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Abstract <<parameterised>> <<parameterised>>
(re)source(s) build script

The build systemforms an indispensable part ofany soft-
ware project. It needs to evolve in parallel with the source \
code in order to build, test and install the software. Un- configuration: configuration:
fortunately, little tool support exists to help maintainers --tool scrpt
gain insight into the build system, much less to refactor it. /
In this paper; we therefore present the design and imple-

r c a
mentation of a re(verse)-engineering framework for build (re)source(s) build scrpt
systems named MAKAO. At its heart the framework makes
the build's dependency graph available in a tangible way.
Aside from visualisation, this enables powerful querying of build tool
all build-related data, as well as variousfiltering techniques
to define views on the build architecture. If desired, all this

b

gathered information can be put to use to write aspects for artifacts
refactoring the build. Afterwards, validation rules can help
in assessing failure or success. We applied our implemen-
tation on an industrial C system and the Linux 2.6.16.18 Figure 1. High-level view of build systems.
kernel, with good results.

Having a Figure 1-like build system in place, each non-
trivial source code modification may potentially break the

1. Introduction build, e.g. when files are moved, added or deleted. One can
only avoid this by evolving the build system in parallel with

Up until 1977, ad hoc build and install scripts were the source code, but this requires thorough knowledge of the
used to automate the build process of software systems. build's internals. Recently, the KDE desktop environment
Then, Feldman introduced a dedicated build tool named project has switched from a GNU build system (GBS) to
"make" [9]. Its innovation was the explicit declarative spec- cmake for exactly this reason.
ification of the dependencies between targets (executables, Despite lots of re(verse)-engineering approaches geared
object files, etc.) in textual "makefiles", together with a towards source code, to date little attention has been de-
"recipe" (an imperative list of shell commands) to build voted to the re-engineering of a build system. This is un-
a target. "Make"'s time stamp-based updating algorithm fortunate, as build systems can tell us a lot about a project's
considerably improved incremental compilation of software development architecture [15]. We therefore present the de-
projects and also the quality of builds. sign and implementation of a visualisation and re(verse)-

Soon after build tools became more or less a commodity, engineering framework for build systems named MAKAO.
portability of software across various platforms became an Its core functionalities are the visualisation, querying, filter-
important concern. Include directories or compiler versions ing, refactoring and validation of build systems.
vary between systems, so source code and build scripts need This paper contributes:
to be configurable. This means that they contain parameters, * a rationale of, and requirements for a re(verse)-
specified in configuration scripts, which are resolved on the engineering tool for build systems,
system on which the build will be performed. * the design and implementation of such a tool, and
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* the application of this tool to some typical build prob- In [16], a serious conceptual mistake was exposed with
lems in two software projects. recursive "make": it cannot handle dependencies across

We will first elaborate the need for a re(verse)- "make" (sub)processes. Consider the following situation:
engineering tool (section 2), from which a number of * Targets D and E depend on some file F, but live in dif-
requirements can be derived (section 3). After dis- ferent directories and, hence, different makefiles.
cussing related work (section 4), we show how the require- * A first "make" subprocess builds D.
ments steered the design and implementation of our tool, * A second subprocess changes F and then builds E.
MAKAO, in section 5. Section 6 applies MAKAO on vari-
oubul prblm in anidsra. yse n h iu Clearly, target D should be remade too, as its dependency

F has been updated. The recursive build prevents "make"2.6.16.18 kernel. Section 7 discusses future work, while
from detecting this, because each "make" process knowssection 8 presents the conclusions of this paper. only about its own targets and dependencies. If the rules for
both D and E were in the same makefile (process), "make"

2. Problem statement could choose a better evaluation order. Traditional solutions
to this visibility problem include sorting subdirectories in a

