
Build Code Analysis with Symbolic Evaluation

Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, Tien N. Nguyen
Electrical and Computer Engineering Department

Iowa State University
{atamrawi,hoan,hungnv,tien}@iastate.edu

Abstract—Build process is crucial in software development.
However, the analysis support for build code is still limited.
In this paper, we present SYMake, an infrastructure and tool
for the analysis of build code in make. Due to the dynamic
nature of make language, it is challenging to understand and
maintain complex Makefiles. SYMake provides a symbolic
evaluation algorithm that processes Makefiles and produces a
symbolic dependency graph (SDG), which represents the build
dependencies (i.e. rules) among files via commands. During the
symbolic evaluation, for each resulting string value in an SDG
that represents a part of a file name or a command in a rule,
SYMake provides also an acyclic graph (called T-model) to
represent its symbolic evaluation trace. We have used SYMake
to develop algorithms and a tool 1) to detect several types of
code smells and errors in Makefiles, and 2) to support build
code refactoring, e.g. renaming a variable/target even if its
name is fragmented and built from multiple substrings. Our
empirical evaluation for SYMake’s renaming on several real-
world systems showed its high accuracy in entity renaming. Our
controlled experiment showed that with SYMake, developers
were able to understand Makefiles better and to detect more
code smells as well as to perform refactoring more accurately.

Keywords-build code maintenance; build code analysis

I. INTRODUCTION

Software building is the process that converts and inte-
grates source code, libraries, and other data in a software
project into stand-alone deliverables and executable files.
The build process is managed by a build tool, i.e. a program
that coordinates and controls others [1]. A build tool needs to
execute the build commands according to the rules specified
in build files, which are written in a build language supported
by the tool. Popular build tools are make, ant, and maven.

Prior research found that build maintenance could impose
from 12%-36% overhead on software development [20]. In a
large-scale system, build files grow quickly and become very
complex because they must support the building of the same
software in multiple platforms with various configuration
and environment parameters [4]. McIntosh et al. [5] found
that from 4-27% of tasks involving source code changes
require an accompanied change in the related build code.
They concluded that build code continually evolves and is
likely to have defects due to high churn rate [5]. Importantly,
those studies call for better tool support for build code.

Toward providing automatic tool support for developers to
deal with complex build code, we have developed SYMake,
an infrastructure and tool for the analysis of build code in

GNU make. make is a scripting language in which a build file
(called Makefile) is used to specify the build dependencies
among the configuration files in a project via make’s program
entities. With a specific input/environment, make first evalu-
ates a Makefile into a dependency graph among concrete file
names and commands. Then, it executes the commands with
those files. With such dynamic nature in make’s evaluation,
it is challenging for developers to understand and maintain
over time multiple large, complex, and dependent Makefiles.
Importantly, errors are hard to detect at static time and even
at run time as the evaluation result depends on the input, the
operating environment, and the files in the file system.

To address those challenges in the maintenance of build
code in Makefiles, SYMake provides a symbolic evaluation
algorithm that processes Makefiles and produces a single
symbolic dependency graph (SDG) to represent the build
rules and dependencies among files via build commands. It
differs from a concrete dependency graph of make in that file
names and commands in an SDG might not be completely
resolved into strings. Instead, the SDG’s node for a file
refers to a data structure, called V-model, i.e. a graph-based
representation for symbolic string values for the file’s name.
A V-model often contains symbols to represent the inputs
or data retrieved from user environment. SDG enables static
analysis on Makefiles and supports program understanding.

During the symbolic evaluation, for each resulting string
value that represents a part of a file name or a command of
a rule in an SDG, SYMake provides also an acyclic graph
(called T-model) to represent its symbolic evaluation trace.
That is, the T-model shows how that string value is initialized
and manipulated via various Makefile’s program entities.

We used SYMake to develop algorithms and a tool to det-
ect several types of code smells and errors in Makefiles, e.g.
cyclic dependencies, rule inclusion, duplicate prerequisites,
recursive variable loops, etc. The tool supports also build
code refactoring e.g. rule extraction/removal, target creation,
target/variable renaming, prerequisite extraction, etc.

Our empirical evaluation for SYMake’s renaming on
several real-world systems has shown that it can achieve high
accuracy in entity renaming. We also conducted a controlled
experiment whose result showed that with SYMake, human
subjects were able to understand the Makefiles better and to
detect more code smells as well as to perform refactoring
more accurately in shorter time. Our contributions include:

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE ICSE 2012, Zurich, Switzerland650

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

1. An AST building algorithm and a symbolic evaluation
algorithm on Makefiles to create SDGs (Sections III and IV),

2. A symbolic evaluation tracing algorithm (Section V),
3. Makefiles’ code smell detection algorithm (Section VI),
4. Automatic refactoring algorithm for make elements that

is able to handle fragmented identifiers (Section VII),
5. An empirical evaluation and a controlled experiment to

show SYMake’s accuracy and usefulness (Section VIII).

II. MOTIVATING EXAMPLE

This section explains how make works via an example.
Figure 1 shows myMakefile, a Makefile inspired from GNU
make’s documentation [6]. The goal of this file is to tell make
how to build the demo, server, and client programs in both
Linux and Windows from its respective source and data files.

GNU make processes a Makefile in two distinct phases:
• Evaluation phase: For an input and environment, make

first resolves all variables and expressions into concrete
values to produce a concrete set of rules, and internally
constructs a dependency graph. Each rule in that graph
has a dependency between prerequisites and targets,
and a recipe (i.e. shell commands) to generate the targets
from their prerequisites. Figure 2 shows the rules after
the evaluation as make runs on myMakefile on Linux.

• Execution phase: make then uses the constructed de-
pendency graph and executes the required rules based
on their prerequisites and recipes. For example, assume
that user’s command is ‘make all’, the rule for target all is
executed, which leads to the rules for server.o and client.o
(Figure 2). If the modifying time of a prerequisite file is
later than that of its target file, the command is executed
to produce the updated version of the target file.

Variable OS models the current operating system (line 1).
Its value is obtained via a call to the shell built-in function to
execute the shell command uname. Depending on the value
of OS (‘Linux’ or not), the variables ext (i.e. file extension)
and cmd (i.e. build command) are set with different values
(lines 3-9). The server’s and client’s file names are stored
in serverNM and clientNM. The variable programs (line 13) is
evaluated into a list of both names: ‘server.o client.o’.

Four variables at lines 15-18 are used to store the names
of libraries and object files. At line 15, the name of the
variable server.o libs is fragmented and is constructed from
the value of expression $(serverNM). It is initialized with the
concatenation of ‘priv protocol’ and the file names in the cur-
rent directory that match with the pattern ‘*.conf’ via wildcard.

Line 20 is a rule without a recipe for the target all. After
the evaluation phase, make transforms that rule into line 1
of Figure 2, where the variable programs is replaced with its
actual value ‘server.o client.o’. To update or build for the target
all, make needs to create or update each of its prerequisites,
which in turn can be either a file or a different target.

Lines 22-24 show another way for variable initialization.
Variable ProgramTmp is initialized with the string at line 23.

