [21]. While a decent surface can be
obtained by these methods, the methods are somewhat
complicated. Here, we describe a simple method which is an
analog found in [4] and [10] to reconstruct a surface.

The idea of the method is here: The residual of the
reconstructed surface at a pixel location should be minimized
when all integration paths are considered. Given a first-order
neighbor pair s and ¢, the residual of the height i, with respect
to h; is defined by the difference between the estimated h, and
the height integrated starting from ¢:

(hs — hy + ps)27 if t = t1 is the left neighbor

(hs — hy — p,,)Q7 if ¢ = ¢2 is the right neighbor (26)
(hs — ht + Qs)Q-, if ¢t = t3 is the up neighbor

(hs — hy — qt)2, if t = ¢4 is the bottom neighbor.

The total residual E of the reconstructed surface is defined by:

E(h) = Z((hs — Iz — pt2)2 + (hg — by — Qt4)2>~

S

(27)

Since each individual residual is a convex function, F'is also a
convex function. Any optimization method for convex
optimization such as the gradient decent method can be used
to minimize F to obtain h. In our implementation, £ is
minimized by setting its first derivative with respect to h,
equal to zero. Then, h; is solved iteratively. In each iteration,
for each s, we estimate h, by solving 0E(h)/0h, = 0 until the
algorithm converges. All the surfaces in this paper are
produced by this simple method, which is comparable to
the results generated by [21] used in [38], [46].

8 COMPARISON

This section compares tensor belief propagation (TBP) and
graph cuts (GC) using synthetic and real data where ground
truths are available. Recall that both inference algorithms
are based on the identical MRF model.

We first use the synthetic example Three spheres where a total
of 305 images are sampled. As shown in Fig. 7, the reflectance
captured by the images contain a lot of specular highlight and
shadows. The following is the evaluation procedure and the
comparison results are summarized in Table 1.

1. Obtain the ground truth normal map illuminated at
L=1[001]" (other L will render the (N - L) image
too dark at certain pixels; see Fig. 7).

2. For various amount of additive Gaussian noises to
the estimated light directions,

a. Run tensor belief propagation to obtain the
normal map illuminated at L.

b. Run energy minimization by graph cuts to
obtain the normal map illuminated at L.

c. Inboth cases, note the running time, the number
of iterations, and compute the (V- L) image as
defined in the caption of Fig. 7.

According to Table 1, the results and errors produced by
graph cuts and tensor belief propagation are comparable
while the running time of the graph cuts method is much
longer. Note that both approaches can tolerate significant
estimation error in lighting direction (up to a standard
deviation (SD) of 15 degrees). In practice, such a large
estimation error seldom occurs. Note that the smallest mean
error that we can produce is about 4 degrees. This is
because some of the surface patches are affected by shadow
and specular highlight for most of the time (e.g., the surface
patches along the silhouette of the largest sphere, whose
normals are nearly perpendicular to the focal plane, are
shadowed nearly half of the time). Nevertheless, the
estimation accuracy in both algorithms are still very high.

8.2 The Effect of MRF Refinement

In the presence of complex geometry, shadows, highlight,
and other non-Lambertian phenomena, MRF refinement is
crucial to produce good normal results. Fig. 8 compares two
normal maps and the resulting surfaces for Teapot: One is
produced by the ratio image approach described in Section 4,
the other is produced in addition using our discontinuity-
preserving MRF refinement (GC is used here). Note that the
MRF refinement eliminates the errors caused by complex
albedos while preserving all subtle geometry, including the
air hole and the ripple patterns of the teapot. Note that the
N - Limage depicted here is for display purpose and existing
2D and 3D anisotropic diffusion or discontinuity-preserving
methods cannot be applied to our normal map, where each
2D pixel location refers to a 3D normal.
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TABLE 1
Comparison of TBP and GC on Three Spheres

Oo

Standard deviation (SD)

TBP

mean error (in deg) 4.0417
running time 23.49s
no of iterations 105

GC

mean error(in deg) 4.041
running time 9m56s
no of iterations 2

15° 30° 45°

4.1008 21.9630 32.187
20.89s 33.89s 11.78s
89 141 54

4.0905 22.0260 32.1950
9m52s 10m02s 9m58s
2 2 2

The effect of perturbation of light directions on the mean errors of the recovered normal and the maximum perturbation angles are shown. The ground
truth is shown in Fig. 7f. The experiments were run on a CPU server with 4 AMD Opteron@ Processor 844 CPU at 1.8GHz and 16G DDR-333 RAM.