Various stakeholders interact with a build system, each special order, looping several times over the build, omitting
with their own concerns and problems. Developers e.g. as- dependencies, etc. Miller proposes another approach [16]
sess the correctness of their code and, if the build failed, try based on one common build script which (literally) includes
to find out the cause (e.g. missing dependencies). When local scripts describing the specific dependencies of a sub-
adding new sources, they need to understand how to change directory. This also has the advantage of addressing other
the build. Maintainers on the other hand require full knowl- drawbacks of recursive builds such as long build duration
edge of the inner mechanics of a system [7], want to check and error-prone build parallellisation.
if there is dead code, profile, check recent changes, etc. De- Unless special care is taken to devise and document clear
ployers prepare and configure the environment (library de- conventions, people are puzzled by the complex composi-
pendencies, system variables, etc.) to compile and install tion of the build scripts. The variables introduced by the
the software, while Quality Assurance just wants to add and configuration system aggravate things, as problems may be
run feature, regression and integration tests as seamlessly as tied to certain configurations only. A plain "grep" no longer
possible. Researchers are interested more in (un)plugging suffices. If a build system becomes too hard to understand
experimental tools in a software system, but for this they and maintain, the risk of tailoring the source code structure
need to grasp the development architecture. to the build layout increases.

In fact, all people interacting with the software system Another insight into the complexities of maintaining
from the design phase on (except for end users) will have to build systems comes from Robles 24 who investigated
deal with the build system at some time. This means that,deal wthe role of various non-source code artifacts in open sourcegiven tool support, a lot of useful data can be mined from software. For the KDE desktop environment (in its GBS-
it. The recovered knowledge can serve both for comprehen- era), he found that there were many big atomic commits of
sion [11I] as well as for re-engineering purposes. build files, whereas one would expect commits to containHistorically, build tools have suffered from a lot of both source code and corresponding build modifications.
problems hampering understandability and maintainability. He blames this on two things: (1) the build system needs"Make" and its direct derivatives attached semantics to syn- to change very frequently; (2) build scripts are tightly cou-tactic elements like tabs and spaces, and also made it easy pled, so most changes percolate through many of them at
to access non-portable shell scripts and commands. Worse,

o

whereas the specification of dependencies is a good thing, once.
manually managing them is tedious and error-prone. Even To summarise, support for both reverse- and re-
the use of dependency generators like mkdepend or newer engineering techniques is needed to maintain build sys-
build tools like SCons does not conceal the real cause: the tems. The next section will install a list of requirements
search for build script modularity. Software projects nor- for achieving this.
mally define components and layers to distribute function-
ality and effort. This implies that having only one global
build script is not feasible and that a more modular approach 3. Requirements
is needed, mimicking in fact the source code architecture. In
the UNIX world, this problem is usually solved by means
of the so-called "recursive make"-technique [16]: a build To address the problems mentioned in the previous sec-
script in the top-level directory invokes build scripts in each tion, we list five requirements a reasonable solution should
subdirectory and so on until the whole system is built. provide, as well as some important trade-offs.
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3.1. Functional requirements 1 all: A.class app.jar
A.class: A.java ; javac A.java

Visualisation - Build systems typically consist of hun- 3 app.jar: ; jar cf $@ A.class
dreds of scripts, whether they adhere to a recursive build
(section 2) or not. As a consequence, it is nearly impossible Figure 2. Example makefile.
to get a complete view of the resulting system. Hence the
need for a more visual representation of the whole system.

It is not hard to foresee that there will be a vast amount values of variables and macros are present. Unfortunately,
of information, so measures should be taken to make data they correspond to just one run on one particular build plat-
more digestible. Filtering springs to mind (see further form. Instead, the static data contains all information across
down), but more simple features like color coding, layout- any supported build platform, which makes it easier to rea-
ing and zooming, would also help. Interactivity is key. son about and to refactor across various platforms. The

Querying - It should be straightforward to query for complexity in reliably processing and linking build compo-
specific information about a particular build target, to find nents together from the static data is, however, much higher.
commands, etc. Such a feature can also be used to filter in- Common errors such as misunderstood macro expansions
formation, by selecting various targets based on some user- are particularly hard to resolve as well.
defined criteria. Metrics can be calculated to gauge certain Implicit dependencies - Consider the three rules in
build characteristics. the makefile of Figure 2. The first one (line 1) states that