1 OS := $(shell uname)
2
3 ifeq ($(OS),Linux)
4 ext = o
5 cmd = build.sh
6 else
7 ext = exe
8 cmd = build.bat
9 endif

10
11 serverNM := server.$(ext)
12 clientNM := client.$(ext)
13 programs := $(serverNM) $(clientNM)
14
15 $(serverNM) libs = priv protocol $(wildcard ∗.conf)
16 $(serverNM) objs = server impl.$(ext) server access.$(ext)
17 $(clientNM) objs = client impl.$(ext) client api.$(ext)
18 $(clientNM) libs = protocol
19
20 all: $(programs)
21
22 define ProgramTmp =
23 $(1): $$($(1) objs) $$($(1) libs)
24 endef
25
26 $(foreach prog,$(programs),$(eval $(call ProgramTmp,$(prog))))
27
28 $(programs):
29 $(cmd) $@ $∧

30
31 %.conf : %.$(ext)
32 genConf $∧ −o $@
33
34 ifeq ($(OS),Linux)
35 demo.o : demo.c linux.conf
36 install $∧ −o $@
37 else
38 demo.exe : demo.c win.conf
39 install.bat $∧ −o $@
40 endef

Figure 1. myMakefile: An Example of make Build Code

1 all: server.o client.o
2
3 server.o : server impl.o server access.o priv protocol sample.conf
4 build.sh server.o server impl.o server access.o priv protocol sample.

conf
5
6 client.o : client impl.o client api.o protocol
7 build.sh client.o client impl.o client api.o protocol
8
9 linux.conf : linux.o

10 genConf linux.o −o linux.conf
11
12 sample.conf : sample.o
13 genConf sample.o −o sample.conf
14
15 demo.o : demo.c linux.conf
16 install demo.c linux.conf −o demo.o

Figure 2. Internal Representation after Evaluation Phase on myMakefile

As it is evaluated, the string at line 23 will be evaluated. In
fact, in this example, ProgramTmp is used as a user-defined
function with the built-in function call at line 26.

Line 26 shows a foreach loop with the variable programs as
the iteration list and prog as its iterator. The body of foreach is
a call to eval built-in function, which parses its argument into
Makefile’s rules/statements and considers them as part of the

651

current Makefile. Thus, a function call is made to evaluate
ProgramTmp and its parameters are assigned with the values
of the temporary variables $(0), $(1), etc. For example, $(1)
(line 23) contains the variable prog’s value. Thus, at the first
iteration, a reference to $(1) is resolved to ’server.o’ as prog’s
value is ’server.o’. The returned value from call is ’server.o :
$$(server.o objs) $$(server.o libs)’, which is a parameter passed
to eval. It is parsed into a new rule server.o whose pre-
requisites are the values of the variables server.o objs and
server.o libs. The same applies in the second iteration as
prog’s value is ’client.o’. Thus, lines 3 and 6 of Figure 2 show
the rules created from evaluating line 26 of Figure 1.

Lines 28-29 define a rule for two targets named ‘server.o’
and ‘client.o’ via $(programs). That is, both targets share the
same recipe at line 29. Since the target ‘server.o’ occurs in the
previous rule, those rules are combined to form a complete
rule at lines 3-4 (Figure 2). The same applies to client.o rule
(lines 6-7). Note that $@ and $∧ are automatic variables
whose values are equal to the rule’s target and prerequisites.

An implicit rule serves as a template/pattern for any
prerequisite file that does not have an explicit rule for
creating/updating. Lines 31-32 specify the rule to produce
any configuration file %.conf from the corresponding %.o or
%.exe file. For example, linux.conf at line 35 is a prerequisite
file for demo.o and there is no explicit rule to make that
file. make finds that linux.conf matches with %.conf. Thus, it
creates a new rule for linux.conf (lines 9-10, Figure 2). The
same process applies when make sees sample.conf at line 3 of
Figure 2. It creates a new rule sample.conf as in lines 12-13.
Scenario 1. Assume that a user enters ‘make -f myMakefile’ on a
Linux machine. make builds its dependency graph (Figure 2),
and runs the first rule (i.e. rule all). It examines the prerequi-
sites, and then executes the rules at lines 3 and 6. It continues
the same process and successfully builds for the rule all.

Interestingly, there is a subtle error in myMakefile if ‘make
all’ is requested. The server.o rule depends on the configu-
ration files fetched from the current directory via $(wildcard
*.conf) (line 15). The error will occur if a configuration file
in the current directory has the name server.conf. In that case,
make will consider server.conf as a prerequisite of server.o. It
will match server.conf with the implicit rule at line 31, create
the server.conf rule, and add it to the dependency graph:

1 server.conf : server.o
2 genConf server.o −o server.conf

A cyclic dependency now occurs because server.o lists
server.conf as one of its prerequisites, and server.conf also has
server.o as a prerequisite in the new rule. That loop causes an
error in the execution phase. This bug is difficult to reveal
at static time and even at run-time because it depends on
the users’ current environment/directory, and the input.
Scenario 2. The analysis for the names of variables or
targets, and automatic renaming for them is not trivial. Since
make is dynamic, the name of a variable (i.e. an identifier)

can be the result of the evaluation of other variables. At
line 15, the prefix of an identifier is defined from the value
of the variable $(serverNM). A regular text search tool cannot
distinguish between the identifiers and the string values (e.g.
line 11). Moreover, the identifier of variable $(serverNM) objs
(line 16) is fragmented and composed of multiple substrings.
If a tool renames the suffix objs, it must also rename at line
23 and line 17 since line 23 affects both of these lines.
Scenario 3. Over time, a different developer works on a
different component of the project, and myMakefile includes
other Makefiles (e.g. mk1). Assume that (s)he adds into
his/her own file mk1 a rule comp1.conf to handle the building
of the configuration file for his/her component as follows:

comp1.conf : comp1.o
genConf comp1.o −o comp1.conf

Dealing with multiple, dependent, and complex Makefiles,
(s)he might not be aware of the implicit rule at line 31 in
myMakefile that was designed to handle any .conf files. Such
redundancy increases the complexity and decreases the ma-
intainability of the Makefiles. If one wants to change the
implicit rule at line 31, (s)he must change comp1.conf rule in
mk1. Thus, it is helpful to detect rule inclusion/redundancy.
Summary. The analysis of Makefiles is challenging because:

1) The analysis for entities’ names and build dependencies
is not trivial due to the dynamic nature of make. It is also
hard to detect code smells and errors at static time.

2) As a project evolves, Makefiles become more complex.
Bad smells such as rule redundancy, duplications, circular
dependencies, etc create several maintenance problems.

3) Understanding large, complicated, and dependent
Makefiles requires much effort and time from developers.

III. MAKE’S ABSTRACT SYNTAX TREE

Let us describe make’s syntactical rules that we use to
build an Abstract Syntax Tree (AST) for a Makefile. We
have read GNU make’s documentation and source code [6],
and specified its grammar production rules as in Figure 3.

1. Makefile node (rule 1) is the root of a Makefile’s AST.
A Makefile consists of a list of statements/rules. The order of
statements/rules in a Makefile is important in its execution.

2. Statement node (rule 2): A Makefile’s statement repre-
sents a source code line or block that occurs as a stand-alone
evaluation unit. Typical statements are in line 2 of Figure 3.

3. Assignment node (rule 3): An assignment to a variable
can be either simple or recursive. In a simple variable assign-
ment (:=), the right hand side (RHS) expression is evaluated
and assigned to the variable. A recursive one (=) is similar
to a pointer assignment with no update from LHS to RHS
variables. A variable can be referred by its name or an ex-
pression whose value is its name. Line 15 of Figure 1 defines
a variable server.o libs since $(serverNM) libs is evaluated first.

