
SYMake: A Build Code Analysis and
Refactoring Tool for Makefiles

Ahmed Tamrawi
atamrawi@iastate.edu

Hoan Anh Nguyen
hoan@iastate.edu

Hung Viet Nguyen
hungnv@iastate.edu

Tien N. Nguyen
tien@iastate.edu

Electrical and Computer Engineering Department
Iowa State University
Ames, IA 50011, USA

ABSTRACT
Software building is an important task during software de-
velopment. However, program analysis support for build
code is still limited, especially for build code written in a
dynamic language such as Make. We introduce SYMake, a
novel program analysis and refactoring tool for build code
in Makefiles. SYMake is capable of detecting several types
of code smells and errors such as cyclic dependencies, rule
inclusion, duplicate prerequisites, recursive variable loops,
etc. It also supports automatic build code refactoring, e.g.
rule extraction/removal, target creation, target/variable re-
naming, prerequisite extraction, etc. In addition, SYMake
provides the analysis on defined rules, targets, prerequisites,
and associated information to help developers better under-
stand build code in a Makefile and its included files.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Algorithms, Languages, Management, Reliability

Keywords
Build Code Analysis, Maintenance, Refactoring, Code Smells

1. INTRODUCTION
In software development, software building is a crucial

process to produce the deliverables, executable code, and/or
documentations from source code and associated libraries.
A building process is specified in build files which contain
a set of rules that direct a build tool on how to derive the
target programs from their corresponding sources. Among
several build tools, Make [1], a build tool supporting build
code written in make dynamic language, is very widely used.
Despite its popularity, maintenance tool support for Make

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3-7, 2012, Essen, Germany
Copyright 2012 ACM 978-1-4503-1204-2/12/09 ...$15.00.

build code is still very limited. Due to the dynamic nature
of Make’s processing, it is challenging to build the analysis
tools for tasks such as refactoring or code smell detection in
Makefiles. Let us explain the challenges via an example.

Illustration Example. Figure 1 shows a Makefile that
specifies the rules to build the main, sender and receiver pro-
grams from the corresponding code in either Java or C, and
data files. To enable users to specify in a Makefile multiple
building configurations for different environments, program-
ming languages, or inputs, Make processes a Makefile in two
phases. In the first phase, called the evaluation phase, it
proceeds with the evaluation of all statements, variables,
and rules in the Makefile based on the input command and
the running environment. Make then resolves them into
a set of concrete build rules. For example, Figure 2 dis-
plays the result of the evaluation phase when a command
’make -f myMakefile’ is entered and the running machine has
Java installed. Each rule typically contains a set of tar-
gets, (e.g. sender.jar at line 3), a set of prerequisites, (e.g.
sender src.java, sender impl.java, sample.dat at line 3), and a
recipe (e.g. line 4), which is a set of OS Shell commands
to build the targets from the prerequisites. From that re-
sult, Make constructs a concrete dependency graph (CDG),
in which nodes are targets, prerequisites, and recipes, and
edges connect prerequisites to a recipe, or a recipe to tar-
gets. In the second phase, called the execution phase, based
on the CDG, it executes the Shell commands to produce the
target files from their prerequisite files, if the modification
time of a prerequisite file is later than those of target files.

Let us explain the content of myMakefile and how Make’s
evaluation phase is performed. Line 1 in Figure 1 aims to
check if the current machine has Java installed. The if state-
ment at lines 3-11 is used to set the respective extensions
for output files and source files, and the build commands
for two languages, Java and C. Lines 13-18 define the vari-
ables, which are used to specify the names of target files and
those of corresponding prerequisite files for both sender and
receiver sides. Line 20 defines the target install with its pre-
requisites being defined via the variable $executables. The
result of evaluating line 20 is line 1 of Figure 2. The value of
$executables is in turn used to define a target for the rule at
lines 28-29 whose results are two recipes for the sender and
receiver at lines 4 and 7 in Figure 2. The foreach loop (line
26) is used to iterate over the values of the variable $executa-
bles (i.e. two target files for the sender and receiver), and to
produce two building rules for them via the execution of the
macro function at lines 22-24. For the case of Java, those

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’12, September 3–7, 2012, Essen, Germany
Copyright 2012 ACM 978-1-4503-1204-2/12/09 ...$15.00

366

Sunshine
高亮

1 javaComp := $(shell which java)
2
3 ifneq ($(javaComp), ” ”)
4 ext = .jar
5 srcExt = .java
6 cmd = javac
7 else
8 ext = .o
9 srcExt = .c