Filtering - As mentioned before, the user should be target "all" requires both a file named "A.class" as well
able to filter out redundant information like unimportant as an archive "appjar". The former is built from a Java
files or other build parts. We need more than that, as we also source file named "Ajava" (line 2). The rule for the lat-
want to define new views of the build, e.g. to abstract away ter (line 3), however, does not explicitly specify its depen-
low-level details of a build idiom, to generate a build-time dencies; it only mentions them in its command list. In this
view (see section 4.1 for more details) or even to recover the case, "A.class" is an implicit dependency of "app.jar". More
design of the source code. Therefore, we want to enhance complex situations exist where (quoted) shell commands
filtering with more powerful abstraction capabilities. evaluate at run-time to the actual build dependencies (an-

Refactoring - Legacy build systems suffer from simi- other example of why it is so hard to work from the static
lar problems as legacy source code [3]: they are very hard description of build systems; see previous point). This phe-
to understand, but need to be changed continuously to cope nomenon obscures the build, hampers incremental compila-
with evolution. Refactoring of the system should there- tion and breaks build parallellisation. E.g. if the "app.jar"-
fore be possible, exploiting knowledge of the build system. target would be built directly, "make" will not try to remake
In addition, simulation of the effects of refactorings would "A.class", possibly resulting in an incorrect build.
provide a valuable aid. If everything works out, the modifi- Implicit dependencies should be tangible to the user, in
cations can be applied to the actual build system; if not, we order to really understand what is going on during a build.
can just "roll back". Of course, one should take care that
the refactoring remains applicable across all configurations. 4. Existing tools and techniques

Validation - Detecting bugs in the build system itself
is hard. We can make a maintainer's life easier, e.g. by find- Various categories of related work exist, but, as we will
ing dead code or looking for circular dependencies. A lot see, none of them fulfill all our requirements. Querying,
harder is the detection of implicit dependencies (see next refactoring and validation remain largely unexplored.
section) or validation of a refactoring. In general, some
kind of model checking approach is needed, where style 4.1. Reverse-engineering community
rules, idioms, error patterns, etc. can be modeled and then
checked on the existing build system. Qiang Tu and Michael W. Godfrey [25] have proposed

the build time architectural view as a proper addition to
3.2. Design trade-offs Kruichten's "4+1" View model [15]. It is mainly targeted

at documenting the high-level architecture of build systems
Static vs. dynamic data - An important decision is (visualisation), e.g. to describe a new architectural style

whether one wants to manipulate a model of the static build found within GCC and the Perl interpreter. In practice,
and configuration scripts, or of an actual (dynamic) build the Build Time View (BTV) Toolkit accomplishes this us-
run instead. In general, it is easier to obtain data from the ing the grok tool [19], which filters low-level facts gener-
dynamic build (e.g. through traces) than it is to analyse ated by an instrumented version of "make" (dynamic model
the static description of the build. In addition, the actual of section 3.2). The BTV Toolkit's current prototype only
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extracts build-time facts, although conceptually build time dependency :GUESS-
graph

views also take source code into account. As build time
views focus on conceptual reverse-engineering, our query- - ----A-- DB
ing, refactoring and validation requirements are not met. build trace

There are also quite some similarities with reverse-
engineering approaches based on so-called fact extractors.
In this field, data extracted from source code [18, 4, 20, 13, P G
5, 10, 12], object files [11, 23], etc. is stored as facts and re- ----------------------------------

lations between them. Using a query language, these facts
can be filtered, reduced and composed (using human inter- Figure 3. Outline of MAKAO's architecture.
vention) into a high-level architecture of a software system.
Dali [13] (recently renamed to ARMIN) already exploits rectories, etc. Build Audit transforms build traces in more
build-related facts in addition to source code to obtain a structured HTML or text formats, while mkDoxy is a docu-
graph model of a system. Human experts need to derive mentation tool for "make" scripts.
and define patterns in this model to gradually obtain a high-
level model. These patterns are expressed as SQL-queries.
None of these techniques, however, target querying, refac- 5. Design and implementation
toring or validation.