4. Definition node (rule 6): A variable defined within a
define can be used in three ways. First, a defined variable

652

1) Makefile → {Statement|Rule}
2) Statement → Assignment|Definition|FunctionCall|Foreach|If|Directive
3) Assignment → [private|export|override] (Id|Expr) (+=|:=|=) Expr
4) Id → IdPart ((WS)∗IdPart)∗

5) IdPart → [∧WS = : ; \n]+
6) Definition → [private|export|override] define Id [+=|:=|=] \n ∼\n

endef
7) FunctionCall → $(FunctionName [Expr[{,Expr}]])
8) FunctionName → subst|patsubst|strip|findstring|filter|...
9) Expr → Term{[WS]Term}

10) Term → FunctionCall|ELiteral|Evaluation|Foreach|If
11) ELiteral → WLiteral ((\WS)∗WLiteral)∗

12) WLiteral → [∧WS \n]+
13) Evaluation → $(Id|Expr)
14) Rule → Expr (: | ::) (Assignment| [|]Expr)[Recipe]
15) Recipe → (;|\n\t)RecipeExpr{\n\t RecipeExpr}
16) RecipeExpr → RecipeTerm{[WS]RecipeTerm}
17) RecipeTerm → FunctionCall|Evaluation|RecipeLiteral|AutoEval|Foreach|If
18) RecipeLiteral → [∧\n]+
19) AutoEval → $@|$<|$?|$∧|$+|...
20) Foreach → $(foreach Id,Expr,Expr|RecipeExpr)
21) If → (((ifeq|ifneq) (Expr,Expr) | ((ifdef|ifndef) Expr))
{Rule|Statement}|RecipePart [else {Rule|Statement}|RecipePart] endif) |
$(if Expr,Expr|RecipeExpr[,Expr|RecipeExpr]))

22) RecipePart → \n\t RecipeExpr{\n\t RecipeExpr}
23) Directive → Include|Vpath|Export|Undefine
24) Include → (include|sinclude|-include) Expr
25) Vpath → vpath [Expr]
26) Export → (unexport|export) [Expr]
27) Undefine → [override] undefine Id

Figure 3. Makefile Abstract-Syntax Production Rules

can be used as an assigned variable, except that its value can
contain multiple lines. Second, it can serve as a user-defined
function as it is used with Make’s call (ProgramTmp, line 26).
Finally, it can be used later with eval function and evaluated
into a list of statements and/or rules. The resulting statements
and rules are treated as part of the current Makefile and make
continues the evaluation to build the dependency graph.

5. FunctionCall node (rule 7) represents a call to a built-in
function. A few built-in functions are listed in rule 8.

6. Expr node (rule 9): An expression represents a part of
a line that will be evaluated. It can be a concatenation of
terms (i.e. Terms) with or without whitespaces in-between.
A term can be a function call, variable evaluation, a foreach
or if statement (rule 10). It can also be a literal (ELiteral).

7. Evaluation node (rule 13) is for a variable’s evaluation.
E.g., $(programs) is evaluated into ‘server.o client.o’ (line 20).

8. Rule node (rule 14) represents a build action. It has:
• A target, which can be an expression that is evaluated

into one or multiple targets. E.g., $(programs) is evalu-
ated to create 2 targets server.o and client.o (line 28).

• An expression whose value after evaluation will result
in a set of files forming the prerequisite list for the rule.

• A recipe representing the shell commands of the rule.
A rule can be 1) non-terminal rule(:), i.e. it is executed as

requested in a command-line or if its target is a prerequisite
of another to-be-executed rule; or 2) terminal rule (::), i.e., it
is executed once its prerequisites exist. The same target name
can occur in multiple rules, and those must be of the same
type. If they are non-terminal, they will be combined into a
single one. A rule can contain a local variable assignment.

9. Recipe node (rule 15) models a concatenation of recipe
expression(s) that is evaluated to a string forming the rule’s
commands. It will be evaluated into a list of shell commands.
The expression within a recipe (RecipeExpr) is the same as a
regular Expr, except that if it has a string literal, the literal
must not include a new line. We call it RecipeLiteral (rule 18).

10. AutoEval (rule 19) is used to evaluate automatic
variables that can occur only in a recipe (line 36, Figure 1).

11. Foreach node (rule 20): A foreach statement consists
of three parts: 1) an identifier node as the loop iterator (e.g.
prog at line 26); 2) an expression whose value represents the
iteration list (e.g. $(programs)); and 3) an Expr or RecipeExpr
representing the loop body that will be evaluated (e.g. $(eval
$(call ProgramTmp,$(prog)))). The return value after executing
a foreach is a concatenated string of all values resulted from
the evaluation of the body expression at each iteration.

12. If node (rule 21) represents a condition. It can be
either a conditional block (e.g. as in lines 3-9) or an inline
condition (e.g. $(if $(var1),$(var2),$(var3))). In a conditional
block, a branch can contain any combination of Makefile
rules/statements. A branch can also be evaluated into a part
of a rule’s recipe (represented by RecipePart). The value of
an if statement will be viewed as part of the current Makefile.
An inline condition is used to check an empty string.

13. A directive is aimed to tell Make 1) to include another
Makefile (include), 2) to undefine a variable (undefine), 3) to
add/remove the variables from the environment ((un)export),
and 4) to setup Make’s searching path (Vpath).

IV. MAKEFILE SYMBOLIC DEPENDENCY GRAPH (SDG)
An SDG captures the dependencies among prerequisites

and targets, and respective recipes. An SDG’s node refers
to a data structure, called V-model, representing a symbolic
string value for a name. A V-model can contain symbols to
represent the inputs or data retrieved from user environment.

Definition 1: A Symbolic Dependency Graph (SDG)
is a directed graph representing a Makefile’s rules and
dependencies among prerequisites and targets through the
recipes. An SDG can contain the following types of nodes:
• A target/prerequisite node represents a rule’s target or

prerequisite. A target can be a prerequisite for another
rule and vice versa. It refers to a V-model representing
the symbolic string value of the target/prerequisite.

• A recipe node represents the recipe of a rule. There is
an edge from a target node to the recipe node repres-
enting the dependency of that target to this recipe. Simi-
larly, there is an edge from the recipe node to a pre-
requisite node. A recipe node also refers to a V-model.

• A Select node represents alternative dependencies from
a target to one of multiple recipes and prerequisites.

• A rule block contains all nodes/edges related to a rule.
Definition 2: A V-model is a labeled, ordered, and di-

rected acyclic graph representing the symbolic string values
for the parts of a rule in an SDG. In a V-model, leaf nodes

653

Sunshine
高亮

represent string values. Inner nodes model either operations
for combining those values or references to other V-models.

1. There are two kinds of leaf nodes:
• a literal node represents a concrete string value, and
• a symbolic node represents an undetermined/unresolved

string value (e.g. an environment value).
2. There are three types of inner nodes:
• A Concat node represents a value concatenated from

the values corresponding to the sub-trees of that node.
The order of the sub-trees is that of the concatenation.

• A Select node represents a value that could be selected
from either of the values corresponding to its sub-trees.

• A Reference node represents a reference to a variable
and its child is a V-model representing the value of that
variable. For a simple variable, its V-model does not
contain any reference nodes. For a recursive variable,
its V-model may contain multiple reference nodes since
it can be computed from multiple recursive variables.

3. The nodes on V-models have their attributes describing
additional information, such as the Makefile expressions and
code positions associated with literal and symbolic nodes.