10 cmd = gcc
11 endif
12
13 sender := sender$(ext)
14 receiver := receiver$(ext)
15 executables := $(sender) $(receiver)
16
17 $(sender) src= sender src$(srcExt) sender impl$(srcExt) $(wildcard ∗.

dat)
18 $(receiver) src=main rcv$(srcExt) socket$(srcExt) receiver src$(srcExt)
19
20 install : $(executables)
21
22 define ProgramMacro =
23 $(1) : $$($(1) src)
24 endef
25
26 $(foreach exec,$(executables),$(eval $(call ProgramMacro,$(exec))))
27
28 $(executables):
29 $(cmd) $∧ −o $@
30
31 %.dat : %$(ext)
32 getData $∧ −o $@
33
34 ifneq ($(javaComp), ’’)
35 main.jar : main.java javaConf.dat
36 installJava $∧ −o $@
37 else
38 main.o : main.c ccConf.data
39 installCC $∧ −o $@
40 endif

Figure 1: myMakefile: An example of build code

two resulting rules are at lines 3 and 6 of Figure 2 after they
are combined with lines 4 and 7. Lines 31-32 define an im-
plicit rule in Make. It is used for building any file that ends
with ’.dat’. In this example, the result after applying that
implicit rule is two concrete rules at lines 9-13 of Figure 2.
Lines 34-40 define the rules for building main.jar and main.o.

Challenges in Build Code Maintenance. The key chal-
lenge in supporting build code analysis is the dynamic nature
of Make’s evaluation. The reason is twofold.

Firstly, the analysis for the names of variables or targets,
and automatic renaming for them is not trivial. Since Make
is dynamic, the name of a variable (i.e. an identifier) can be
the result of the evaluation of other variables. For example,
at lines 17 and 18, the prefixes of the variables on the left-
hand sides are defined based on the values of the variables
$sender and $receiver. A regular text search tool also can-
not distinguish between the identifiers for variables and the
string values in Make code. For example, at line 13 (sender
:= sender$(ext)), the variable sender is defined as a concate-
nation of the literal sender and the value of the variable ext.

The variable at line 17 illustrates another challenge. Here,
the identifier of the variable $(sender) src is composed of
multiple sub-strings. If a user wants to rename the suffix src,
a tool must rename all of the three locations: $(sender) src
(line 17), $(receiver) src (line 18), and $$($(1) src) (line 23).
The reason is that, when executing foreach (line 26), at the

1 install : sender.jar receiver.jar
2
3 sender.jar : sender src.java sender impl.java sample.dat
4 javac sender src.java sender impl.java sample.dat −o sender.jar
5
6 receiver.jar : main rcv.java socket.java receiver src.java
7 javac main rcv.java socket.java receiver src.java −o receiver.jar
8
9 javaConf.dat : javaConf.jar

10 getData javaConf.jar −o javaConf.dat
11
12 sample.dat : sample.jar
13 getData sample.jar −o sample.dat
14
15 main.jar : main.java javaConf.dat
16 installJava main.java javaConf.dat −o main.jar

Figure 2: Result after the evaluation phase on build
code in Figure 1: ’make -f myMakefile’

first iteration, $$($(1) src) (line 23) will be resolved to the
name of the variable $(sender) src (line 17), and at the sec-
ond iteration to the name of $(receiver) src (line 18). There-
fore, $$($(1) src) (line 23) affects both the variables at lines
17 and 18, and the texts at all three locations must be re-
named consistently.

Secondly, automatic analysis for the dependencies among
prerequisites/targets is challenging. For instance, myMakefile
has a subtle error that causes a cyclic dependency in the con-
crete dependency graph. If a user enters ’make -f myMake-
file’ on a machine with Java, Make builds its CDG from the
code in Figure 2, and runs the rule install (line 1). It first
updates install’s prerequisites by running sender.jar (line 3)
and receiver.jar rules (line 6). Then, it successfully produces
sender.jar and receiver.jar. However, in a special situation,
a cyclic dependency among files could occur. The target
sender.jar depends on the files that are fetched from the cur-
rent directory with $(wildcard *.dat) (line 17). The cycle oc-
curs if there exists a file with the name sender.dat in the user
directory because to build sender.dat, Make matches that file
with the implicit rule at line 31, and adds the following rule:

1 sender.dat : sender.jar
2 genData sender.jar −o sender.dat

The new line 3 in Figure 2 now specifies that sender.dat
is a prerequisite for sender.jar. Thus, a cycle is now formed
because sender.jar and sender.dat are prerequisites of each
other. This causes an error in the execution phase. This
bug is difficult to detect statically and even at run time,
it is not likely to be detected because it depends on the
input and the user environment/directories. Due to Make’s
dynamic nature, similar difficulties also exist when a tool
wants to detect if a build rule is subsumed by an implicit
rule (e.g. the rule at line 31).