We will now present the implementation of a reverse-
4.2. Re-engineering community and re-engineering framework for build systems, named

MAKAO (Makefile Architecture Kernel featuring Aspect
In [8], include dependencies of CiC++ systems are Orientation'). It is designed according to the requirements

restructured in order to speed up builds. A reflexion set out in section 3. Figure 3 shows the architecture.
model [21] is used to expose any divergences and absences
w.r.t. a proposed source code architecture. All repair ac- 5.1. Build system representation
tions undertaken are used to control directory and header
file restructuring. In fact, the build system is refactored by Our visualisation requirement of section 3.1 can eas-
restructuring the source code using a modified GCC. As a ily be satisfied, as "make" is actually based on a Directed
side-effect, the build and the software architecture become Acyclic Graph (DAG) [9] in which nodes are targets and
easier to understand, as they are better structured now. As edges represent dependencies between those targets. DAGs
this technique relies on modification of the source code, have lots of favorable characteristics, one of them being
however, it can not be applied to build systems in general. their natural visualisation, so we adopt them as the main

Di Penta et al. [23] proposed a framework for renovating model.
software based on a dependency graph of binaries and ob- As for the static versus dynamic trade-off, we opt for a
ject files. Using genetic algorithms, clustering techniques hybrid approach in which dynamic data is enhanced with
and human intervention the are able to detect and throw static information such as the build rules and unevaluated
away redundant object dependencies and clones. targets. Problems are usually first encountered when run-

ning a build for a particular configuration, so a bottom-up
4.3. Enhanced build tools approach starting from the dynamic model for that config-

uration makes sense. Extracting the relevant static data and

The tools in this section each target only one of our re- linking it to the actual makefiles is therefore sufficient.

quirements. Remake is an improved GNU Make with ex- Retrieving a build's dependency graph can either be done
tra tracing capabilities and a debugger. One can set break- using a modified "make" (as "BTV Toolkit" does; see sec-

points, step through the build and evaluate expressions. An- tion 4.1) or by parsing the trace output produced by the build
other debugger named "gmd" is implemented completely tool. Because of its loose coupling, we currently use the lat-

using "make" macros. Tools like Antelope, AntExplorer ter option. It is important to stress that, as most build tools
and Openmake Bud Mshare "make"'s dependency-based model, most of them canandOpemakBuld onior llo lie vsuaisaionof be supported by MAKAO. In fact, apart from GNU Make,

build runs. Makeppgraph creates a build dependency graph .
s

we already provide support for ClearMake.in which colors are determined by file extensions. There IS detect pidependenciewea lev
f)"v lmio.- fitot," rf"tnI "d"f)no-arfm'o fr nlia- To detect implicit dependencies we leverage the Bashonly limited filtering control, and no refactoring or valida-
tiosppot.Vizntis smilr oolfo An fie.Fnly shell's "xtrace" option, which prints every single executed

* . ' ~command to the trace file, with all arguments expanded. Itthere are some tools to assist "make" users. Maketool 15 ___________
an IDE for makefiles providing colored logs, collapsed di- 1Downloadable from http://users.ugent.be/-badams/makao/.
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then suffices to select all names with an extension (e.g. ".c") service provider. Some ten years ago they developed a suite
which are not listed as target or dependency of the enclosing of applications written in C and built using "make". Due
rule. This may, of course, ignore implicit dependencies on to successive health care regulation changes, this service
certain files, such as Linux binaries, which typically have has been re-engineered. They also migrated from a non-
no extension. False positives can also occur. ANSI C to an ANSI C platform. During this move the orig-

inal manually written makefiles have been converted to an
5.2. Implementation automake-based system, although some old makefiles still

persist and others have been tweaked manually. This C sys-
We opted to build MAKAO on top of GUESS [2], tem comprises of 272 makefiles (4683 SLOC3).

a graph exploration tool with an embedded Jython-based The Linux kernel has been used extensively by other
scripting language named Gython. Graphs can be loaded researchers, e.g. in [5, 6]. It uses [1] a custom "make"-
from file or from an embedded database. All nodes, edges approach named "Kbuild" together with the "Kconfig"-
and hulls are objects with their own user-definable attributes framework for easy configuration of the various kernel
(name, concern, line number, etc.), which enables easy modules. There are various frontends for the end user to
querying, navigation and refactoring of the graph. select the desired components. These choices eventually

While Gython could also be used for filtering and val- end up as variables controlling the build scripts. There are
idation, symbiosis with a declarative rule-based approach about 859 build scripts (±13147 SLOC) and 345 configura-
offers more advantages [17]. We therefore integrated the tion files (±51489 SLOC) involved in the 2.6.16.18 kernel.
SWI Prolog engine into GUESS, in which an equivalent
logical representation of the graph model is kept in sync 6.1. Visualisation
with GUESS's internal model.