Figure 4a shows part of the SDG and its V-models for
Figure 1. With its Select node, the target node all (line 20)
depends on either of the two recipes and the corresponding
prerequisites: one for Linux and one for Windows (line 3).
The recipes rcp1 and rcp2 are empty and do not refer to any
V-model. Thus, to build for target all, make must build either
{server,client}.o or {server,client}.exe. The file server.o depends
on the execution of the recipe rcp3. Each part of a rule refers
to the respective V-model (not all are shown). For example,
the string content of rcp3 is represented by a V-model, which
is the concatenation of several literals and Concat nodes.
Note that the last Concat represents the concatenation of two
strings priv and protocol, and a symbol SYM01 representing the
result returned from a call to wildcard to get the files from the
current directory. The V-model for ‘server impl.o’ starts with
a Concat between a literal node ‘server impl’ and a V-model
for the variable ext, which in turn starts with a reference
node Ref:ext pointing to the string literal ‘o’. That reference
node allows ext to be used as either a value or a reference.

Figure 4b represents the implicit rule %.conf (line 31). The
string content of the recipe is computed via the respective
V-model in each case, which contains no symbolic node.

Building SDG and V-models via Symbolic Evaluation

Our symbolic evaluation algorithm recursively evaluates
a Makefile for all statements/rules in all branches, updat-
ing/creating small V-models, and combines them into larger
ones. Moreover, it extracts all the resulting rules in all
branches, and combines the scattered ones into single rules
if needed. SYMake processes statements/rules as in Table I:

1. var := E: SYMake maintains for each variable var a
V-model corresponding to its most recent value during sym-
bolic evaluation. As meeting a simple assignment, it expands

Table I
SYMBOLIC EVALUATION RULES TO BUILD SDG FROM A MAKEFILE

Makefile Syntax Evaluation Rule

1. var := E var.simple = true, var.V = new RefNode(Expand(E.V))

2. var = E var.simple = false, var.V = new RefNode(E.V)

3. var += E if (var is defined)
if (var.simple = true)

var.V = new RefNode(new Concat(Expand(var.V),
Expand(E.V)))

else
var.V = new RefNode(new Concat(var.V.child,E.V))

else var.V = new RefNode(E.V), var.simple = false

4. define var := L endef var.simple = true,
var.V = new RefNode(Expand(Build-V(L)))

5. define var = L endef var.simple = false, var.V = new RefNode(Build-V(L))

6. define var += L endef if (var is defined)
if (var.simple = true)

var.V = new RefNode(new Concat(Expand(var.V,
Expand(Build-V(L))))

else var.V = new RefNode(new Concat(var.V.child,
Build-V(L)))

else var.V = new RefNode(Build-V(L)), var.simple=false

7. E → $(call E∗, ∀i i.V = new RefNode(Expand(Ei.V)),
{Ei}) E.V = Expand(E∗.V)

8. E → $(eval E∗) E.V = ∅, Eval(Parse(Flatten(E∗.V)))

9. E → $(func {Ei}) func.retValue = ∅, ∀i func.parami.V = Expand(Ei.V),
eval func, E.V = Expand(func.retValue.V)

10. E → $(var) if (var is defined) E.V= var.V else E.V= new Symbol()

11. E1 → $(E2) E1.V=new Select({getvar(Idi).V:Idi∈Flatten(E2.V)})
12. E → $(foreach Id, E.V = new Select({Build(ei) : ei ∈ Flatten(E1.V)}),

E1, E2) Build(ei)= new Concat({Expand(E2.V):
Idj∈Tokenize(ei),
Id.V = new RefNode(new LiteralNode(Idj))})

13. E → WLiteral E.V = new LiteralNode(WLiteral)

14. E → ELiteral E.V = new LiteralNode(ELiteral)

15. E → RecipeLiteral E.V = new Concat(Tokenize(RecipeLiteral))

16. undefine var var.V = new Symbol()

17. include E {Eval(Parse(fj)): fj ∈ Tokenize(ei∈Flatten(E.V))}
18. E1:E2(Recipe) {BuildRule(tij):tij∈Tokenize(Tj),Tj∈Flatten(E1.V)}

BuildRule(tij):
R = getRule(tij)
if (R is defined) UpdateRule(R, E2.V)
else new Rule(tij , E2.V, Recipe)

19. E1::E2(Recipe) {{new Rule(tij , E2.V, Recipe)}:tij ∈ Tokenize(Tj),
Tj ∈ Flatten(E1.V)}

20. Recipe → Add a new RecipeNode(new Select({new Concat
(;|\n\t)E1{\n\t Ei} (Tokenize(rj)):rj ∈ Flatten((new Concat(Ei.V)))}))

21. RecipePart → RecipePart.V = new Select({new Concat(
\n\t E1{\n\t Ei} Tokenize(ri)):ri ∈ Flatten((new Concat(Ei.V)))})

22. E → RecipePart E.V = RecipePart.V

23. E1 → if (E2) E3 eval E2, ∀var∈VARS*,
else E4 var.V=new RefNode(new Select(varE3

.V, varE4
.V)),

if E3,E4: RecipePart ⇒ E1.V=new Select(E3.V,E4.V)
RULESE3∈FindRules(E3), RULESE4∈FindRules(E4)
∀ rule ∈ (RULESE3

∪ RULESE4
):

R = getRule(rule.t)
if ((R is defined) AND (rule is single-colon))

Update If Rule(R, ruleE3 , ruleE4)
else new If Rule(ruleE3

, ruleE4
)

24. E1 → $(if E2, eval E2,
E3,E4) E.V = new Select(Expand(E3.V), Expand(E4.V))

654

Sunshine
高亮

all Select

rcp1

rcp2

server.o

client.o

server.exe

client.exe

rcp3 priv

protocol

server_impl.o

SYM01

server_acces..

rcp4

rcp5

rcp6

Concat

'build.sh'

'server'

Concat

'priv' 'protocol' SYM01

'server_im..' 'server_acc..'

V-model for rcp3

%.conf Select

rcp7

rcp8

%.o

%.exe

Concat

'genConf'

'%.'

'-o' '%.conf'

Concat

V-model for rcp7
V-model for rcp8

depends

depends

refers-to

refers-to

refers-to

literal node

target/

prerequisite

recipe node

symbolic

 node

Concat

'.o'

Concat

Concat

'o'

'genConf'

'%.'

'-o' '%.conf'Concat

'exe'

Concat

'server_impl' Ref:ext

'o'

refers-to

V-model for ext

a.

b.

target
depends

Figure 4. Symbolic Dependency Graph and V-models

(de-references) the V-model of E to replace all reference
nodes with their children in a breadth-first traversal. It then
creates a reference node Ref:var and attaches the expanded V-
model as the child of Ref:var. The V-model rooted at Ref:var
models var’s recent value. var is marked as a simple variable.

2. var = E: similarly to the simple assignment in case 1.
However, no expansion is needed since var is recursive.

3. var += E (concatenating E with the current value): If var
is undefined, make considers this as recursive variable assign-
ment, and SYMake uses rule 2. If var is simple and defined,
it assigns var a new V-model rooted at a new reference node
Ref:var. The child of the reference node is a newly created
Concat of the expanded versions of the current V-models of
var and E. If var is recursive, it handles similarly except that
the reference node in the old V-model of var is skipped.

4. define var := L endef: SYMake first parses the string L and
uses Table I to build the V-model from L. Then, it similarly
expands that V-model and creates the reference node as in 1.

5. define var = L endef: Similar to the rule 4 except that the
expansion of V-model is not needed since var is recursive.

6. define var += L endef: If var is undefined (no value yet),
it treats this as in rule 5. Otherwise, it uses rule 3 except that
it parses L and builds the V-model with the rules in Table I.

7. E → $(call E∗,{Ei}): SYMake first creates a temporary
variable i for each parameter Ei, and assigns its value to i
by making the expanded V-model of Ei become a child of
a new reference node for each i. Then, it creates a new V-
model by expanding the V-model of the expression E∗. That
new V-model corresponds to the return value of function call.

