
Fault Localization for Make-Based Build Crashes

Jafar Al-Kofahi, Hung Viet Nguyen, and Tien N. Nguyen
Electrical and Computer Engineering Department, Iowa State University, USA

Email: {jafar,hungnv,tien}@iastate.edu

Abstract—In large-scale software projects, build code has a
high level of complexity, churn rate, and defect proneness. While
it is desirable to have automated tools to help developers in
localizing faults in build code, it is challenging to build such tools
due to the dynamic nature of build code. Existing automatic fault
localization methods focus on traditional code and none of them
has such support for build code. This paper introduces MkFault,
a novel automatic tool/method to localize faults in build code
that cause run-time build failures. Given a test case that causes a
run-time crash in the execution of a Makefile, it returns a ranked
list of statements in the Makefile with their suspiciousness scores.
MkFault records the evaluation traces from Make code to identify
the corresponding concrete build rules and the execution traces
of those rules. It then uses those traces and its novel Bayesian-
like rating algorithm to give suspiciousness scores to the original
statements in the Makefile. Our empirical evaluation on real
faults in several open-source projects has shown that MkFault
can achieve high accuracy and help reduce a large percentage of
the lines of code that developers need to examine.

I. INTRODUCTION AND MOTIVATION

In a software project, building is a crucial process which
compiles, links, integrates, and converts source code, libraries,
and resources into independent deliverables and executable
files. To perform software building, developers write build
files in a scripting language to instruct a build tool (e.g.,
GNU Make [13] and Ant [4]) to execute the build commands
following the rules specified in the build scripts. In large
projects, build code has a high level of complexity, churn
rate, and defect proneness [21], [15]. Adams et al. [2] found
that build code in Linux co-evolves with source code with
increasing complexity. McIntosh et al. [21] reported that build
code continually evolves more complex and defect-prone due
to its high churn rate. Hochstein and Jiao [15] found that
11%–47% of test failures are build-related. While there exist
automated approaches to help developers in localizing faults
in traditional code, and in detecting smells in build code (e.g.,
MAKAO [3], SYMake [26]), or debugging Makefiles (e.g.,
ReMake [23]), none of them supports localizing a fault causing
a build crash in large and complex build code.

Figure 1 shows a Makefile specifying the rules to build
a program from the corresponding source code in Java or C.
Make processes a Makefile in two distinct phases:

1) Evaluation phase: Make first processes the Makefile to
produce concrete rules and construct a concrete dependency
graph (CDG). A rule in a CDG specifies a dependency between
prerequisites and targets, and a recipe (i.e. shell commands)
to build the targets from their prerequisites. Figure 2 displays
the rules after the evaluation phase on myMakefile, provided that
the environment contains Java source files.

2) Execution phase: With its internal representation of
concrete rules, Make executes the required recipes to generate

1 WSPACE := wp
2 SRCFILES := $(foreach dir, $(WSPACE), $(wildcard $(dir)/*.java))
3
4 ifeq ($(strip $(SRCFILES)),)
5 SRCFILES := $(foreach dir, $(WSPACE), $(wildcard $(dir)/*.c))
6 CMPFILES := $(SRCFILES:.c=.o)
7 ext :=
8 build = link /out:$@ $ˆ
9 else

10 CMPFILES := $(SRCFILES:.java=.class)
11 ext :=. jar
12 build = jar cf $@ $(CMPFILES) $(WSPACE)/lib.jar
13 endif
14
15 %.class: %.java
16 javac −classpath $(WSPACE) $ˆ
17
18 %.o: %.c
19 $(CC) −c $(CFLAGS) $ˆ −o $@
20
21 cleanCmd = for /f ‘‘ usebackq” %%i in (‘dir $(WSPACE) /s /b ˆ| findstr / vi

‘‘. java$$.c$$”’) do del /q %%i
22
23 clean:
24 $(cleanCmd)
25
26 program$(ext): $(CMPFILES)
27 if exist $@ (\
28 del / f $@)
29 $(build)
30
31 all : clean program$(ext)