2. SYMake APPROACH
To address those challenges, we have built SYMake [2],

a tool to detect several types of code smells and errors in
Makefiles. SYMake also supports Make code analysis and
refactoring. There are two core techniques in SYMake. First,
to support static analysis on Make code, we develop a sym-
bolic evaluation algorithm [2] that analyzes a Makefile and
produces a data structure called a Symbolic Dependency
Graph (SDG). An SDG represents all possible build rules

367

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

install Select

rcp1

rcp2

sender.jar

receiver.jar

sender.o

receiver.o

rcp3 sender_src.java

sender_impl.java

SYM01

rcp4

rcp5

rcp6

Concat

'javac'

'sender' 'sender_src.java' 'sender_impl.java'

SYM01

V-model for rcp3

depends

depends

refers-to

literal node

target/

prerequisite

recipe node

Legend:

sym node
Concat

'.jar'

Concat

Concat

'sender_impl' Ref:srcExt

'.jar'

refers-to

V-model for srcExt

Figure 3: Symbolic Dependency Graph

and dependencies among targets and prerequisites via re-
spective recipe commands. It takes into account all possible
inputs and user environments by representing them via sym-
bolic string values. The second technique is an algorithm to
produce a symbolic evaluation trace, called a T-model, that
represents how a string value in the Makefile is computed
and manipulated via its program entities. A T-model is
similar in spirit to an execution trace in a regular program
execution and is used in the name analysis for a Makefile.

2.1 Symbolic Dependency Graph
An SDG has the following nodes: 1) target/prerequisite

nodes, 2) recipe nodes, 3) Select node to represent alterna-
tive dependencies from a target to either of multiple recipes
and prerequisites, and 4) a rule block contains all nodes/edges
related to a rule. An SDG differs from a Make’s CDG in that
a component of a rule (target, prerequisite, or recipe) in an
SDG might not be completely resolved into concrete strings
due to user inputs or environment values (e.g. $(wildcard
*.dat) in Figure 1). Instead, an SDG’s node, representing
a component of a rule, refers to a tree structure, called a
V-model, which represents the symbolic string values for the
component of the rule.

A V-model has two types of leaf nodes, literal and sym-
bolic, to represent concrete and unresolved string values,
respectively. There are three types of inner nodes. Concat
and Select node represent a concatenated string value and
a string value selected from the values corresponding to the
sub-trees of that node, respectively. A V-model also contains
a Reference node represents a reference to a variable. The
child of the Reference node is a V-model representing the
value of that variable.

Figure 3 shows part of the SDG and its V-models for Fig-
ure 1. The target node install (line 20) can have either of
the two different sets of prerequisites and recipes depend-
ing on whether or not Java compiler is installed (lines 3-11):
{sender.jar, receiver.jar} or {sender.o, receiver.o}. In turn,
sender.jar depends on the recipe rcp3 whose string content is
represented by its V-model. Also, rcp3 depends on the set of
prerequisites including sender src.java, sender impl.java, and
a symbolic node SYM01 representing the result returned
from a call to wildcard to get the data files from the cur-
rent directory (line 17).

+

sender.jar

foreach

eval

call ProgramMacro

exec

executables

$

sender

sender ext

.jar

true

if

SYM01

wildcard

*.dat

arg

Legend:

line 26

line 26

line 26

line 26

line 15

line 13

line 13 line 4

line 3

from SDG

from SDG

line 13

line 13

literal

variable

if cond

+ Concat

foreach,

built-in

function call

user-

defined

functioncall

Figure 4: T-models for sender.jar and SYM01

2.2 Evaluation Trace Model
During symbolically evaluating a Makefile, for each result-

ing string value that represents a part of a rule or of a recipe
in an SDG, SYMake provides a labeled acyclic graph, called
T-model, to capture the construction of that string value via
the program entities in the Makefile. A T-model contains
three type of nodes: data, control, and operation/action
nodes. A data node can be either a variable or literal node.
A control node can be either an if or foreach node to rep-
resent branching or repetition points in the evaluation. To
represent an operation/action, an T-model can contain 1)
Concat nodes, 2) Evaluation nodes to represent variable
evaluation, and 3) Function Call nodes. Figure 4 shows
the T-model of sender.jar (left), and that of SYM01 (right).