9 RESULTS

As mentioned in the previous section, both inference
algorithms produce comparable results while belief propaga-
tion using tensor message passing runs much faster and
converges to results comparable to those in GC. In all cases,
very faithful normals can be recovered. We also show
different views of the surfaces reconstructed using the
recovered normals as input to our surface reconstruction
algorithm presented in Section 7. We have tested very
complex objects and scenes containing a lot of highlight and
shadows and even objects with transparency to demonstrate
the robustness of our method. For visualization, the normal N
recovered at each pixel is displayed using (N - L), where L is
the direction of a synthetic light, which allows for easy
detection by the human eye if any slight estimation error is
present. Table 2 summarizes the running times. Please also
review our supplementary video at http://computer.org/
tpami/archives.htm for our results.

9.1 Comparison with Ground Truth: Real Data

In Fig. 9, an example Real Sphere is shown. We chose a
spherical object because we can estimate the ground truth

(b)

(@)

Fig. 8. The effect of MRF refinement for Teapot. (a) The noisy N - L
image is produced by the least-square solution of the system of
equations given by the ratio image approach described in Section 4 (i.e.,
without MRF refinement). The other image is produced by our MRF
algorithm (GC). (b) Comparison of the generated surfaces from normals,
without and with MRF refinement, respectively.

normal map of the object by fitting a known sphere. Without
considering the distortion resulting by perspective projection
of the camera and inaccurate estimations of light directions,
the absolute mean angular error produced in this case is
19.36 degrees. Note that such a large absolute error for real
case is due to the presence of nonnegligible ambient light and
violation of Lambertian assumption. Ideally, because the
spherical object is opaque, half of the spherical object in the
input images shown in Fig. 9 should be totally invisible. But,
the strong ambient light makes it visible, which offsets the
normal estimation. Because of this, the estimated normal
tends to point upward, resulting in a large mean error.
Despite that, our method preserves the overall structure very
well. The result looks visually good and is indeed quantita-
tively faithful to the original surface if measured on an
alternative metric: We define E, to measure the structural
difference between the estimation and the ground truth:

1

E, =
M,

> 10uthart — Ous1tbal

"a=(s,t)

(28)

where M, is the total number of pixel pairs, 6, is the angle
between the neighboring normals at s and ¢ in the estimated
normal map, and v, is the angle between the neighboring
normals at s and ¢ in the ground truth normal map. If (s, t)
is a left-and-right neighbor pair, a + 1 = (¢, u), where u is
the right neighbor of ¢. The notation is applied similarly to
up-and-down neighboring pairs. Thus, (28) measures the
mean of the angular ratio difference in the local neighbor-
hood and, hence, the neighborhood structure of the normal
map. We found that, although the absolute mean error is
large, E, tends to zero (8.55 x 107°), indicating that our
method preserves the neighborhood structure very well and
the mean error is defined up to an known angular scale
factor. By brute-force searching, we found the optimal scale
that gives the minimum mean error of 3.87 degrees, instead
of the absolute mean error of 19.36 degrees.
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TABLE 2
Summary of Running Times

Data set Image size  Number of images # TBP iterations TBP running time # GC iterations ~GC running time
Snail 134 x 240 2074 98 25.02s 2 560s
Cleopatra 159 x 240 2517 65 82.30s 2 695s
Teapot 188 x 202 3165 304 175.47s 4 912s
Rope 171 x 144 2812 166 68.80s 3 614s
Transparency 212 x 209 3153 192 174.36s 3 820s
Face 223 x 235 1388 89 72.79s 4 986s

The experiments were run on a CPU server with 4 Opteron@ Processors 844 CPU at 1.8GHz and 16G DDR-333 RAM.

Fig. 9. Results on Real Sphere. From left to right: Three typical captured images of Real Sphere. The recovered normal N displayed as N - L with
L =% L 7. The reconstructed surface rendered at a novel viewpoint. The reconstructed surface from ground truth normals.

