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Abstract
Recently, Esparza et al. generalized Newton’s method—a
numerical-analysis algorithm for finding roots of real-valued
functions—to a method for finding fixed-points of systems of equa-
tions over semirings. Their method provides a new way to solve
interprocedural dataflow-analysis problems. As in its real-valued
counterpart, each iteration of their method solves a simpler “lin-
earized” problem.

One of the reasons this advance is exciting is that some nu-
merical analysts have claimed that “‘all’ effective and fast iter-
ative [numerical] methods are forms (perhaps very disguised) of
Newton’s method.” However, there is an important difference be-
tween the dataflow-analysis and numerical-analysis contexts: when
Newton’s method is used on numerical-analysis problems, multi-
plicative commutativity is relied on to rearrange expressions of the
form “c ∗ X + X ∗ d” into “(c + d) ∗ X .” Such equations corre-
spond to path problems described by regular languages. In contrast,
when Newton’s method is used for interprocedural dataflow anal-
ysis, the “multiplication” operation involves function composition,
and hence is non-commutative: “c ∗ X + X ∗ d” cannot be re-
arranged into “(c + d) ∗ X .” Such equations correspond to path
problems described by linear context-free languages (LCFLs).

In this paper, we present an improved technique for solving the
LCFL sub-problems produced during successive rounds of New-
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ton’s method. Our method applies to predicate abstraction, on
which most of today’s software model checkers rely.
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[Logics and Meanings of Programs]: Specifying and Verify-
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mal Languages—Algebraic language theory
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1. Introduction
Many interprocedural dataflow-analysis problems can be formu-
lated as the problem of finding the least fixed-point of a system of
equations ~X = ~f( ~X) over a semiring [2, 23, 24]. Standard meth-
ods for obtaining the solution to such an equation system are based
on Kleene iteration, a successive-approximation method defined as
follows:

~κ(0) = ~⊥
~κ(i+i) = ~f(~κ(i))

(1)

Recently, Esparza et al. [6, 7] generalized Newton’s method—
a numerical-analysis algorithm for finding roots of real-valued
functions—to a method for finding fixed-points of systems of equa-
tions over semirings. Their method, Newtonian Program Analysis
(NPA), is also an iterative successive-approximation method, but
uses the following scheme:1

~ν(0) = ~⊥
~ν(i+1) = ~f(~ν(i)) t LinearCorrectionTerm(~f, ~ν(i))

(2)

where LinearCorrectionTerm(~f, ~ν(i)) is a correction term—a func-
tion of ~f and the current approximation ~ν(i)—that nudges the next
approximation ~ν(i+1) in the right direction at each step. The sense
in which the correction term is “linear” will be discussed in §2, but
it is that linearity property that makes it proper to say that Eqn. (2)
is a form of Newton’s method.

NPA holds considerable promise for creating faster solvers
for interprocedural dataflow analysis. Most dataflow-analysis algo-
rithms use classical fixed-point iteration (typically worklist-based

1 For reasons that are immaterial to this discussion, Esparza et al. start the
iteration via ~ν(0) = 〈f1(⊥), . . . , fn(⊥)〉 rather than ~ν(0) = ~⊥. Our goal
here is to bring out the essential similarities between Eqns. (1) and (2).
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“chaotic-iteration”). In contrast, the workhorse for fast numerical-
analysis algorithms is Newton’s method, which usually converges
much faster than classical fixed-point iteration.2 In fact, Tapia and
Dennis [28] have claimed that

‘All’ effective and fast iterative [numerical] methods are
forms (perhaps very disguised) of Newton’s method.

Can a similar claim be made about methods for solving equations
over semirings? As a first step toward an answer, it is important to
discover the best approaches for creating NPA-based solvers.

Like its real-valued counterpart, NPA is an iterative method:
each iteration solves a simpler “linearized” problem that is gen-
erated from the original equation system. At first glance, one might
think that solving each linearized problem corresponds to solving
an intraprocedural dataflow-analysis problem—a topic that has a
fifty-year history [9, 11, 13, 29, 32]. Unfortunately, this idea does
not hold up to closer scrutiny. In particular, the sub-problems gen-
erated by NPA lie outside the class of problems that an intrapro-
cedural dataflow analyzer handles, for a reason we now explain.