Fig. 1. myMakefile: An example of a Makefile

1 wp/Main.class: wp/Main.java
2 javac −classpath wp wp/Main.java
3
4 wp/Util .class: wp/Util . java
5 javac −classpath wp wp/Util.java
6
7 clean:
8 for / f ‘‘ usebackq” %%i in (‘dir wp /s /b ˆ| findstr / vi ‘‘. java$.c$

”’) do del /q %%i
9

10 program.jar: wp/Main.class wp/Util.class
11 if exist program.jar (del / f program.jar)
12 jar cf program.jar wp/Main.class wp/Util.class wp/lib . jar
13
14 all : clean program.jar

Fig. 2. Internal concrete rules after evaluation for Java (invisible from users)

targets from their prerequisites. For example, assume that Make
is invoked with the command ‘make program.jar’, the rule for
the target program.jar is executed (lines 10-12, Figure 2), which
causes the rules for Main.class and Util.class to be executed.

Errors. Figure 3 illustrates an error that occurred during the
execution of ‘make all’. According to the rule for target all
(line 14, Figure 2), the rule for clean should be processed
first, followed by the rule for program.jar. As seen in the error
message, the failure happened when the recipe to create the

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.87

527

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.87

526

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.87

526

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.87

526

1 wp/lib . jar : no such file or directory
2 make: *** [program.jar] Error 1

Fig. 3. Error in the execution phase on myMakefile

TABLE I. BUILD CODE COMPLEXITY

Systems Build SLOCs Vars Rules Paths Max Included
Files Files

SCST 49 1,786 876 112 154 10
Linux2.6-net 67 4,020 3,425 134 536 20
Gcc 68 5,350 1,980 804 75 5
Minix 95 2,374 632 121 95 95
Linux2.6-sound 98 1,255 973 135 98 10
Firefox-Gecko 156 6,374 1,991 2,635 621 130
Thunderbird 232 12,950 2,655 2,541 235 210

target program.jar was executed (lines 10-12, Figure 2), and it
was due to a missing file (wp/lib.jar).

Given that, it is not clear for a developer where the root
cause of the error is in the original myMakefile. The error
message is reported for a faulty concrete rule in Figure 2,
which is invisible from a developer. In this case, the error
occurred not because the rule to create program.jar itself is
incorrect, but because a previously executed rule (i.e., the rule
for clean) mistakenly deleted the library file wp/lib.jar (line 8,
Figure 2). The actual root cause of the failure in the original
myMakefile is at line 21 of Figure 1, where the faulty recipe
was assigned to the variable cleanCmd and was evaluated on
line 24, Figure 1, into the concrete recipe on line 8, Figure 2.

To learn more about the complexity of Make code, we have
performed a preliminary study on seven open-source projects
that use Make. As seen in Table I, developers must work on
a significant amount of build code, e.g., with 232 build files
and 13K lines of build code in Thunderbird. Importantly, in a
project, there are up to 2,635 build rules with up to 621 differ-
ent execution paths to build deliverables. Top-level Makefiles
also include up to 210 other Makefiles. Thus, it is desirable to
have automated tools to localize defects in Makefiles.

Challenges. It is challenging for a tool to localize such a fault:

1) The analysis for build dependencies among files is
not trivial due to the two-phase dynamic nature of Make. To
localize a fault, a tool needs to analyze not only the faulty
concrete rules but also their originating code in Makefiles.

2) A faulty rule may be unexposed and may manifest itself
as a crash only during the execution of another rule after it.
Thus, it is not self-evident what concrete rule is faulty and
responsible for a given build crash when running Make.

3) Current fault localization techniques on a regular pro-
gram often leverage multiple passing and failing test cases for
it. However, creating test oracles for a Makefile is challenging
due to the task of determining the expected output for a run
on the Makefile. Thus, to localize a build fault, a tool has only
one failing test case that causes the crash.