V3 V3 VB

(@)

(b) (©)

Fig. 10. Results on Snail. Two typical images we captured were shown in Fig. 1. (a) The reconstructed normals N are shown as N - L, where
L= [%f % \%}T. (b) The surface reconstructed from the recovered normals. (c) The result of displacement mapping on a cylinder, using the

reconstructed surface.

9.2 Complex Patterns with Discontinuities

In Fig. 10, note the high level of details achieved in our
reconstruction, where the cloud, snail, and mushroom, and
other complex patterns are faithfully preserved in the
normal reconstruction despite that cast shadows and
highlight are ubiquitous. The smooth surface and the
underlying surface orientation discontinuities are faithfully
restored. We also show the result of displacement texture
mapping on a synthetic cylinder by using our reconstructed
surface and normals for this object. Fig. 11 shows another
result in this category.

9.3 Objects with Complex Geometry and Albedos
We show the reconstruction results for two complex objects
Teapot and Rope in Figs. 12 and 13. The geometry and albedos
of the Teapot are very complex. Our method can faithfully
reconstruct the normal directions and shape of the teapot,
including the small air hole on the lid, while rejecting all
noises caused by the complex patterns, textures, and colors of
the teapot. Although the Rope has spatially varying surface
mesostructures, the surface and normals are faithfully
reconstructed.

9.4 Complex Objects with Transparency

Finally, the example in Fig. 14 tests our system to the limit. The
toy is contained inside an open paper box, which casts a lot of
shadows when the object is illuminated on the three sides of
the box. The toy is wrapped inside a transparent plastic

container. So, when it is illuminated at other directions, a lot
of highlight is produced. Surface orientation discontinuities
are ubiquitous in the object. It is very tedious to choose the
right frames from the more than 3,000 frames we captured to
perform sparse photometric stereo and unbiased statistics is
not guaranteed. On the other hand, our simple system, which
utilizes dense but noisy measurement, can effectively deal
with these problems. The surface normals we recovered are
very reasonable under this complex situation.

Fig. 15 shows another complex example of a Face where
complex geometry, fine structures (hairs and pimples on the
face), and transparency (eye glasses) are present. Observe
that the eyes below the glasses are successfully reconstructed.
The discontinuity associated with the frames of the glasses is
still maintained. The pimple on the subject’s face close to his
eye glasses has been preserved in the surface reconstruction.

10 THE INVERSE PROBLEM: APPLICATION IN
REAL-TIME RELIGHTING

Using the reconstructed surface from dense photometric
stereo, we propose an inverse process to synthesize novel
images of the same scene under user-specified light source
and direction. This inverse process can be made to run in
real time by employing current hardware technology, and is
better known as real-time relighting in computer graphics.

The ability in controlling illumination offers the user an
experience of 3D realism. Recent work [41] allows the
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Results on Cleopatra. (a) and (b) Two typical images we captured. (c) The reconstructed normals visualized as N - L, where
]”. (d) The reconstructed surface visualized at a novel viewpoint. (¢) The zoom-in view of the textured surface. (f) The result of

displacement mapping on a synthetic cylinder, using the reconstructed surface.

Fig. 12. Top: three typical captured images of Teapot, where complex geometry, texture, and severe shadows are present, and the recovered
normals N, each of which is displayed as N - L with L = [— % L )7 Bottom: The reconstructed surface rendered at a novel viewpoint, the zoom-

3 V3 V3

in view of the reconstructed surface, and the zoom-in view of the actual object at the same viewpoint.

captured video (dynamic sense) to be composited with an
new environment seamlessly. Environment lighting is
considered and varying lighting conditions is allowed.
However, their method required an expensive and specially
designed acquisition system. And, real-time relighting may
not be possible. Using our very simple set-up and
photometric stereo method, we address the inverse problem
of real-time rendering by using compressed data.
Image-based relighting [43], [30] is a method to achieve
real-time illumination computation of arbitrarily complex
scenes. It shifts the data acquisition (for a real scene) or the
time-consuming illumination computation (for synthetic
scenes) to a preprocessing stage and stores the results in a
compact form. During the runtime, illumination effects are
achieved by real-time decompression and composition.
However, if per-pixel depth information is not available,
photorealistic relighting with interesting lighting effects such
as illumination due to spotlight, point light source, or slide

projection cannot be correctly achieved [43]. On the other
hand, the necessary data for relighting basically consists of a
denseimage set captured under a moving distantlight source,
which is exactly what our dense photometric stereo needs for
normal reconstruction. The reconstructed surface is exactly
whatrelighting needs for producing versatile lighting effects.