When Newton’s method is used in numerical-analysis problems,
commutativity of multiplication is relied on to rearrange an expres-
sion of the form “c∗X+X ∗d” in the linearized problem into one
of the form “c ∗X + d ∗X ,” which equals “(c+ d) ∗X .” In con-
trast, in interprocedural dataflow analysis, a dataflow value is typi-
cally an abstract transformer (i.e., it represents a function from sets
of states to sets of states) [5, 26]. Consequently, the “multiplica-
tion” operation is typically the reversal of function composition—
v1 ∗ v2

def
= v2 ◦ v1—which is not a commutative operation.

When NPA is used with a non-commutative semiring, an expres-
sion “c∗X+X∗d” in the linearized problem cannot be rearranged:
coefficients can appear on both sides of variables.

From a formal-languages perspective, the linearized equation
systems that arise in numerical analysis correspond to path prob-
lems described by regular languages. However, when expressions
of the form “c ∗ X + X ∗ d” cannot be rearranged, the linearized
equation systems correspond to path problems described by lin-
ear context-free languages (LCFLs). Conventional intraprocedu-
ral dataflow-analysis algorithms solve only regular-language path
problems, and hence cannot, in general, be applied to the linearized
equation systems considered on each round of NPA. Consequently,
we are stuck performing classical fixed-point iteration on the LCFL
equation systems. (Applying NPA’s linearization transformation to
one of the LCFL equation systems just results in the same LCFL
equation system, and so one would not make any progress.)

A preliminary study that we did indicated that (i) NPA was
not an improvement over conventional methods for interprocedural
dataflow analysis, and (ii) 98% of the time was spent performing
classical fixed-point iteration to solve the LCFL equation systems.
If only we could apply a fast intraprocedural solver! In particular,
Tarjan’s path-expression method [30] finds a regular expression
for each of the variables in a set of mutually recursive left-linear
equations. The regular expressions are then evaluated using an
appropriate interpretation of the regular operators +, ·, and ∗.

On the face of it, it seems impossible that our wish could be
fulfilled. Formal-language theory tells us that LCFL ) Regular.
In particular, the canonical example of a non-regular language,
{bici | i ∈ N}, is an LCFL. However, despite this obstacle—and
this is where the surprise value of our work lies—there are non-
commutative semirings for which we can transform the problem
so that Tarjan’s method applies (§4.5). Moreover, as discussed in

2 For some inputs, Newton’s method may converge slowly, converge only
when started at a point close to the desired root, or not converge at all;
however, when it does converge to a solution, it usually converges much
faster than classical fixed-point iteration.

§5, one of the families of semirings for which our transformation
applies is the set of predicate-abstraction domains [8], which are
the foundation of most of today’s software model checkers.3

Contributions. The paper’s contributions include the following:
• We show how to improve the performance of NPA for certain

classes of interprocedural dataflow-analysis problems. The pa-
per presents Newtonian Program Analysis via Tensor Products
(NPA-TP), a procedure for solving systems of mutually recur-
sive equations over certain classes of non-commutative semir-
ings (§4.5 and §7).
• NPA-TP sidesteps the issue “LCFL ) Regular” as follows (§4):

We require semiring S to possess a tensor-product oper-
ation (Defn. 4.1). The special properties of this operation
allow each LCFL problem to be transformed into a left-
linear—and hence regular—system of equations over a dif-
ferent semiring ST (§4.2).
The ST equation system can be solved quickly using a fast
intraprocedural solver—in particular, Tarjan’s method for
finding and evaluating path expressions.
The desired S answer can be read out of the ST answer.
This sequence of steps does not create any loss of precision.