8. E → $(eval E∗): SYMake first flattens the V-model of
the expression E∗ (Figure 5). The result is a set of symbolic
or literal nodes each of which represents a possible value of
E∗ via a specific path in that V-model. It then parses the con-
tent of each node into rules/statements and evaluates them as
part of the current Makefile. Symbols are treated as strings.

9. E → $(func {Ei}). For a built-in function, SYMake
assigns the V-models of its actual arguments to formal

parameters, and evaluates the body. A V-model is created for
the returned value. The V-model for E is the expanded ver-
sion of that new V-model since the returned value must not
contain any references. Symbolic values are used if needed.

10. E → $(var): When a variable var is retrieved for a
computation, its latest V-model is used. However, if var does
not have any V-model, SYMake returns a symbolic node.

11. E1 → $(E2): In this case, the value of E2 is resolved
to variable identifier. However, E2 may have different values
with different paths. Thus, SYMake first flattens the V-model
of E2 to a set of string literal and symbolic nodes. Each node
represents a possible variable identifier Idi through a distinct
path. Then, it creates a new V-model rooted at a new Select
node whose children are the V-models of all variables Idis.

12. E → $(foreach Id, E1, E2): First SYMake flattens E1.
The returned set of symbolic/literal nodes represents all the
possible iteration lists. For each list ei, SYMake tokenizes
the contents. Then, for each token Idj , it creates a new V-
model rooted at a new reference node whose child is a new
literal node for that token. For each possible value ei of E1,
SYMake creates a new V-model rooted at a Concat node and
its children are the expanded V-models of the expression E2

at each token Idj . Finally, SYMake appends each of the new
V-models with those Concats to a new V-model rooted at a
new Select node. This new V-model at this Select represents
all possible values for the foreach statement.

13, 14. E → WLiteral/ELiteral: It creates a new V-model with
one literal node whose string content is the literal string.

15. E → RecipeLiteral: It tokenizes the literal and creates a
new literal node for each token. Then, it creates a V-model
rooted at a Concat whose children are the new literal nodes.

16. undefine var: a symbol is used after var was undefined.
17. include E: SYMake first flattens the V-model of E to

find all possible values eis. It tokenizes each string literal
to get the tokens fj as file names. If the file is available,
it parses the contents into rules/statements and symbolically
evaluates them as part of the current Makefile.

655

18. E1:E2(Recipe): For a single-colon rule, SYMake flat-
tens the V-model of E1 to all possible values Tis. Each string
Ti is tokenized to find the list of targets. Then, for each
resulting target tij , it checks if there exists a rule R with
the same target name via getRule(tij). If R exists, it updates
R using UpdateRule. UpdateRule flattens the V-model of E2 to
all possible values representing all possible prerequisites of
the rule and combines them with R’s prerequisites. Then, for
each set of possible combinations of prerequisites, it builds
a rule graph as follows: the Recipe node is connected to all
combined prerequisites. The target tij is connected to Recipe
through a new Select node (see Figure 4). Each path of the
Select node represents a set of recipes and prerequisites of
the rule tij . If such a rule does not exist, SYMake creates
a new Makefile rule, but without a Select node.

19. E1::E2(Recipe): Similar to a sub-case of case 18 where
the rule is not defined earlier and no combination is needed.

20. Recipe → (;|\n\t)E1{\n\t Ei}: For a recipe, SYMake
creates a new RecipeNode, which refers to its V-model rooted
at a Select node. Each child node represents a possible recipe
string rj resulted from flattening the V-model that starts at a
Concat connecting all the V-models of the expressions Eis.
Each rj is then represented by a V-model rooted at a new
Concat node connecting the different tokens of rj .

21. RecipePart → \n\t E1{\n\t Ei}: Similar to rule 20,
however, SYMake does not create a RecipeNode.

22. E → RecipePart: E gets the V-model of RecipePart.
23. E1 → if (E2) E3 else E4: it processes as follows:
First, it collects into a set VARS* all variables modified or

initialized in either branch. Let us use varE3.V and varE4.V
to denote the V-models of var after evaluating each branch,
respectively. For each var in VARS*, SYMake updates its
value with a new V-model rooted at a new reference node
Ref:var and its child is a new Select node whose children are
varE3.V and varE4.V. If the else branch is empty, the latest
V-model for var before if is used in place of varE4.V.

Second, it collects into a set (RULESE3 ∪ RULESE4) all rules
defined in either E3 or E4. For each rule in that set, if
there exists a single-colon rule with the same target name
getRule(rule.t), it updates the existing rule R with the rules
ruleE3 and ruleE4 (using Update If Rule). That function adds
a Select node after the target node. Each path of the Select
node represents a possible recipe and prerequisites for the
target node corresponding to the rules ruleE3 and ruleE4 . If
there exists no rule defined before that has the same target
name as rule, SYMake creates a new rule with a Select node
after the target node, and each of its branches represents the
recipe and prerequisites of either ruleE3 or ruleE4 .

Third, if E3 and E4 are of type RecipePart, SYMake
creates a new V-model rooted at a Select node whose
children are the V-models of the expressions E3 and E4.

24. E1 → $(if E2,E3,E4): It creates a new V-model rooted
at a Select node whose children are the expanded V-models
of E3 and E4. If the condition is known, rule 11 is used.

1 function Flatten(VModel vmodel)
2 switch (vmodel.Type)
3 Literal: return new Set(vmodel.getString())
4 Symbolic: return new Set()
5 Reference: return Flatten(vmodel.Child)
6 Select: return Flatten(vmodel.Left) ∪ Flatten(vmodel.Right)
7 Concat: set← new Set(); set.add(‘‘”)
8 foreach childNode in concat.ChildNodes
9 childSet = Flatten(childNode); tmpSet = new Set()

10 foreach str1 in set
11 foreach str2 in childSet
12 tmpSet.add(str1 + str2)
13 set← tmpSet
14 return set

Figure 5. Flatten Algorithm for a V-model

Figure 5 shows Flatten function that takes a V-model and
returns the set of all possible string values represented by the
V-model. Flatten computes the flattened values for a node by
combining those of its children. A Literal leaf node has one
possible value (line 3). A symbolic node has an empty set
of flattened values (line 4). A Reference node has only one
child, thus its set of flattened values is the same as that of its
child (line 5). For a Select node, the set is the union of those
for two branches (line 6). For a Concat, Flatten computes all
possible concatenations of strings each of which is a flatten-
ed value from a child node in the children order to form a set
of all possible full-length values of the Concat (lines 9-
14). It does this by visiting each child from left to right,
and concatenating each possible concatenated value of the
previous children with each flattened value of this child.

V. EVALUATION TRACE MODEL

The values of any component (prerequisites, recipe, tar-
gets) of a rule are often composed and manipulated in
different code locations in a Makefile. For example, server.o
comes from $(1) (line 23, Figure 1), one iteration of foreach
loop (line 26), an eval call with ProgramTmp (line 26), the
variables prog, programs (line 13), and serverNM (line 11), etc.
To support program understanding and automatic operations
(e.g. renaming), we develop T-model, a model for tracing
the evaluation steps. Figure 6 shows the T-model for server.o
(left), and the T-model for SYM01 (right). A T-model is
similar in spirit to an execution trace. Let us define T-model.