Figure 4(a) shows the dependency graph (4040 nodes
5.3. Refactoring using AO and 6207 edges) of Kava's build system, as presented by

MAKAO. The overall layout of this graph has been taken

There are various ways to model build system refactor- care of by the GUESS framework. Figure 4(b) shows a
ings, but we opted for an aspect-oriented [14] approach more detailed view of the marked subgraph of Figure 4(a).
(AO). Basically, a pointcut first selects all relevant join Every target has a color based on its concern, i.e. the
points where advice should be woven during the build. Join type of file indicated by its extension (see the legend on top
points are moments during a build where one would like to of Figure 4(b)). Edges have the same color as their destina-

enhance the existing behaviour (advice) e.g. with new com- tion node. MAKAO initially defines only a couple of build

mands, extra dependencies, new rules, etc. Physical weav- concerns, like c source files and o object files. One can add

ing in MAKAO boils down to modifying the build scripts, other concerns to MAKAO's list and assign a color, or even
but before doing that one can first experiment merely doing a different symbol. By doing this we can try to separate out
logical weaving on the in-memory build model in the tool. all the different types of targets.

For limited refactorings, MAKAO's reverse-engineering The filled polygons on Figure 4(a) and 4(b) are convex
capabilities are sufficient as it is much easier to just manu- hulls, enclosing all nodes having the same value for a spe-
ally change build scripts. As soon as changes need to mi cific characteristic. In MAKAO, we chose as characteristic

gle with e.g. existing command lists (tangling) or need to the name of the makefile specifying the target. The transpar-
be distributed across various places in a context-dependent ent colors of these hulls are chosen at random and conveybe~~~~ ~ ~ ~ ~ ~~~~~~~n semantict meanin theou *usteaid viua reco nition.leway (scattering), tool support is required. AO is a perfect fit no semantic meaning; they just aid visual recognition.
for these kinds of refactorings. When looking at Figure 4(a), we can definitely say that it

reflects a pure recursive build. Many hulls are disconnected
and pointing outwards, with exactly one incoming edge and

6. Applications no outgoing ones. These assumptions are confirmed when
browsing through the makefiles later on.

In order to assess the design and implementation of Figure 5(a) shows the dependency graph (3015 nodes
MAKAO, we will now apply it on some typical build- and 8308 edges) of the Linux 2.6.16.18 kernel, more in par-
related problems in the Kava system and the Linux ticular the "bzlmage"-target. This DAG looks very different
2.6.16.18 kernel. This section will report on these exper- from that of Kava. Apparently, there is an unknown core
iments in the order of the requirements set out in section 3. (light purple), depending (as expected) on object files (red)

Kava2 is a non-profit organization of over a thousand and .c files (blue) respectively. There are also two clusters
Flemish pharmacists which has evolved into a full-fledged of header files (yellow). These correspond to two places

2TheRoyalPharmacists Association ofAntwerp, seehttp: //www.kava .be. 3Calculated using http://www.dwheeler.com/sloccount/.

118



(a) (b)

Figure 4. (a) Kava's build dependency graph in MAKAO. (b) Marked subgraph in detail.

fn.,

(a) (b)

Figure 5. Linux kernel 2.6.16.18 ("bz(mage"), (a) before and (b) after filtering.

where custom and system header files are checked. Hulls gets a useful qualitative view of a build system.
are rather concentric and the DAG is much more dense, so
this does not look like a recursive build at first sight. We will 6.2. Querying
see later on (section 6.3) how we can untangle this DAG to
get a better understanding. We now show some examples of Gython queries for find-

To summarise, even without full querying support, one ing more specific information from the graphs.
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Error detection - Occasionally, we encountered some In addition we might check whether multiple makefiles use
error messages during the build of the Kava system. In this directory for their output or whether this is only one
MAKAO, we can write the following simple Gython query makefile's territory:
to investigate this: 1 set((dir==build_dir).makefile)

1 (error==O).visible=O This expression returns the set of all makefiles of which tar-