• We describe how to apply NPA-TP to predicate-abstraction
problems (§5).
• We describe a new way for loops to be handled in NPA and

NPA-TP (§6).
• We describe how to extend NPA and NPA-TP to analyze pro-

grams with local variables (§8).
• We present the results of experiments with an implementation

of NPA-TP for sequential Boolean programs (§9).
§10 discusses related work. §11 draws some conclusions.

2. Background
Semirings.

DEFINITION 2.1. A semiring S = (D,⊕,⊗, 0, 1) consists of a
set of elements D equipped with two binary operations: combine
(⊕) and extend (⊗). ⊕ and ⊗ are associative, and have identity
elements 0 and 1, respectively.⊕ is commutative, and⊗ distributes
over⊕. (A semiring is sometimes called a weight domain, in which
case elements are called weights.)

An ω-continuous semiring is a semiring with the following
additional properties:
1. The relation v def

= {(a, b) ∈ D × D | ∃d : a⊕ d = b} is a
partial order.

2. Every ω-chain (ai)i∈N (i.e., for all i ∈ N ai v ai+1) has a
supremum with respect to v, denoted by supi∈N ai.

3. Given an arbitrary sequence (ci)i∈N, define⊕
i∈N

ci
def
= sup{c0⊕ c1⊕ . . .⊕ ci | i ∈ N}.

The supremum exists by (2) above. Then, for every sequence
(ai)i∈N, for every b ∈ S, and every partition (Ij)j∈J of N, the
following properties all hold:

b⊗

(⊕
i∈N

ai

)
=
⊕
i∈N

(b⊗ ai)(⊕
i∈N

ai

)
⊗ b =

⊕
i∈N

(ai⊗ b)

⊕
j∈J

⊕
i∈Ij

ai

 =
⊕
i∈N

ai

3 Two other classes of semirings for which the transformation applies are
based on abstract domains of affine relations [21, 22]; see [18, §6.2].



The notation ai denotes the ith term in the sequence in which
a0 = 1 and ai+1 = ai⊗ a. An ω-continuous semiring has a
Kleene-star operator ∗ : D → D defined as follows: a∗ =

⊕
i∈N

ai.

The set of all binary relations on a given finite set forms a semir-
ing, and allows each predicate-abstraction domain to be formalized
as a semiring.

DEFINITION 2.2. If A is a finite set, then the relational weight
domain on A is defined as (2A×A,∪, ; , ∅, id): weights are binary
relations on A, ⊕ is union, ⊗ is relational composition, 0 is the
empty relation, and 1 is the identity relation on A. The Kleene-star
operation is reflexive transitive closure.

A Boolean program is a program whose only datatype is
Boolean. A Boolean program can be used as an abstraction of a
real-world program [1] using predicate abstraction [8]. By instanti-
ating A to be the set of global states of a Boolean program P , we
obtain a semiring that can encode the state-transformers of P : the
semiring value associated with an assignment or assume statement
st of P is the binary relation on A that represents the effect of st
on the global state of P .

In this paper, the focus is on semirings in which⊕ is idempotent
(i.e., for all a ∈ D, a⊕ a = a). In an idempotent semiring, the
order on elements is defined by a v b iff a⊕ b = b. (Idempotence
would be expected in the context of dataflow analysis because an
idempotent semiring is a join semilattice (D,⊕) in which the join
operation is ⊕.)

A semiring is commutative if for all a, b ∈ D, a⊗ b = b⊗ a.
We work with non-commutative semirings, and henceforth use the
term “semiring”—and symbol S—to mean an idempotent, non-
commutative, ω-continuous semiring.

To simplify notation, we sometimes abbreviate a⊗ b as ab, and
we assume the following precedences for operators: ∗ > ⊗ > ⊕.
We also sometimes use a ∈ S rather than a ∈ D.