The early work in image-based relighting placed many
restrictions on the novel lighting configuration [11], [30]. The
first representation, the apparent BRDF, that supports arbi-
trarily novel lighting configuration was proposed by Wong et
al.[43]. Therepresentation was further generalized toplenoptic
illumination function [42]. Per-pixel spherical harmonics are
used as a compact solution for encoding the enormous
relighting data in their work. Polynomial function [25],
wavelet [29], and spherical radial basis function [23] were
later proposed by other researchers as the compact solutions.
Unlike the rendering goal in computer graphics, researchers
in computer vision are more interested in recognition under



1842 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006

Fig. 13. Top: Three typical captured images of Rope, where complex geometry, mesostructures textures, and severe shadows are present. Bottom,
from left to right: the recovered normals IV, each displayed as N - L with L = [ 7 f f] The reconstructed surface rendered at a novel viewpoint
and the zoom-in view of the reconstructed surface.

Fig. 14. Top: Three typical images for Transparency, where many assumptions in photometric stereo are violated: shadows, highlight, transparency,
spatially varying albedos, and mter-reflectlons due to the complex geometry. Bottom, from left to right: The recovered normals N are very reasonable,
displayedas N - L, where L = [+ 7 f f] the reconstructed surface rendered at a novel viewpoint, and the zoom-in view of the reconstructed surface.

Fig. 15. Top: Three typical captured images of Face, where complex geometry, texture, and severe shadows are present, and the recovered
normals N, each displayed as N - L with L = [ﬁ — % ﬁ]T. Bottom: Reconstructed surface rendered at a novel viewpoint, and one view of the actual
face captured at a similar viewpoint. T
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various lighting conditions. Principal component analysis is
frequently used to extract a set of basis images from dense
input images for recognition purposes [5], [47], [27], [12].
These methods can be adapted for rendering purposes, as
demonstrated by the recent work [31], [40], [14].

In this paper, we propose a hybrid, image-and-geometry-
based approach which makes use of the dense input (images)
and the surface/depth map reconstructed from the recovered
normals (geometry) to perform real-time relighting for
achieving visually plausible results. Without the recovered
depth map from our dense photometric stereo, we can only
perform restrictive relighting with distant light sources. This
hybrid approach not only provides a unified way to simulate
distant and point light sources, but also achieves a very fast
frame rate by employing the state-of-the-art graphics proces-
sing unit (GPU). In order to cope with the limited memory
resource on GPU, weadoptthe PCA-based representation [14]
as a compact solution for rendering.

In the following, we start by briefly reviewing the
plenoptic illumination function, which is sampled and
obtained by processing the raw dense input images captured
by the DV for the purpose of real-time relighting. Note that
the dense inputimages are used for both the recovery of depth
map (using dense photometric stereo) and the radiance data
encoding (using PCA-based approach). As the dense photo-
metric stereo has been covered in the previous sections, we
shall focus on the PCA-based encoding of radiance data in the
following subsections. During the rendering, both the
recovered surface and PCA-encoded radiance data are
loaded into GPU memory. A unified GPU approach for
real-time relighting that supports both distant light source,
point light source, and even the slide projection is described.
Finally, we present our relighting results using a wide range
of synthetic lighting set-up.

10.1 The Plenoptic lllumination Function
Image-based relighting is grounded on the plenoptic
illumination function, which is extended from the plenoptic
function [1] to include the illumination component [42]:

1= PI(ll'»lyylzvUzyvyvvzvx7y’ thv )‘) (29)

The function describes the radiance I received along any
viewing direction (v,,v,,v.) observed at any viewpoint
(z,y,2) in space, at any time ¢, and over any range of
wavelength A. L = (I;,1,,1.) specifies the direction of a
distant light source illuminating the scene and ¢ is the time
parameter. This function encodes how the environment
looks when the viewpoint is positioned at (x,y,z) under
illumination L. When the viewpoint and time parameters
are fixed, the discrete version of the plenoptic illumination
function reduces to the dense input for our dense photo-
metric stereo. To relight an image, we apply the following at
all pixels on the three color channels, respectively,