Definition 3 (Evaluation Trace Model): T-model is a la-
beled, directed, and acyclic graph representing how an SDG
node’s value is computed and manipulated through different
Makefile’s program elements at an evaluation point. A node
refers to its code locations. Edges represent the evaluation
flows. An T-model has the following types of nodes:
1) Data node:
• A Variable node has its identifier as its label. An incom-

ing edge from a variable node to another represents a
recursive variable assignment, while an incoming edge
from any other node represents a simple assignment.

• A Literal node is the same as in a V-model.

656

Sunshine
高亮

Sunshine
高亮

 +

 server.o

foreach

eval

 call ProgramTmp

prog

 programs

$

 serverNM

server. ext

 o

true

if

SYM01

 wildcard

 *.conf

arg

Legend:

line 26

line 26

line 26

line 26

line 13

line 11

line 11 line 4

line 3

from SDG

from SDG

line 15

line 15

literal

variable

if condition

 + Concat

foreach,

built-in

function call

user-

defined

functioncall

Figure 6. T-models for server.o (left), SYM01 (right)

2) Operator/action node:
• A Concat node is the same as in a V-model.
• An Evaluation node models the evaluation operation ($)

on a variable. If two variable nodes are connected via
an evaluation node, it is a simple variable assignment.

• A Function call node represents a call to a built-in or
user-defined function F . T-models connected to this
node represent the arguments passed to F . A node eval
represents a call to eval (evaluating to rules/statements).

3) Control node: if and foreach in the evaluation process.
Building T-model. Building T-model for any node in a rule
in an SDG (e.g. part of a prerequisite, a recipe, or a target)
occurs during the symbolic evaluation. Generally, for each
evaluation rule in Table I that constructs a new V-model,
SYMake creates the new corresponding T-model:

1) For a simple assignment, it connects the T-model of the
right-hand side expression to a variable node via an $ node
(e.g. programs and serverNM in Figure 6). For a recursive as-
signment, the T-model and the variable node are connected.

2) As seeing a literal or symbolic value, it creates a new
literal/symbolic node (e.g. ‘server.’ and SYM01 in Figure 6).

3) For a Concat operation, it creates a Concat node whose
children are the T-models corresponding to two operands.

4) For a built-in function (e.g. $(wildcard *.conf)), it connects
the T-models of the parameters to a newly created function
call node (Figure 6). For an eval call, it connects the T-model
of the computed value from eval to a new eval node.

5) For a call function, the T-model of the returned value
is linked to the new call node (e.g. T-model for prog → call).

6) For a foreach statement, the T-model of its body is
linked to a new foreach node (e.g. T-model of eval → foreach).

7) For an if, it creates an if node to represent the branch it
took to build the traced value (e.g. true branch in Figure 6).

VI. DETECTION OF CODE SMELLS AND ERRORS

Let us present an application of our infrastructure (SDG,
V-, T-models) to detect code smells/errors in a Makefile.
Cyclic Dependency. An example of cyclic dependency am-
ong targets/prerequisites is in Scenario 1 (Section II). To de-
tect this error, we use a graph algorithm to detect a directed
cycle that goes through targets, prerequisites, recipes via

dependency edges. Due to the presence of symbolic nodes
(i.e. with the SYM prefix), a new type of edges is defined
in an SDG, called matching edges. Two targets/prerequisites
are connected via a matching edge if either 1) their labels
are matched according to make’s syntax (e.g. % in implicit
rules), or 2) at least one of them is from a symbolic node.

In detection, SYMake considers those matching edges in
addition to dependency edges. In Figure 4, the cycle includes
SYM01 (Figure 4a) match→ %.conf (Figure 4b) → Select → rcp7

→ %.o
match→ server.o (Figure 4a) → rcp3 → SYM01.

Loop of Recursive Variables. That is, a recursive variable’s
value is indirectly dependent on itself. To detect this, when
constructing the V-model for a variable var during sym-
bolic evaluation, SYMake detects whether its reference node
points to another V-model and from there indirectly refers
back to var’s reference node via one or multiple V-models.
Duplicate Prerequisites. make has a mechanism to combine
multiple rules with the same target name into a complete
rule. When multiple developers work on a Makefile, this
mechanism allows them to focus on the dependencies of
their own concerns. However, it could lead to the case that
two or more prerequisites of a rule are exactly matched.

SYMake detects this smell by iterating over all rules in the
SDG, and comparing the simple names of prerequisite nodes
for an exact name match. Symbolic nodes are discarded.
Rule Inclusion. An example of rule inclusion is in Scenario
3 (Section II) in which one developer adds a specific rule for
his/her file, while a general (implicit) rule already exists. For
example, the following one is included in rule 31 (Figure 1).

comp1.conf : comp1.o
genConf comp1.o −o comp1.conf

SYMake first runs the specific rule (without %) to gener-
alize the recipe. E.g., the above one becomes genConf $∧ -o
$@. Then, it tries to match the target and each prerequisite to
the counterpart in the implicit rule. If the pattern is matched
for all (e.g. comp1.conf and %.conf), an inclusion is detected.

In those cases, GNU make might not be able to detect
errors/smells since it could run on a different path that does
not involve the duplication or cycle. In some cases, the
errors are not revealed until the projects and Makefiles are
deployed at user environments, directories, or configurations.
SYMake performs symbolic evaluation to generalize possi-
ble evaluation results, thus, is able to detect them statically.

VII. REFACTORING SUPPORT WITH SYMAKE

Renaming Variable. Another application is automatic re-
naming, where SYMake needs to find all code locations
where a variable was initialized/referenced. The key chal-
lenges are listed in Scenario 2, Section II. E.g., the variable
server.o libs at line 15 has its name composed by the value of
variable serverNM (i.e. ‘server.o’) and the substring ‘ libs’. The
variable server.o libs is then referenced when ProgramTmp is
called at line 26, which leads to line 23 being evaluated,

657

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

+

server.o_libs

$

serverNM

server. ext

o

true

if

line 11

line 4

line 3

+

server.o_libs

foreach

eval

call ProgramTmp

prog

programs

$

serverNM

line 26

line 26

line 26

line 26

line 13

line 11

line 26

+

_libs

line 15

line 15

_libs

line 23

+

server. ext

o

true

if

line 11

line 4

line 3

line 15

serverNM

line 11

+

client.o_libs

foreach

eval

call ProgramTmp

prog

programs

$

clientNM

line 26

line 26

line 26

line 26

line 13

line 12

line 26

_libs

line 23

+

ext

o

true

if

line 12

line 4

line 3

client.

+

.o_libs

$

ext

o

true

if

line 12

line 4

line 3

+

_libs

line 18

line 18

line 18

line 12

client.

clientNM

clientNM

client

a)

b) c)

d)

Figure 7. T-models for server.o libs and client.o libs

and $($(1) libs) becomes $(server.o libs) (i.e. a reference to
server.o libs). Thus, if one wants to change ‘ libs’ as part of
‘$(serverNM) libs’ at line 15 into ‘ LIBS’, then $($(1) libs) at line
23 must be changed into $($(1) LIBS). Also, ‘$(clientNM) libs’ at
line 18 must be changed into ‘$(clientNM) LIBS’ since at line
23, $($(1) libs) is evaluated into ‘$(clientNM) libs’ at foreach’s
second iteration (line 26). Thus, 3 locations of ‘ libs’ at 15,
18, and 23 need consistent renaming. We call them a locset.

To support renaming for variables with their names
being fragmented (called fragmented variables), SYMake
determines a locset with the following idea. During the
evaluation, SYMake keeps track of all reference locations of
the same variable and for each reference string s, it builds the
corresponding T-model to keep track of where all substrings
of s come from. Since the strings of all references of the
same variable must match, SYMake is able to identify the
matched substrings from the literals of the T-models of those
references and group those substrings into a locset.