Remark. In general, we do not make a typographical distinction
between uses of ∗, ⊗, and ⊕ as syntactic symbols in expressions
that are constructed, and their semantic counterparts. The semantic
operators are interpreted in S, and must possess the various prop-
erties given in Defn. 2.1 and the text above. In one place it is useful
to make such a distinction (Defn. 4.5), and there we denote the se-
mantic operators by L∗M, L⊗M, and L⊕M, respectively. 2
Newtonian Program Analysis (NPA). Esparza et al. [6, 7] have
given a generalization of Newton’s method that finds the least fixed-
point of a system of equations over a semiring. In this section,
we summarize their NPA method for the case of idempotent, non-
commutative, ω-continuous semirings.

EXAMPLE 2.3. Consider the following program scheme, where
X1 represents the main procedure,X2 represents a subroutine, and
sa, sb, sc, and sd represent four program statements:

X1() {
sa;
X2()

}

X2() {
if (?) sd
else {

sb; X2(); X2(); sc
}

}
Suppose that we have a semiring that captures a suitable abstrac-
tion of the program’s actions (such as the relational weight do-
main). Let a, b, c, and d denote the semiring elements that abstract
statements sa, sb, sc, and sd, respectively. The (abstract) actions
of procedures X1 and X2 can be expressed as the following set of
recursive equations:

X1 = a⊗X2 X2 = d⊕ b⊗X2⊗X2⊗ c. (3)

X2

proc X1

a

X2

proc X2

d

b

c

X2

proc Y2

ν2

d

b

c

Y2

Y2

b

c

ν2

ν2

b

c

ν2Y2

proc Y1

a

ν2

a

(a) (b)

Figure 1. (a) Graphical depiction of the equation system given
in Eqn. (3) as an interprocedural control-flow graph. The three
edges labeled “X2” represent calls to procedureX2. (b) Linearized
equation system over ~Y obtained from Eqn. (3) via Eqn. (5).

An equation system can also be viewed as a representation of a pro-
gram’s interprocedural control-flow graph (CFG). See Fig. 1(a).

In general, let S = (D,⊕,⊗, 0, 1) be a semiring and
a1, . . . , ak+1 ∈ D be semiring elements. Let X be a finite
set of variables X1, . . . , Xk. A monomial is a finite expression
a1X1a2 . . . akXkak+1, where k ≥ 0. Monomials of the form
X1a2, a1X1, and a1X1a2 are left-linear, right-linear, and linear,
respectively. (A semiring constant a1 is considered to be left-linear,
right-linear, and linear.) A polynomial is a finite expression of the
form m1⊕ . . .⊕mp, where p ≥ 1 and m1, . . . ,mp are monomi-
als. A system of polynomial equations has the form

X1 = f1(X1, . . . , Xn) · · · Xn = fn(X1, . . . , Xn),

or equivalently, ~X = ~f( ~X), where ~X = 〈X1, . . . , Xn〉 and
~f = λ ~X.〈f1( ~X), . . . , fn( ~X)〉. For instance, for Eqn. (3), ~f def

=

λ ~X.〈a⊗X2, d⊕ b⊗X2⊗X2⊗ c〉.
Kleene iteration is the well-known technique for finding the

least fixed-point of ~X = ~f( ~X) via the sequence ~κ(0) = 0;
~κ(i+i) = ~f(~κ(i)). Esparza et al. [6, 7] devised an alternative
method, called NPA, for finding the least fixed-point of ~X = ~f( ~X).
With NPA, one solves the following sequence of problems for ~ν:

~ν(0) = (f1(~0), . . . , fn(~0))

~ν(i+1) = ~Y (i)
(4)

where ~Y (i) is the value of ~Y in the least solution of

~Y = ~f(~ν(i))⊕D ~f |~ν(i)(~Y ) (5)

and D ~f |~ν(i)(~Y ) is the multivariate differential of ~f at ~ν(i), de-
fined below (see Defn. 2.4). As discussed in §1, Eqns. (4) and (5)
resemble Kleene iteration, except that on each iteration ~f(~ν(i)) is
“corrected” by the amount D ~f |~ν(i)(~Y ).4

4 Esparza et al. also show that if Eqn. (5) is changed to

~Y = ~f(0)⊕D ~f |~ν(i) (~Y ), (6)

the combinations Eqns. (4) and (5) and Eqns. (4) and (6) produce the
same set of iterates ~ν(0), ~ν(1), . . . , ~ν(i), . . . [7, Prop. 7.1]. Eqn. (5) has the
benefit of presenting NPA as a Kleene-like iteration, during which a linear
correction is performed on each round, which provides better intuition
about the connections with Newton’s method for numerical analysis. Our
implementation, however, is based on Eqn. (6).