In this paper, we introduce MkFault, a tool to help localize
faults in build code written in Make that lead to run-time
crashes in the execution phase. Given a test case that causes
a run-time crash during the execution of a build script (a
Makefile), MkFault returns a ranked list of statements in the
Makefile with suspiciousness scores. We instrument MkFault’s

������

��	
���

���

��	
���
����������

�����		

�����		

�������

�������

������

���

�����

��
��

�
����

�����������

������

������

��

�����

������

� ���!�"	�"��������

������

�������

�!��	#

�$��"!	��

��������

���

�������

Fig. 4. The E-trace of the target program.jar on line 26 of Figure 1

code into GNU Make to record the code locations in the Makefile
that were used to generate the concrete build rules when the
test case was run. That is, for each character in a concrete build
rule (target, prerequisites, or recipe), MkFault is able to map it
to the sequence of corresponding statements in the Makefile,
which we call an evaluation trace. Our instrumented code also
records the execution trace via the concrete build rules during
the execution phase, as well as the crash point (i.e., the con-
crete rule where the execution stops). Given the crash point and
the execution and evaluation traces for a single test case, our
novel rating algorithm will compute the suspiciousness scores
in the Makefile via a Bayesian-like probability computation.
Our empirical evaluation on real faults in several open-source
projects showed that MkFault achieves high accuracy (up to
88.6% for top-5 accuracy) in localizing build faults causing
crashes, and reduces 81.7%–95.7% of the lines that developers
need to examine. Our key contributions include

1. MkFault, an automatic fault localization method for local-
izing build faults in Makefiles that can cause build crashes,

2. An empirical evaluation on MkFault’s accuracy and useful-
ness in localizing build code errors.

II. DYNAMIC INSTRUMENTATION

This section describes MkFault’s instrumentation into GNU
Make to build the evaluation trace and execution trace of the
concrete build rules. These traces will be used in our rating
algorithm to localize faults on a Makefile (Section III).

A. Evaluation Trace of Concrete Build Rules

The concrete build rules in the CDG (including their tar-
gets, prerequisites, and recipes) are often computed, composed,
and manipulated at different code locations in a Makefile.
For example, the target program.jar on line 10 of Figure 2
is generated from the expression program$(ext) on line 26 of
Figure 1, in which ‘program’ is a string literal and $(ext) is a
variable which is assigned with the string ‘.jar’ at line 11 of
Figure 1.

To capture that process, we develop E-trace, a model for
tracing the generation of the concrete build rules. Different
node types are designed to model the elements in each step.

Definition 1 (E-trace): An E-trace (evaluation trace) is a
labeled, directed, and acyclic graph representing how the

528527527527

��������	��

�

�
��

���

���
��
���

������
��
���

���������	
�����������

������
�	��
��

��������������

����������

���������

������
�	���

������

������
�	���

����������

���������

������

������

���� �
��������������

���

�� ���

���� ���������
�

�

�!

�"

�#

�$

�%

�������	
���
���
����
����	�
���

������
���	�
�

�����
����
�

��������

Fig. 5. The CDG and the execution trace of myMakefile with the crash at N9

concrete build rules in a CDG are computed and manipulated
through Makefile’s program elements. A node refers to an
expression at a code location in the Makefile. The edges
represent the evaluation flows among those expressions.

Figure 4 shows the E-trace that produces the target pro-
gram.jar resulted from the evaluation of myMakefile (Figure 1).
The left-hand side of Figure 4 shows the computation steps
from lines 1-4 of Figure 1, which lead to the comparison
operator of the ifeq statement (line 4). Since the current
evaluation is for a configuration with Java, it continues with the
else branch (line 9), whose E-trace is partially shown in the
dotted rectangle. The target program.jar is concatenated from
the string ‘program’ (modeled by a Literal node) and the variable
$(ext) (modeled by a Reference node, line 26), whose value is
obtained via a variable assignment (line 11). All code locations
on the E-trace for a rule component contribute to the creation
of that component and are considered in localizing faults.

B. Execution Trace of Concrete Build Rules

In the execution phase, Make processes the concrete build
rules in the CDG and executes their recipes. For a given rule r
and a target t specified by r, Make first processes the rules to
create the prerequisites of t and then executes the recipe given
by r to create target t. If the target is already updated, Make will
skip processing the prerequisites’ rules and the recipe. MkFault
instruments GNU Make to follow this process and records the
execution trace of the rules and recipes executed by Make.