For example, during the evaluation at line 15, SYMake
builds the T-model for the variable server.o libs as in Fig-
ure 7a. At line 26, it sees a reference to server.o libs and the
corresponding T-model is in Figure 7b. Since two references
at lines 15 and 26 are of the same variable, it can match
the literal nodes in two T-models: Figures 7a and 7b. The
string server.o libs at line 15 comes from 3 literals: 1) ‘server.’
(line 11), 2) ‘o’ (line 4), and 3) ’ libs’ (line 15). The string
server.o libs at line 26 comes from 3 literals: 1) ‘server.’ (line
11), 2) ‘o’ (line 4), and 3) ’ libs’ (line 23). Thus, ’ libs’ (line 15)
and ’ libs’ (line 23) belong to the same locset. Similar reason
is applied to Figures 7c and 7d, and two strings ’ libs’ at lines
18 and 23 are of the same locset. Thus, all three strings ’ libs’
at lines 15, 18, and 23 belong to the same locset.

The T-models are created/updated over time. After the
evaluation of a variable reference r, the entry for r in the
entity table refers to its latest T-model. All locsets are main-

Table II
SUBJECT SYSTEMS AND BUILD CODE INFORMATION

System MakeF LOCs Locsets Loc. Frag NonFrag Vars Rules Paths Incl
SCST[34] 49 1786 870 2230 39 831 876 112 154 0
LINN[35] 67 4020 3417 7169 53 3364 3425 134 536 0
GCC[36] 68 5350 1972 16546 11 1961 1980 804 75 5
MIN[37] 95 2374 632 3324 0 632 632 121 95 95

LINS[38] 98 1255 973 1563 5 968 973 135 98 0
FIRE[39] 156 6374 1960 4668 12 1948 1991 2635 621 130

TS[40] 232 12950 2655 9711 50 2605 2655 2541 235 210

tained after symbolic evaluation. If renaming is requested
for a variable (or part of it), SYMake searches in all locsets
and renames all locations in the respective locset.
Rename Target. SYMake manages targets similarly as
variables in which target definitions are viewed as variable
declarations, and their usages as references. T-models in the
entity table are updated as a rule or recipe is met (rules 18-
20, Table I). SYMake supports renaming of a prerequisite
only if it is a target of another rule but is not a file name.

Our tool supports also other refactorings such as rule
extraction/removal, target/prerequisite/recipe extraction, etc.

VIII. EMPIRICAL EVALUATION

A. Accuracy and Efficiency Evaluation in Renaming

We conducted an evaluation on SYMake’s renaming accu-
racy. We chose the Makefiles in 7 subject systems (Table II).
We asked six Ph.D. students to independently identify the
locsets for consistent renaming. We built a tool to assist them
in that oracle building task. It skips the comments, keywords,
built-in function names, and parses the Makefile’s contents
to retrieve string tokens. For each string s, it performs
text-searching for all occurrences of s in a Makefile and
included one(s). Human subjects marked the occurrences
that are variables’ names and require consistent renaming
as belonging to the same locsets.

In Table II, columns Locsets and Loc. display the number of
locsets and the total number of locations in locsets. A locset
can have multiple variables. Columns Frag and NonFrag show
the numbers of locsets with fragmented and non-fragmented
variables. Complexity of Makefiles is shown via the numbers
of program elements (last 4 columns). A detected locset LS1

is considered as correct if there exists a locset LS2 in the
oracle such that all code locations in LS1 match all locations
in LS2. If there is at least one matched location, but not
all locations are matched, LS1 is considered as incorrectly
detected. If there does not exist any LS2 in the oracle that
has at least one matched location, LS1 is viewed as missing.

In Table III, Precision (column Prec) is the ratio of the
correctly detected locsets over the total detected ones. Recall
(column Rec) is the ratio of the correctly detected ones over
the total number of locsets. As comparing LS1 with LS2, we
also evaluated accuracy at the detected locations. A detected
location L in LS1 is viewed as correct or incorrect if it is
or is not in LS2, respectively. To compare with the baseline

658

Table III
LOCSET DETECTION ACCURACY RESULT

System Locsets Locations |SDG| T (s) MBPrec Rec Total Corr Inc-Text
SCST 100% 100% 870 2230 724 19184 12 51
LINN 100% 100% 3417 7169 323 19539 27 133
GCC 100% 100% 1972 16546 2188 10909 19 156
MIN 100% 100% 632 3324 611 9666 13 259

LINS 100% 100% 973 1563 167 10623 12 248
FIRE 100% 100% 1960 4668 893 55043 34 691

TS 100% 100% 2655 9711 1659 27302 22 552

method in text replacing, we counted the number of incorrect
locations from the text-search tool (column Inc-Text).

The result shows that all detected locsets are correct and
cover all the locsets in the oracle. SYMake also handles
correctly all fragmented variables. In contrast, the text-
search tool returned a large number of incorrect locations.

|SDG| shows the average number of nodes in an SDG
with V-models for a Makefile. SYMake handles all SDGs
for all Makefiles with efficient time and memory usage.

B. Usefulness in Smell Detection and Refactoring

1) Experiment Setting: We conducted a controlled exper-
iment to evaluate how SYMake can help users in understand-
ing, refactoring, and detecting the code smells in Makefiles.
Six programming tasks on Makefiles were prepared. The
Makefiles were selected from the systems in Table II. Each
Makefile was then injected with 6 code smells of the types
listed in Section VI. We invited 8 Ph.D. students with 4-
8 years of programming experience and divided them into
2 groups. We also provided a short training session for
all subjects. To further avoid the imbalance between two
groups, we applied the crossover technique. That is, group
1 performed tasks 1, 3, and 5 using SYMake and other tasks
without SYMake. The opposite is for group 2. The first set of
tasks include 1) detecting at least 6 code smells, 2) reporting
the locations/tokens for those code smells, and 3) a short
explanation. The second set of tasks is build code refactoring
including target creating/renaming, rule extraction/removal,
variable renaming, and prerequisite extraction.

2) Evaluation Metrics: First metric is code quality. In the
smell detection tasks, we compared the numbers of smells
correctly/incorrectly detected and missed between without
and with the tool (two numbers are side-by-side in Table IV).
Precision and recall for the location detection are in Prec-
Loc and Rec-Loc. In the refactoring tasks, we calculated the
precision (Prec) and recall (Rec) of refactoring locations.
Second metric is developers’ effort measured via completion
time. If the time limit had passed, (s)he was required to stop.

3) Result: As in Table IV, in both types of tasks, subjects
with SYMake were able to detect smells more accurately and
perform refactoring more correctly in less time.
C. Threats to validity: In the first experiment, human sub-
jects were involved in oracle building and errors could occur.
In the controlled experiment, injected code smells are not the

Table IV
CONTROLLED EXPERIMENT’S RESULT

Tasks Code Smell Detection Refactoring
Cor Incor Miss Prec-Loc Rec-Loc Time Prec Rec Time

1 11-26 5-0 13-0 92-96% 67-100% 70-31 82-99% 77-99% 37-23
2 8-24 4-0 16-0 77-100% 65-92% 69-31 71-92% 68-91% 42-29
3 11-24 6-0 13-0 100-100% 64-99% 47-39 58-100% 39-100% 35-22
4 13-23 3-0 11-1 100-100% 96-100% 74-43 76-100% 71-97% 36-25
5 6 -24 6-0 18-0 81-100% 80-100% 72-46 77-100% 44-100% 33-23
6 16-25 3-0 8-0 98-94% 90-90% 76-47 75-92% 67-90% 42-23

real ones and might not be representative. The subject are
students who are not professional programmers.