There is a close analogy between NPA and the use of Newton’s
method in numerical analysis to solve a system of polynomial equa-
tions ~f( ~X) = ~0. In both cases, one creates a linear approxima-
tion of ~f around the point (~ν(i), ~f(~ν(i))), and then uses the solu-
tion of the linear system in the next approximation of ~X . The se-
quence ~ν(0), ~ν(1), . . . , ~ν(i), . . . is called the Newton sequence for
~X = ~f( ~X). The process of solving Eqns. (4) and (5) for ~ν(i+1),
given ~ν(i), is called a Newton step or one Newton round. For poly-
nomial equations over a semiring, the linear approximation of ~f is
created as follows:

DEFINITION 2.4. [6, 7] Let fi( ~X) be a component function of
~f( ~X). The differential of fi( ~X) with respect to Xj at ~ν, denoted
by DXjfi|~ν(~Y ), is defined as follows:

DXjfi|~ν(~Y ) =

0 if fi = s ∈ S
0 if fi = Xk and k 6= j
Yj if fi = Xj

DXjg|~ν(~Y )⊕DXjh|~ν(~Y ) if fi = g⊕h(
DXjg|~ν(~Y )⊗h(~ν)

⊕ g(~ν)⊗DXjh|~ν(~Y )

)
if fi = g⊗h

(7)

Let ~f be a multivariate polynomial function defined by ~f
def
=

λ ~X.(f1( ~X), . . . , fn( ~X)). The multivariate differential of ~f at ~ν,
denoted by D ~f |~ν(~Y ), is defined as follows:

D ~f |~ν(~Y ) =

〈DX1f1|~ν(~Y )⊕ . . .⊕DXnf1|~ν(~Y ),
...

DX1fn|~ν(~Y )⊕ . . .⊕DXnfn|~ν(~Y )

〉

Dfi|~ν(~Y ) denotes the ith component of D ~f |~ν(~Y ).

Note how the case for “g⊗h” in Eqn. (7) resembles the product
rule from differential calculus

d

dx
(g ∗ h) =

dg

dx
∗ h+ g ∗ dg

dx
,

and in particular the differential form of the product rule:

d(g ∗ h) = dg ∗ h+ g ∗ dh.

We refer to the creation of Eqn. (5) from ~X = ~f( ~X) as the NPA
linearizing transformation.

EXAMPLE 2.5. For Eqn. (3), the multivariate differential of ~f at
the value ~ν = 〈ν1, ν2〉 is

D ~f |(ν1,ν2)(~Y ) =

〈
DX1f1|(ν1,ν2)(~Y )⊕DX2f1|(ν1,ν2)(~Y ),

DX1f2|(ν1,ν2)(~Y )⊕DX2f2|(ν1,ν2)(~Y )

〉

=

〈
0⊕ a⊗Y2, 0⊕

(
b⊗Y2⊗ ν2⊗ c

⊕ b⊗ ν2⊗Y2⊗ c

)〉
=

〈
a⊗Y2,

(
b⊗Y2⊗ ν2⊗ c

⊕ b⊗ ν2⊗Y2⊗ c

)〉
(8)

From Eqn. (5), we then obtain the following linearized system of
equations, which is also depicted graphically in Fig. 1(b):

〈Y1, Y2〉 =

〈(
a⊗ ν2

⊕ a⊗Y2

)
,

 d
⊕ b⊗ ν2⊗ ν2⊗ c
⊕ b⊗Y2⊗ ν2⊗ c
⊕ b⊗ ν2⊗Y2⊗ c

〉 (9)

On the i+ 1st Newton round, we need to solve Eqn. (9) for 〈Y1, Y2〉
with 〈ν1, ν2〉 set to the value 〈ν(i)1 , ν

(i)
2 〉 obtained on the ith round,

and then perform the assignment 〈ν(i+1)
1 , ν

(i+1)
2 〉 ← 〈Y1, Y2〉.