Pf(lx7ly7lZ)Lr’('r7y7 Zv ll.‘allﬁlz)’ (30)

where Pj(l;,l,,1.) is the result of interpolating the dense
samples given the desired light vector (l,,l,,l.) (other
parameters in P; are dropped for simplicity), L, is the
radiance along (l,,1,,1.) due to the light source, and (z, y, z)
is the position where radiance is reflected. This is a local
illumination model with three parameters: the direction, the
color, and the number of light sources.
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10.2 Unified GPU Approach for Real-Time Relighting

The major issue in image-based relighting also present in our
hybrid approach is the enormous storage requirement. Note
that traditional image compression methods such as JPEG is
not applicable due to their lack of random-accessibility. In
order to achieve real-time and complex lighting effects, the
relighting engine should be capable of randomly accessing
pixel values scattered all over the compressed data. In this
section, we first review our illumination-adjustable repre-
sentation [14] that facilitates the implementation on GPU for
encoding a plenoptic illumination function [42] in order to
achieve photorealistic relighting at high frame rate. A unified
GPU computation framework is then proposed for both
distant, point (or spotlight), and slide projector sources, which
is made possible by our dense photometric stereo technique.

10.2.1 Principal Component Analysis (PCA)

First, we preprocess the input data in order to maximize the
correlation among neighboring data. Recall that our inputisa
set of images taken at the same viewpoint, but illuminated by
a distant light source along different directions. Each
captured image corresponds to a point on the light direction
sphere. After resampling, a total of k£ images is obtained. We
observe that the luminance of the % corresponding pixel
values are highly correlated, due to the smooth change in
radiance reflected from the same surface element visible at a
pixel. Therefore, principal component analysis can be applied
to reduce the data dimensionality. First, each 2D image is
linearized to a 1D array of pixel values, which we call data
vectors. Then, all data vectors are stacked to form a data
matrix M. The size of this matrix is prohibitively large. For
example, for a gray-scale image of 256 x 256 sampled under
klighting conditions, the data matrix is of size k x 65, 535. Itis
not feasible to compute the principal components from this
huge matrix.

A divide-and-conquer approach is therefore adopted to
subdivide the images into blocks. Multiple blockwise PCAs
are applied on the corresponding blocks. If each image is
subdivided into w blocks, we perform w blockwise PCAs (see
Fig. 16). With this block-based approach, the computation
becomes tractable and the memory requirement is also
reduced. Moreover, the computation can be parallelized
easily. The block-wise PCA also helps in capturing high-
frequency features, like highlight and shadows, with a
smaller number of principal components. Interestingly, while
shadows and highlight are treated as noises in photometric
stereo reconstruction, they are an important cue for photo-
realism during relighting. In our relighting system, we choose
a block size of 16 x 16.

By applying PCA to the data matrix M, M can be well
approximated by M basis images and their corresponding
coefficients, where M < k. The data volume is drastically
reduced by keeping only M eigenimages and the relighting
coefficients. Now, M can be expressed by the product of two
matrices A and B, where the dimensionof Aisk x MandBis
M x ¢, where q is the block size.

10.2.2 Distant-Source Relighting

Every row of M (image block) is a linear combination of all the
rows in B. The corresponding weights are kept in a row in A
(see Fig. 17a). We call the rows in B the basis images or
eigenimages and the weights in A the relighting coefficients. The
distant-source relighting can be expressed compactly by

I(L) =) ¢B), (31)
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Fig. 16. A divide-and-conquer approach is used to make the computa-
tion tractable and facilitate parallelism.

where I is the image block relit under distant illumination L,
B is the jth eigenimage, and c¢; is the jth relighting coefficient
inonerow of A, whichisindexed by L. In case the desired L is
not sampled, interpolation using the closest neighbors will be
performed to reconstruct the desired /. Given a distant source
with direction L, each pixel is relit with the same light
vector L. Hence, the relighting coefficients c¢; are the same for
all pixels in an image block. In other words, distant-source
relighting is actually the linear combination of eigenimage
blocks B; with ¢; as weights. Such a linear combination can be
performed in real time on modern GPU by storing eigen-
images and relighting coefficients as textures.