IX. RELATED WORK

MAKAO [18] is a visualization and smell detection tool
for Makefiles. However, it works only on concrete depen-
dency graphs [9], thus, cannot handle dynamic Makefiles.
There are several empirical studies on build code mainte-
nance. McIntosh et al. [5] showed that build changes induce
more relative churn on build code than source code changes
induce on itself. Hochstein and Jiao [4] found that 19-58%
of the total commits are the ones involving only build code.
Robles et al. [7] reported that many revisions contain only
changes to build code. Adams et al. [3] showed that the
complexity of build code in Linux co-evolves with source
code. McIntosh et al. [8] reported the same result in ANT.

Recent advances in symbolic execution have been widely
applied. Popular methods are compositional symbolic exe-
cution [10], pre-/post-conditions [11], a symbolic and con-
crete execution combination [12], a combination with model
checking [13], [14], and differential symbolic execution [15].
PhpSync’s symbolic execution [16] works on PHP to capture
HTML/JS code, while SYMake aims to represent build rules.

No refactoring support has been yet available for make
build code. However, research in refactoring has been exten-
sive [17], [19], [2]. Recent advances include [21], [22], [23],
[24], [25]. Several approaches aim to detect code smells [26].
Popular ones include clone analysis [27], meta-model [28],
logic meta programming [29], [30], weak code structure
detection [31], and visualization [32], [33].

X. CONCLUSIONS

We introduce SYMake, an infrastructure for make code
analysis. SYMake includes AST building module, a sym-
bolic evaluation algorithm, and an evaluation trace building
algorithm. We used SYMake to develop a tool to detect code
smells and to support refactoring in Makefiles. Our evalua-
tion on real-world Makefiles showed that our renaming tool
is accurate and efficient, and that with SYMake, users could
detect code smells and refactor Makefiles more accurately.

ACKNOWLEDGMENT

This project is funded by US National Science Foundation
(NSF) CCF-1018600 grant. It was also funded in part by
Vietnam Education Foundation for the third author.

659

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

REFERENCES

[1] “Software Building,” en.wikipedia.org/wiki/Software build.

[2] W. G. Griswold and D. Notkin, “Automated assistance for
program restructuring,” ACM TOSEM, vol. 2, issue 3, 1993.

[3] B. Adams, K. De Schutter, H. Tromp, W. De Meuter, “The
evolution of the Linux build system,” ECEASST, vol. 8, 2007.

[4] L. Hochstein and Y. Jiao, “The cost of the Build Tax in
Scientific Software,” in ESEM ’11, pp. 384-387. IEEE, 2011.

[5] S. McIntosh, B. Adams, T. H.D. Nguyen, Y. Kamei, and A. E.
Hassan, “An empirical study of build maintenance effort,” in
ICSE ’11, pp. 141–150. ACM, 2011.

[6] “Make,” http://www.gnu.org/software/make/manual/make.html.

[7] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo,
“Beyond source code: the importance of other artifacts in
software development (a case study),” J. Syst. Softw., vol. 79,
issue 9, pp. 1233–1248, September 2006.

[8] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of
ANT build systems,” in MSR ’10, pp. 42–51, IEEE, 2010.

[9] C. Gunter, “Abstracting dependencies between software con-
figuration items,” TOSEM, vol. 9, no. 1, pp. 94–131, 2000.

[10] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven
compositional symbolic execution,” in TACAS’08/ETAPS’08,
pp. 367–381. Springer-Verlag, 2008.

[11] P. Godefroid, “Compositional dynamic test generation,” in
POPL ’07, pp. 47–54. ACM, 2007.

[12] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. Lowry, S. Person, and M. Pape, “Combining unit-
level symbolic execution and system-level concrete execution
for testing NASA software,” in ISSTA ’08, pp. 15–26. ACM.

[13] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input
generation with Java PathFinder,” in ISSTA ’04. ACM, 2004.

[14] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek, “Test input gener-
ation for Java containers using state matching,” in ISSTA’06,
pp. 37–48. ACM, 2006.

[15] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu,
“Differential symbolic execution,” in FSE’08. ACM, 2008.

[16] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, T. N. Nguyen,
“Auto-Locating and Fix-Propagating for HTML Validation
Errors to PHP Server-side Code,” in ASE ’11, IEEE, 2011.

[17] T. Mens and T. Tourwé, “A survey of software refactoring,”
IEEE TSE, vol. 30, no. 2, pp. 126–139, 2004.

[18] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter,
“Design recovery and maintenance of build systems,” in
ICSM ’07, pp. 114–123, IEEE CS, 2007.

[19] W. F. Opdyke, “Refactoring object-oriented frameworks,”
Ph.D. dissertation, Urbana-Champaign, IL, USA, 1992.

[20] G. Kumfert and T. Epperly, “Software in the DOE: The hid-
den overhead of “the build”” Lawrence Livermore National
Laboratory, Tech. Rep. UCRL-ID-147343, 2002.

[21] D. Dig, J. Marrero, M. Ernst, “Refactoring sequential Java
code for concurrency via concurrent libraries,” in ICSE’09.

[22] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for
class library migration,” in OOPSLA ’05. pp. 265–279, ACM.

[23] H. Kegel and F. Steimann, “Systematically refactoring inheri-
tance to delegation in Java,” in ICSE ’08, pp. 431–440. ACM.

[24] A. Kiezun, M. D. Ernst, F. Tip, and R. M. Fuhrer, “Refactor-
ing for parameterizing Java classes,” in ICSE’07. IEEE CS.

[25] J. Liu, D. Batory, and C. Lengauer, “Feature oriented refactor-
ing of legacy applications,” in ICSE ’06, pp. 112–121. ACM.

[26] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code. Adison-
Wesley, 2000.

[27] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis, “Advanced clone-analysis to support object-
oriented system refactoring,” in WCRE’00. IEEE CS, 2000.

[28] S. Ducasse, M. Rieger, and S. Demeyer, “A language inde-
pendent approach for detecting duplicated code” in ICSM’99.

[29] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz,
“A meta-model for language-independent refactoring,” in IW-
PSE’00, pp. 157–169. IEEE CS, 2000.

[30] T. Tourwé and T. Mens, “Identifying refactoring opportunities
using logic meta programming,” in CSMR’03. IEEE, 2003.

[31] T. Dudziak and J. Wloka, “Tool-supported discovery and
refactoring of structural weaknesses in code,” Diploma thesis,
Technical University of Berlin, 2002.

[32] E. Van Emden and L. Moonen, “Java quality assurance by
detecting code smells,” in WCRE’02, pp. 97–106. IEEE CS.

[33] M. Lanza and S. Ducasse, “Understanding software evolution
using a combination of software visualization and software
metrics,” in Proc. Langages et Modeles a Objets, LMO ’02,
pp. 135–149. Hermes Publications, 2002.

[34] “SCST Project,” github.com/bvanassche/scst-out-of-tree.

[35] “Linux2.6-net,” github.com/mirrors/linux-2.6/tree/master/net.

[36] “Gcc compiler,” github.com/mirrors/gcc.

[37] “Minix,” http://www.minix3.org/download/

[38] “Linux2.6-sound,” github.com/mirrors/linux-2.6/tree/master/
sound.

[39] “Firefox development,” http://hg.mozilla.org/mozilla-central/.

[40] “Current Thunderbird, SeaMonkey and calendar develop-
ment,” http://hg.mozilla.org/comm-central/.

660