The expression between the parentheses gives us the so- gets are produced inside bu ld-di r.
called "node set" of all targets in which the "make" e r r o r
status was zero, i.e. the targets which did not fail. We then 6.3. Filtering
hide all these targets by setting their visible-attribute to
zero. This leaves us with a minimal subgraph starting from In section 6.1, we saw that the Linux DAG was rather
the main target to all failing targets. From this, the Kava de- unclear, as it was very compact (Figure 5(a)). In order to
velopers were able to tell that the failing targets correspond remedy this, one could try to manually collapse nodes one
to dead code. In the meantime, this has been cleaned up. by one, or maybe provide a script to do this [22]. Unfor-

Tool mining- Knowing that the Kava system contains tunately, this is far too coarse-grained and limited, as each
both .c and .ec files, we want to find out what compiler is system can exhibit some special idioms. The Linux build
used. By querying the commands-dictionary for some of e.g. uses "shipped" targets. These are binary blobs or files
these nodes' command lists, we can quickly discover the generated by e.g. lex or bison. which are copied to a source
use of tools like "gcc" and "esql". To ensure that there are file or can be overridden locally. Exploiting knowledge of
no nodes making use of some other compiler, we can issue these idioms leads to more effective filtering.
the following query: Filtering the build dependency graph also gradually

raises the abstraction level. If no important dependencies
1 Ts=(concern=="c").inEdges.nodel.findNodes() are removed, we end up with a high-level view of the soft-
base=[T for T in Ts if not ware itself as seen through the eyes of the build system. To

3 using tool (t, [ gcc""esql" ] this end, we will use a user-customisable set of logic rules

The first expression finds all source nodes (nodel) of to detect patterns in the graph and remove/add edges/nodes
edges pointing to .c targets, i.e. all targets depending on based on the results. The definitions of all these rules follow
.c files. (It is clear that proper detection of implicit depen- the same pattern:
dencies is important here, otherwise, we would be sure to 1 rule (name, Remove, Add, MayBeLost):-
miss some files.) Lines 2-3 then yield all targets T which %> rule logic.
are not using any of the compilers we already found. The

Here name reflects the intent of the rule. Remove and Add
us ingtool-function internally applies Java regular ex-
pression matching on the commands-dictionary. Iterating are lists of nodes/edges which are to be removed and added,

respectively. In addition MayBeLost is a list of nodesthis approach with newly found commands eventually gives c y. ,
which may possibly get disconnected from the main DAG,us all source-processing tools in use.

Name clashes - A "make" process has only one global in which case they should also be removed.
namespace shared by all targets, environment variables and Nodes and edges are represented like this:
macros. This can get tricky in non-recursive builds where node(ID, Name, Concern).
dozens of files are included in the main makefile. MAKAO 2 edge (TargetID, DependencyID, Time)
can detect these problems like this: We grouped the filtering rules for unravelling the Linux

1 [c for c in groupBy(localname) build into four phases, which we will now expand on.
if len(c)>1]

1. Simplification - Makefiles can include other files,
This snippet uses a list comprehension to first cluster the in which case there will be an edge from the makefile's
targets based on their local name, and then only keep the start target to the included makefile node. We call these
clusters with more than one target. For each returned clus- "meta-edges". They are useful for checking whether a build
ter's targets we can then check the makefile-attribute to is recursive, but not for simplification. As they are at the
see if there is a real name clash. meta-level, we consider their removal to be "semantics-

Where do compiled objects end up? - Another fre- preserving", i.e. mere simplification. The following rule
quent problem is finding out where build artifacts are stored. gets rid of them:
This is quite easy, e.g. for the file named "built.o":

rule(eliminate_meta, [edge(A,B,Time)]1,[],
build_dir=by_localname("built.o") [0].dir 2 [A,B]):

meta (A,B, Time).
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In this Prolog rule (named "eliminatemeta"), we remove
all edges from A to B which have been flagged as being meta
(line 3). No new edges or nodes are generated. We also in-
dicate that both node A and B could end up disconnected
from the DAG (line 2). The Time variable is used to se-
lect the correct dependency, as there may be more than one
between any two given targets.