Kleene Iteration and Other Conventional Methods. Esparza
et al. obtained several results that compare NPA against Kleene
iteration—in particular, for interprocedural dataflow analysis, the
Newton iteration-sequence is never worse than the Kleene iteration-
sequence [7, Thm. 3.9]. However, in practice, interprocedural
solvers do not perform Kleene iteration. Kleene iteration is like a
fair scheduler: each variable is considered on each round, no mat-
ter which components of ~κ(i) changed value on the previous round.
More commonly, solvers use chaotic iteration, which uses a work-
list to consider a variable Yi only when there has been a change to
the value of a variable Yj on which Yi depends. For intraprocedural
problems, there are other techniques, such as elimination methods
[4, 9, 31] and Tarjan’s path-expression method [29, 30].

3. Overview
This section motivates our main improvement to the NPA method
of Esparza et al. by illustrating some of its key points on a simple
problem (§3.1 and §3.2). The method presented here is a simplifica-
tion of our actual method. As shown in §3.3, the simplified method
returns a conservative solution to an equation system, but not, in
general, the least solution. This issue motivates the additional tech-
nical aspects needed to obtain the least solution (see §4.5).

3.1 Linear, Non-Regular, Equation Systems
We will concentrate on the (recursive) equation for Y2:

Y2 =

 d
⊕ b⊗ ν2⊗ ν2⊗ c
⊕ b⊗Y2⊗ ν2⊗ c
⊕ b⊗ ν2⊗Y2⊗ c

 (10)

Each monomial in Eqn. (10) is linear. In contrast, the equa-
tion for X2 in the original equation system (Eqn. (3)), X2 =
d⊕ b⊗X2⊗X2⊗ c, involves a monomial that is quadratic. In
general, as in the example above, NPA reduces the problem of solv-
ing a polynomial equation system to solving a sequence of linear
equation systems.

Note that the third and fourth monomials in Eqn. (10) each
extend Y2 by nontrivial quantities on both the left and the right.
Thus, we are truly working with a linear equation system—not one
that is left-linear or right-linear.

One can also consider Eqn. (10) as defining the following linear
context-free grammar over the set of nonterminals {Y2} and the set
of terminals {b, c, d, ν2}:

Y2 ::= d | b ν2 ν2 c | b Y2 ν2 c | b ν2 Y2 c (11)

The linear context-free language (LCFL) generated by grammar
(11) has a matching condition that its strings are all of the form

(b[ν2])i(d⊕ b⊗ ν2⊗ ν2⊗ c)([ν2]c)i, (12)

where #ν2 + 2#d = i + 2 and “[ν2]” denotes an op-
tional occurrence of ν2. Moreover, except for a matched pair in
the “center” of the form b⊗ ν2⊗ ν2⊗ c, in each matched pair
. . . b[ν2] . . . [ν2]c . . ., there is an occurrence of ν2 on the left side
or the right side, but not both.

DEFINITION 3.1. An equation system over semiring S is an LCFL
equation system if each equation has the form

Yj = cj ⊕
⊕
i,k

(ai,j,k ⊗Yi⊗ bi,j,k),

where ai,j,k, bi,j,k, cj ∈ S.

3.2 Problem Statement: “Regularizing” an LCFL Equation
System

As mentioned earlier, NPA performs a Kleene-like iteration, during
which a linear correction is applied on each round. Defn. 3.1 allows
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us to be more precise: the correction value used on each round is
the solution to an LCFL equation system. Our first contribution to
NPA is to address the following problem:

Given an LCFL equation system L, devise an efficient
method for finding the least solution of L.