Figure 5 shows the CDG of myMakefile for Java and the
execution trace to the crash point when the recipe to create
program.jar was being executed. The execution trace, which is
built from the CDG, includes not only the executed recipe
nodes, but also the target/prerequisite nodes to indicate that
resources are created after recipes are executed. In the trace,
for a given rule, the prerequisites’ nodes are placed before the
recipe’s node, followed by the target’s node. The order among
the prerequisite nodes is the same as their appearance order
in the rule. For instance, for the target N5, in the trace, the
prerequisite N3 is placed first, then the recipe N4, and finally
N5. In this example, the execution trace in MkFault is N1–N9.

When a crash takes place, the target of the current rule
cannot be produced (e.g., the target program.jar at N10 cannot

be created due to the crash at N9). Thus, after the crash, the
execution is said to be in an incorrect execution state.

Definition 2 (Execution state): The execution state (or
state for short) during the execution phase is the set of
files/resources used in the execution and their contents.

In general, an incorrect state at a given rule can be caused
by a fault in the current rule, or propagated from a fault in the
rules for its prerequisites or its preceding target.

Definition 3 (Preceding target): A preceding target p (or
precedent for short) of a target t in an execution is the
last target that is executed before t, except those that are
descendants of t in the CDG.

In Figure 5, the target clean is the precedent of the target
progam.jar. A target’s prerequisites, precedent and their execu-
tion states will be used in the fault localization step.

III. FAULT LOCALIZATION ON MAKEFILES

Since Make processes a Makefile in two phases, when a
crash occurs, MkFault localizes the fault in two steps corre-
sponding to those two phases: The first step aims to identify
the faulty rule in the CDG that leads to the crash, while the
second step pinpoints the location in the original Makefile that
is responsible for generating that faulty rule.

A. Computing Suspiciousness Scores on Concrete Depen-
dency Graph

In the first step, we distribute fault probabilities over differ-
ent nodes in the CDG. This process starts with the concrete rule
where the crash occurs with its probability of 100% for being
in an incorrect state. This incorrect state at the crash point
can be caused by the concrete rule at the crash point being
incorrect itself, or by the incorrect state of one of the rules
for the preceding target or prerequisites. Thus, the probability
is distributed among those three sources of inaccuracy. Then,
the distribution of probabilities continues for the nodes at the
preceding target and prerequisites. These probabilities decrease
multiplicatively with the number of nodes as the process
descends in the CDG further away from the crashing node. The
result of this step is the fault probabilities for all concrete rules.

Example. Let us illustrate our inference via an example
for myMakefile (Figure 6). First we define the following random
variables to represent an execution state and address the three
causes of an incorrect execution state.

Definition 4 (Correct/incorrect state): Let S(r) be a ran-
dom variable that represents the event that the execution after
executing a rule r is in a correct state (S(r) = True) or in an
incorrect state (S(r) = False).

Definition 5 (Correct/incorrect rule): Let R(r) be a ran-
dom variable that represents the event that a rule r is correct
(R(r) = True) or incorrect (R(r)= False).

Definition 6 (Exclusively (in)correct state): Let X(r) be a
random variable that represents the event that the state after
executing the rule r is correct (X(r) = True) or incorrect (X(r)
= False), assuming that the state after executing the preceding
rule of r is correct (S(Prec(r)) = True). If r does not have a

529528528528

P(¬S(N10)) = 1

P(¬R(N10)) = 1/3 P(¬S(N2)) = 1/3 P(¬X(N5, N8)) = 1/3

P(¬X(N5)) = 1/6 P(¬X(N8)) = 1/6P(¬R(N2)) = 1/3

P(¬R(N5)) = 1/12 P(¬X(N3)) = 1/12 P(¬R(N8)) = 1/12 P(¬X(N6)) = 1/12

program.jar

clean

wp/Main.class wp/Util.class

wp/Main.class

wp/Main.java wp/Util.java

wp/Util.class

program.jar

clean wp/Main.class, wp/Util.class

Fig. 6. Computing probabilities for myMakefile’s concrete build rules (based
on the CDG in Figure 5)

preceding target, then X(r) = S(r). X can be applied to a
set of rules.