2. Reduction - While exploring the Linux DAG, one
can see a node named "FORCE" on which lots of other tar-
gets depend. It turned out that this is a known GNU Make
idiom to have some targets always be remade (also known di

as "phony" targets). It is because of this node that Fig-
ure 5(a) turns out so compact and tied together. We can Figure 6. Circular dependency chain.
easily remove this node through a Prolog rule. This is re-
duction rather than simplification, because the FORCE tar-
get is essential to the build's semantics. As a result, the image correspond to giant object files linked from various
DAG opens up somewhat and a more conventional hierar- smaller object files. It is easy to detect these composite ob-
chical visualisation appears. At the same time, .c files and jects, as they exclusively depend on (lots of) other object
.o files are now separated better, giving rise to some small files, and their parent node is always the same one (named
clusters. The hulls still look the same. __bui id). The upper four nodes of Figure 6 illustrate this.

3. Abstraction - We will now take into account con- In combination with these composites, a phenomenon
ventional knowledge about dependencies between object we named "circular dependency chain" occurs. Figure 6
and source files. We first relate source code and object file shows the basic pattern and its control flow. The central
concerns, as in: (phony) --build target depends on all composite objects

1 source object (c,oa) (arrow 1), which of course depend on a number of simple
objects (arrow 2). The strange thing is that the latter de-

Facts for user-specific file types can easily be added. We pend on every possible subdirectory of their enclosing di-
can then write our abstraction as follows: rectory (arrow 3), and each of them points back to -bu l d

1 rule(abstraction_object, (arrow 4). To top it off, _build depends again on each
[edge (ObjNode, SrcNode, Time)], [, subdirectory (arrow 5).

3 [SrcNode]):- This circular dependency chain is actually a clever iter-
source_object(Source,Object), ation strategy the Linux developers added to their recursive

5 node (SrcNode,_-,Source), build in order to get rid of the side-effects explained in sec-\+ edge(SrcNode,_,_), tion 2. Indeed, to avoid that the evaluation order of targets
7 edge(ObjNode,SrcNode,Time), is of influence (cf. Figure 2), every subdirectory target will

node (ObjNode,_,Object).
rebuild _build to let earlier targets notice intermediate

This looks for a source node (line 5) without any dependen- changes. "Make"'s time stamp mechanism makes sure that
cies (line 6) and looks up its corresponding (line 4) object this iterative algorithm stops.
file (lines 7-8), i.e. the object node depending on it. We Wthis i diomingmind, b k u l e e
then remove the edge between these two (lines 1-2) and

Wit thsiimi 'id raigu l de aee

thenaremovethesoucedrgetsb ntesse tworh (lines 12) a "4" and "5" will open up the graph completely, and result inname th sourcetargetas a posible rphan (ine 3) the much more structured Figure 5(b). We can identify vanl-
Once source files are collapsed, one can abstract up to

applications byhidins.It is i
ous subsystems: (1) network support, (2) kernel, (3) file sys-applcatons yhdin objct ile andlibaris. I isim- tem code, (4) drivers and (5) architecture-dependent things.

portant to discriminate between applications linked directly This can be the starting point for further filtering.
from object files and applications depending on a source
file and a bunch of object files. In the latter case, it would
be safer to add an extra object dependency in between the 6.4. Refactoring
application and source target. For brevity, we do not show
the relevant logic rule. Having recovered all necessary knowledge either by vi-

4. Application specific idioms - At this point, the sualisation, querying or filtering, one can now refactor the
graph is sufficiently filtered to detect various idioms in it. build system using AO techniques (see section 5.3). As
Exploiting these, the graph can be abstracted further. We an example, we integrate a tool called Aspicere [26] into
easily detect a particular Linux build-idiom named "coin- Kava's build system based on the information gathered in
posite objects" [1]. The modules making up the kernel sections 6.1 and 6.2. Aspicere should be run before each C
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source file's compilation. We will now illustrate how to do A more advanced kind of validation could look at appli-
this for basic .c files. cation nodes which depend both on a source and its corre-

First, we search the targets T manipulating .c files and sponding object node without any connections between the
look up the relevant commands C in T's command list: two. Such an error is possibly introduced by implicit de-