From SDG, associated V-models, and T-models, we de-
velop algorithms in SYMake to detect errors and code smells
such as cyclic dependencies, loops of recursive variables, du-
plicate prerequisites, rule inclusions, etc. With T-models,
SYMake also supports automatic refactoring, e.g. rule ex-
traction/removal, target creation, target/variable renaming,
prerequisite extraction, etc. More details are described in [2].

3. SYMake’S FUNCTIONALITY
The main functionalities of SYMake are: build rule anal-

ysis via symbolic evaluation and the SDG, renaming and
refactoring support, and code smell detection in Makefiles.

Symbolic Evaluation. SYMake’s GUI contains four main
views: the Makefile view, the rules and variables view, and

368

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Figure 5: Analysis on Build Rules in a Makefile with SYMake

two task views for code smell detection and refactoring tasks.
SYMake allows a user to load a Makefile for analysis and it
will symbolically evaluate the loaded file. Figure 5 shows
myMakefile in SYMake. The resulting SDG graph can be
viewed via the Show SDG graph button.

SYMake displays also the views for variables and rules in
the loaded Makefile. When a variable is selected from the
variable’s view, SYMake highlights all corresponding loca-
tions where the variable is initialized/referenced. Figure 5
shows SYMake as a user selects the variable ext. Similar to
variables, if the user selects a rule, the corresponding ref-
erences for that rule are highlighted in the Makefile view.
For each rule, the sub-tree in the rules’ view represents its
prerequisites, recipe, and the respective code locations.

Refactoring Support. To rename, the user selects a vari-
able and clicks on Rename Variable. A pop-up window will
ask the user for the new name. Similar to renaming vari-
ables, Rename Target button is used to rename a target.
For target extracting, the user first selects a set of prereq-
uisites and then creates a new target for them. In addition
to renaming, SYMake supports extracting new targets from
existing prerequisites via Extract New Target button.

Code Smell Detection. To detect the types of code smells
and errors listed in the previous section, a user can simply
click on Detect Code Smells button. SYMake will display
for each detected smell the corresponding smell type, source
code locations involved in the smell, and a smell description
showing all Makefile’s elements involved in that smell/error.

4. RELATED WORK
Prior work has shown that the maintenance of build code

causes a high percentage of overhead on general development
efforts in a software process [3, 4]. Build code needs to
be maintained and changed with a comparable normalized
churn rate to that of source code and could contain as many
defects due to that high rate [4].

A related work to SYMake is MAKAO [5]. It provides vi-
sualization and code smell detection support for Makefiles.
There are key differences between SYMake and MAKAO.

First, SYMake aims to provide program analysis on Make
build code. MAKAO focuses more on visualization and re-
verse engineering for different views on the build architec-
ture. Moreover, MAKAO can only work on concrete depen-
dency graph for a Makefile, thus it cannot support renam-
ing/extracting, and code smell detection for Make code as
in SYMake. As seen in Section 1, due to Make’s dynamic
nature, program elements in a Makefile are not always fully
exposed in build code (i.e. before the evaluation phase).

5. CONCLUSIONS
We introduce SYMake, a build code analysis tool for Make-

files that is based on symbolic evaluation to statically de-
tect code smells/errors and supports Make code analysis and
refactoring. We also performed an empirical evaluation on
real-world Makefiles and the results showed that SYMake is
accurate and efficient, and that with SYMake, users could
detect code smells and refactor Makefiles more accurately.

6. ACKNOWLEDGMENTS
This project is funded in part by US National Science

Foundation (NSF) CCF-1018600 grant. We would like to
thank the ASE’12 reviewers for their constructive feedbacks.

7. REFERENCES
[1] S. Feldman, “Make: A program for maintaining

computer programs,” Software Practice, vol. 9, pp.
255–265, 1979.

[2] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N.
Nguyen, “Build Code Analysis with Symbolic
Evaluation,” ICSE’12. IEEE CS, 2012.

[3] L. Hochstein and Y. Jiao, “The cost of the build tax in
scientific software,” in ESEM ’11. ACM, 2011.

[4] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and
A. E. Hassan, “An empirical study of build
maintenance effort,” in ICSE’11. ACM, 2011.

[5] B. Adams, H. Tromp, K. De Schutter, and
W. De Meuter, “Design recovery and maintenance of
build systems,” in ICSM’07. IEEE CS, 2007.

369