In Figure 6, the probability P (¬S(program.jar)) = 1
since program.jar is the crashed rule. This probability
is distributed among the three possible causes of
the crash, namely P (¬R(program.jar)), P (¬S(clean)),
and P (¬X(wp/Main.class, wp/Util.class)) (with each
value equal to 1

3). The last probability is divided
equally between the two prerequisites of program.jar:
P (¬X(wp/Main.class))=P (¬X(wp/Util.class))= 1

6 . These values
are then used to compute other probabilities in the same way.
For example, since the target clean does not have a target
or a prerequisite, P (¬R(clean)) = P (¬S(clean)) = 1

3 . The
algorithm finishes with the values of all P (¬R(r)) being
computed (highlighted nodes in Figure 6), indicating the
probability that a given rule is incorrect. Since the target
all is not found in the execution trace (hence the causal
graph), P (¬R(all)) = 0. As seen, the rule clean which
contains an incorrect recipe causing the crash is ranked at the
top-2 suspicious rules.

B. Localizing Faults on Makefiles from Fault Probabilities
on CDG

Given the fault probability of a concrete rule, MkFault
distributes that probability over all the code locations in the
Makefile that are responsible for generating the concrete rule
based on the E-trace of that rule. Due to Make’s dynamism,
one code location may contribute to the generation of different
concrete rules (e.g., the code location containing a variable
definition is involved with the rules in which the variable is
used). Thus, to compute the probability P (F (l)) that a given
code location l contains a fault, MkFault performs a summation
over the joint probabilities of l and all the concrete rules in the
CDG that are entirely or partly generated from l. Specifically,
let E(l) be the set of rules whose E-traces contain the code
location l, P (F (l)) can be computed as follows.

P (F (l)) =
∑

r∈E(l)

P (¬R(r))

|E-trace(r)|

The final result is a ranked list of locations in the Makefile,
each with an associated probability (i.e., suspiciousness score)
indicating the likelihood that it has a fault.

Example. Table II illustrates the computation of P (F (l)) for
all code locations in myMakefile (Figure 1). (P (¬R(r)) for all
the rules were computed from Figure 6.) As seen, in this
example, the location containing the root cause of the crash
(line 21) is ranked among the top 2-4 locations.

TABLE II. POBABILITIES FOR MYMAKEFILE’S CODE LOCATIONS

(a) P (¬R(r)) and E-trace of a rule r

Rule r E-trace(r) (Lines) P (¬R(r)) |E-trace(r)|
program.jar 26,27,28,29,11,4,2,1,12,10 1/3 10

clean 23, 24, 21, 1 1/3 4

Main.class 15, 16, 10, 4, 2, 1 1/12 6

Util.class 15, 16, 10, 4, 2, 1 1/12 6
all 31, 11, 4, 2, 1 0 5

(b) Computing P (F (l)) for a location l

Line l Sus. score (P (F (l))) Rank

1 0.144 1
21, 23, 24 0.083 2-4
2, 4, 10 0.061 5-7

11, 12, 26, 27, 28, 29 0.033 8-13
15, 16 0.028 14-15
Others 0 -

TABLE III. SUBJECT SYSTEMS AND THEIR COMPLEXITY

System Bugs MF LOC Vars Rules CDG CDG E-trace/ ExTrace
Nodes Edges Node

S1 13 14 2166 186 264 402 799 7 287
S2 18 1 437 15 23 404 636 5 470
S3 17 2 302 25 19 73 215 11 66

Tot/Avg 48 17 2905 226 306 293 550 8 274

IV. EMPIRICAL EVALUATION

We conducted an empirical experiment to evaluate Mk-
Fault’s accuracy and how it helps reduce efforts in localizing
Make build code faults. We first collected several open-source
subject projects from sourceforge.net that use Make as their build
language and have a long development history. They include
Dream Toolbox[12] (S1), GMod [14] (S2), and X10 [27] (S3).
We built a tool to select for each subject project the revisions
that have at least one modified Makefile. We randomly selected
one revision as a starting point. Then, we manually examined
the changes to the Makefiles as well as the commit logs to
determine if they were the bug fixes to build crashes in those
Makefiles. If such a build error was found, we compared the
current revision (fixed one) with the previous revision (buggy
one), and used the fixing change location in the buggy revision
as the root cause of the error. We collected that root cause
location and that buggy Makefile. We skipped non-crashing
faults, and the faults involving multiple fixing locations. Then,
we continued the process for the next revisions until we had
10-20 faults for each project and used them as an oracle.