10.2.3 Point-Source Relighting

Despite the use of a directional illuminant (simulated by a
distant spotlight) during the capturing phase, the captured
data can be employed to simulate the illumination due to a
point source, spotlight, and slide projector source. Unlike the
distant-source relighting, the light direction L observed at
each pixel is different (as explained in Fig. 18). To obtain L =
S — S, at a surface point S, where S is the given position of
the point light source. S, can be derived from the recon-
structed surface or the depth map of the scene. Thus,
relighting using a point source is now readily achieved,
which is otherwise impossible because the surface geometry
is either unavailable or difficult to obtain in complex situation
using standard techniques.

Now, because L is different for each pixel, the relighting
coefficient for each pixel is therefore also different. To relight
an image block, relighting coefficients are sampled from
different rows of A, again indexed by different L for each pixel
in B e

I(L) = A/(L)B, (32)
J
M relighting eigenimages L;
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Fig. 18. (a) Point-Source relighting and (b) slide projector source. L is
different for each pixel under the point-source illumination spotlight.

whereeach A;(L) isa2D map of relighting coefficients, whose
dimension is the same as that of an eigenimage block B;. L is
used to indicate the set of light direction vectors at all pixels in
I. In other words, the point-source relighting is actually a
pixel-wise linear combination of two images A;(L) and B;.
Equation (32) represents the per-pixel table-lookup and
multiplication to relight an image under point source
illumination, as illustrated in Fig. 17b. Again, such per-pixel
operations can be efficiently implemented on modern GPU.

10.2.4 Results

Our GPU relighting was implemented and run on a 3.2GHz
PC with 512M memory and GeForce FX5900 graphics board
with 256MB video memory. Fig. 19 shows the results for
relighting Teapot and Face using a synthetic distant light
source which is made to simulate the actual handheld
illuminant used in data capturing to test the correctness of
our implementation of the distant-source relighting. Fig. 20
shows the results for relighting Car, Snail, and Cleopatra using
a synthetic point and a slide projector source, respectively,
where we can achieve a very high frame rate of 75 for point-
source relighting and 37 for slide-projector-source relighting,
which are both suitable for time-critical applications like
computer games. Note the relighting results of the slide
projector source that uses a circular stop sign, whose
projection on the object changes according to the surface
geometry of the object, which is derived from the surface
reconstructed from our recovered normal map. Please refer to
our supplementary video which can be found at http://
computer.org/tpami/archives.htm.

11 CONCLUSION

In this paper, we formulate the problem of dense photometric
stereo using the MRF framework. Using the identical MRF
model, we propose and compare two inference algorithms for

M

relighting eigenimages

/! | T a—— |
N | | |
W[ e [e ]m [ W

+ oo

oo

(b)

Fig. 17. Our unified approach for (a) distant-source and (b) point-source relighting, which are translated into per-pixel table-lookup and multiplication,
highly suitable for hardware implementation. (a) To reconstruct (relight) an image block under directional illumination, each data vector (row) of M is
a linear combination of rows (eigenimages) in B. (b) Under the illumination of a point light source for which spotlight and slide projector are specific
cases, relighting coefficients are sampled from multiple rows because the light direction L at each pixel is different. L is obtained from the depth map
inferred from the normals reconstructed using our robust photometric stereo.
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© ()

Fig. 19. Relighting results for Teapot and Face using a synthetic distant light source to simulate the actual illuminant used in data capturing. (a) and
(c) are real, (b) and (d) are our synthetic relighting results. They are visually indistinguishable.

Fig. 20. Relighting results for Car, Snail, and Cleopatra using a synthetic point and slide projection sources.

estimating the MAP solution: graph cuts and tensor belief
propagation. For high-precision message passing in our
dense photometric stereo problem, traditional belief propa-
gation is intractable if the set of discrete labels is large, while
the graph cut algorithm converges in very few iterations.
Tensor message passing for belief propagation is proposed
which drastically reduces the running time and storage
requirement and runs faster than graph cuts with comparable
results. Faithful per-pixel normal maps are inferred by both
algorithms. Finally, we exploit the inferred normals and the
reconstructed surface to perform real-time relighting where
distant, point, spotlight, and slide projector light sources can
be uniformly handled and very fast frame rate can be
achieved. Our future work consists of more investigation on
the surface reconstruction algorithm and analysis of the
efficacy of the available dense information.
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