Ts= (concern=="c").inEdges.nodel.findNodeso() pendencies. Other validation rules may focus on redundant
2 base=[(C, tool, T) for T in Ts dependencies between two targets (also transitively), detect

for C in commands[T.name] loops or non-object nodes pointing to source files, etc.
4 for tool in ["CC","gcc"]

if C.find(tool)!=-1 ] 7. Future work

For each triplet, we then compose a before-advice, i.e.
commands which should be invoked before every C: We aim to use MAKAO to investigate whether build sys-

6 before_advice= tems mimic the enclosing software's architecture and, if so,
["\n".join([C.replace(t,t+" -E -o ${<}"), how well. Another question is whether manually written

8 "aspicere.sh ${<} ${<}"1) build systems perform better on this than generated ones.
for (C,t,T) in base ] Currently, we only base ourselves on build scripts. Our

We simply want to feed Aspicere with the preprocessed .c goal is to be able to access configuration data too, e.g. au-
file. Preprocessing can be done by adding a preprocessing toconf's config.log-file. Then, the weaver is able to change
flag ("-E") to command C and redirecting output (line 7). the actual templates or configuration files instead of the gen-
Line 8 contains the actual invocation of Aspicere. erated makefiles. This could result in some kind of config-

Finally, the MAKAO weaver should weave the advice in uration simulator, in which various configurations can be
front of each command captured in bas e, both in-memory tested on virtual files. At the same time, a static build script
as well as in the proper build scripts: parser is another way to accommodate variant checking.

As a lot of reverse-engineering tools apply Holt's Tuple-
10cc_'eaver~weaver ("aspicere-co", 1) Attribute notation [ 19], we want to investigate this format in
cc_weaver.weave_before(

12 [T for (C,to,T) in base] order to add facts from source code extractors to MAKAO.
[C for (C,to,T) in base], This could lead to another solution for the implicit depen-

14 before_advice) dencies problem, and to better build validation.
We would also like to check out how to couple BTV

After weaving (lines 11-14), the commands-dictionary re- Toolkit's modified GNU Make to MAKAO, e.g. to see
flects the refactored command lists. If the advice had intro- whether this would work better in the realm of parallel
duced new targets, these would show up too. This is the so- builds as the build trace is not as reliable in such cases.
called "logical weaving", as it emulates a build refactoring Finll, we will tcnisnuo on validatn in or-
without touching the real build scripts. One can still undo der to more thoroughly assess refactorings.
changes, modify the pointcut and/or advice and reweave.

If the refactoring behaves as expected, one can execute
a Perl script generated during (logical) weaving. This will 8. Conclusion
modify the actual build scripts, where needed, to complete
the physical weaving. The script also has an undo option. Maintenance of build systems has proven to be hard due

to specific build tool implementation choices and scalability
6.5. Validation problems. Based on this, we have specified five functional

requirements and a couple of design trade-offs for tool sup-
We want to check that the refactorings from the previous port. None of the existing work tackled all of the require-

section did not introduce any errors. Some validation can be ments, especially querying, refactoring and validation, so
done using Gython scripts, but this is often slow (quadratic we designed and implemented our own: MAKAO.
complexity or worse). That is why we prefer to make use At its core, MAKAO offers a flexible Directed Acyclic
of the Prolog bridge to describe and check certain invariants Graph model of a dynamic build, which can be queried
which represent common mistakes or style abuses. and filtered imperatively (Gython) or declaratively (Prolog).

As a simple example, finding unused targets boils down To address refactoring, we proposed an aspect-oriented ap-
to the following Prolog rule, which finds all nodes from proach combined with logic rule-based validation. For each
which no edge starts and in which no edge arrives: requirement, we illustrated MAKAO's use on typical build

1unused(Target): problems in the Kava system and Linux 2.6.16.18 kernel.
node (Target,_,_), MAKAO showed itself as a useful, practical tool for

3 \+edge (Target,_,_), \+edge (_,Target,_) . re(verse)-engineering a build and for further build system
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research. The work on validation shows great promise for [13] R. Kazman and S. J. Carriere. Playing detective: Recon-
quality assurance of build systems. structing software architecture from available evidence. Au-

tom. Softw. Eng., 6(2):107-138, 1999.
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