In Table III, column Bugs shows the total number of bugs
collected for a project. For each revision containing a bug, we
computed eight complexity metrics and took the average num-
bers across those revisions. The next four columns show the
complexity of the Makefiles: the number of involved Make-
files, the number of LOC in those Makefiles and the number of
program elements including variables and rules. The last four
columns show complexity metrics collected in an execution
that results in a crash including the size of the generated CDG,
the average length of E-trace per CDG node, and the length of
the execution trace. As seen, to handle those complex buggy
Makefiles, one would need to have tool support as in MkFault.

530529529529

TABLE IV. MKFAULT’S FAULT LOCALIZATION RESULTS

Sys. TrLines Elow Ehigh Emean Top-1 Top-5 Top-10

S1 243 88.2% 98.9% 93.6% 18.3-83.3% 75-100% 83.3-100%
S2 26 80.2% 93.0% 86.6% 16.7-72.2% 27.8-83.3% 27.8-94.4%
S3 45 76.8% 95.3% 86.0% 15.0-76.5% 15.9-82.4% 17.6-94.1%

Avg. 104.7 81.7% 95.7% 88.7% 16.7-77.3% 39.6-88.6% 42.9-96.2%

For each bug in the oracle, we ran MkFault on the buggy
Makefile (and the included ones) to produce the list of suspi-
cious lines in the Makefiles with their suspiciousness scores.
We measured MkFault’s performance by its effectiveness score
and top-n accuracy. The effectiveness score E is defined as:

E = 1− Rank(fault)
TrLines

where Rank(fault) is the rank of the faulty line in MkFault’s
ranked list and TrLines is the number of lines that are involved
in the evaluation and execution traces of the Makefile (i.e., the
number of lines that a developer would need to inspect using
a debugger when detecting the fault). That is, the effectiveness
score E is the percentage of lines that need not be inspected
by the developer by using MkFault’s results. This measure has
been used in previous fault localization studies (e.g., [9]). A
higher effectiveness score indicates more effort being saved in
fault localization. If the faulty line has the same suspiciousness
score with other lines, its rank can vary from the smallest to the
largest ranking number for that set of lines (called Sfault set).
For example, with the following suspiciousness scores assigned
to lines L1 to L5: L1=0.7, L2=0.3, L3=0.5, L4=0.9, L5=0.7,
and assuming L1 is faulty, then Sfault={L1, L5} and L1 can
rank either second or third out of the five lines. To address
such cases, we compute the effectiveness score as both Ehigh

and Elow for the highest and lowest ranks of Sfault (for the
previous example, Ehigh = 60% and Elow = 40%). We also
recorded the effectiveness score for the mean rank (Emean).

For top-n accuracy, we count the number of times (or hits)
that the faulty line is ranked among the top n of the ranked
list returned by MkFault. Top-n accuracy is measured by the
ratio of the number of hits over the total localization cases.

Results. Table IV shows the results. For top-n accuracy, each
cell has two numbers corresponding to the cases where the
faulty line is to be ranked at the highest or the lowest among
the set of lines with the same score. As seen, Ehigh is in
93.0–98.9%, and Elow is in 76.8–88.2%. On average, Ehigh

is 95.7%, Elow is 81.7%, and its mean Emean is 88.7%.
Thus, MkFault has high effectiveness and could help save
debugging effort of 88.7% on average. Also, MkFault can
achieve high accuracy. In up to 77.3% of the cases, a single
recommended location contains the fault. In up to 88.6% of
the cases, one could find the fault in the first 5 recommended
lines. The variance in top-n accuracy (e.g., 39.6–88.6% for
top-5) is due to the fact that the faulty line often shares the
same suspiciousness score with other lines and their rankings
range from less than the n-th rank to more than the n-th rank
(i.e., falling out of the top-n result). The complete results are
on our project’s website [22].

V. CONCLUSION

Building is an important process in software development.
This paper presents MkFault, a novel method to localize faults

in build code that cause run-time build crashes. MkFault
records the evaluation traces from Make code statements that
produce the corresponding concrete build rules and the execu-
tion traces of those rules. It then uses those traces and its novel
rating algorithm to give suspiciousness scores to the original
statements in the Makefile. Our empirical evaluation on real
faults has shown that MkFault is highly accurate and helps
reduce the number of lines of code that need to be examined
in fault localization.

REFERENCES

[1] Action Game. http://sourceforge.net/projects/actiongame/.

[2] B. Adams, K. D. Schutter, H. Tromp, and W. De Meuter. The evolution
of the linux build system. Electronic Comm. of the EASST, 2007.

[3] B. Adams, H. Tromp, K. De Schutter, W. De Meuter. Design recovery
and maintenance of build systems. In ICSM’07. IEEE, 2007.

[4] Apache Ant User Manual. http://ant.apache.org/manual/.

[5] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, M. Ernst.
Finding bugs in web applications using dynamic test generation and
explicit-state model checking. IEEE TSE, 36:474–494, July 2010.

[6] Blood Frontier. http://sourceforge.net/projects/bloodfrontier/

[7] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani.
Holmes: Effective statistical debugging via efficient path profiling. In
ICSE ’09, pages 34–44. IEEE CS, 2009.

[8] S. R. Clark, J. Cobb, G. M. Kapfhammer, J. A. Jones, M. J. Harrold.
Localizing SQL faults in database applications. In ASE’11. IEEE, 2011.

[9] H. Cleve and A. Zeller. Locating causes of program failures. In
ICSE’05, pages 342–351. ACM, 2005.

[10] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization
for java. In ECOOP, pages 528–550, 2005.

[11] N. Dor, T. Lev-Ami, S. Litvak, M. Sagiv, and D. Weiss. Customization
change impact analysis for erp professionals via program slicing. In
ISSTA ’08, pages 97–108. ACM, 2008.

[12] The DREAM Toolbox. http://sourceforge.net/projects/dreamtoolbox/

[13] S. I. Feldman. Make: A program for maintaining computer programs.
Software Practice, 9:255–265, 1979.

[14] GMOD. http://sourceforge.net/projects/gmod/?source=directory.

[15] L. Hochstein and Y. Jiao. The cost of the build tax in scientific software.
In ESEM ’11. IEEE CS, 2011.

[16] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In ASE ’05. ACM, 2005.

[17] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In PLDI ’05, pages 15–26. ACM, 2005.

[18] S. Litvak, N. Dor, R. Bodik, N. Rinetzky, and M. Sagiv. Field-sensitive
program dependence analysis. In FSE ’10, pages 287–296. ACM, 2010.

[19] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: statistical
model-based bug localization. In FSE ’05, pages 286–295. ACM, 2005.

[20] S. Mani, V. S. Sinha, P. Dhoolia, and S. Sinha. Automated support for
repairing input-model faults. In ASE ’10, pages 195–204. ACM, 2010.

[21] S. McIntosh, B. Adams, T. Nguyen, Y. Kamei, and A. E. Hassan. An
empirical study of build maintenance effort. In ICSE ’11. ACM, 2011.

[22] MkFault. http://home.engineering.iastate.edu/~jafar/mkfault/.

[23] Rocky Bernstein. Remake: GNU Make with comprehensible tracing and
a debugger. http://bashdb.sourceforge.net/remake.

[24] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo. Beyond source
code: the importance of other artifacts in software development (a case
study). J. Syst. Softw., 79:1233–1248, September 2006.

[25] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight fault-
localization using multiple coverage types. In ICSE ’09. IEEE, 2009.

[26] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen. Build
Code Analysis with Symbolic Evaluation. In ICSE ’12. IEEE, 2012.

[27] X10. http://sourceforge.net/projects/x10/?source=directory.

[28] C. Yilmaz, A. Paradkar, and C. Williams. Time will tell: fault
localization using time spectra. In ICSE ’08, pages 81–90. ACM, 2008.

[29] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated
predicate switching. In ICSE ’06, pages 272–281. ACM, 2006.

531530530530