DEFINITION 3.2. An equation system over semiring S is a left-
linear equation system if each equation has the form

Zj = cj ⊕
⊕
i,k

(Zi⊗ bi,j,k),

where bi,j,k, cj ∈ S.

In contrast to a general LCFL equation system, with a left-linear
equation system one can always collect coefficients for a given
Zi—i.e., di,j =

⊕
k bi,j,k—so that equations can always be put

in a form in which Zj has a single dependence on each Zi:

Zj = cj ⊕
⊕
i

(Zi⊗ di,j),

where di,j , cj ∈ S.
A left-linear equation system corresponds to a left-linear gram-

mar, and hence a regular language. The fact that Tarjan’s path-
expression method [30] provides a fast method for solving left-
linear equation systems led us to pose the following question:

Is it possible to “regularize” the LCFL equation system L

that arises on each Newton round—i.e., transform L into a
left-linear equation system LReg?

If the extend (⊗) operation of the semiring is commutative, it is
trivial to turn an LCFL equation system into a left-linear equation
system. However, in dataflow-analysis problems, we rarely have a
commutative extend operation; thus, our goal is to find a way to
regularize a non-commutative LCFL equation system.

On the face of it, this line of attack seems unlikely to pan out;
after all, Eqn. (12) resembles the language L = {bici | i ∈ N},
which is the canonical example of an LCFL that is not regular. L
can be defined via the linear context-free grammar

S ::= ε | b S c (13)

in which the second production allows matching b’s and c’s to be
accumulated on the left and right sides of nonterminal S. Moreover,
if grammar (13) is extended to have K matching rules

S ::= ε | bj S cj 1 ≤ j ≤ K (14)

the generated strings have bilateral symmetry, e.g.,

. . . b2 b1c1︸︷︷︸ c2︸ ︷︷ ︸ . . .
Any solution to the problem of regularizing a non-commutative
LCFL equation system has to accommodate such mirrored corre-
lation patterns.

The challenge is to devise a way to accumulate matching quan-
tities on both the left and right sides, whereas in a regular language,
we can only accumulate values on one side. This observation sug-
gests the strategy of using pairs in which left-side and right-side
values are accumulated separately but concurrently, so that the de-
sired correlation is maintained. Toward this end, we define extend
and combine on pairs as follows:

(a1, b1)⊗p(a2, b2) = (a2⊗ a1, b1⊗ b2) (15)
(a1, b1)⊕p(a2, b2) = (a1⊕ a2, b1⊕ b2) (16)

Note the order-reversal in the first component of the right-hand side
of Eqn. (15): “a2⊗ a1.”

Given a pair (a, b), we can read out a normal value via the oper-
ation R(a, b)

def
= a⊗ b. Because of the order-reversal in Eqn. (15),

we have
R((a1, b1)⊗p(a2, b2)) = R((a2⊗ a1, b1⊗ b2))

= a2⊗ a1⊗ b1︸ ︷︷ ︸⊗ b2︸ ︷︷ ︸ .
The braces highlight the fact that we have achieved the desired
mirrored matching of (i) a1 with b1, and (ii) a2 with b2.

EXAMPLE 3.3. Using⊗p and⊕p, we can transform a linear equa-
tion (and more generally a set of linear equations) by pairing
semiring values that appear to the left of a variable with the val-
ues that appear to the right of the variable, placing the pair to the
variable’s right. For instance, Eqn. (10) is transformed into

Z2 =

 (1, d)
⊕p (1, b⊗ ν2⊗ ν2⊗ c)
⊕p Z2⊗p(b, ν2⊗ c)
⊕p Z2⊗p(b⊗ ν2, c)

 (17)

where Z2 is now a variable that takes on pairs of semiring values.
After collecting terms, we have an equation of the form

Z2 = A⊕p Z2⊗pB, (18)
where A = (1, d⊕ b⊗ ν2⊗ ν2⊗ c), (19)

and B = (b⊕ b⊗ ν2, ν2⊗ c⊕ c). (20)

Eqn. (18) is similar to the equation over formal languages

Z2 = A+ (Z2 ·B),

for which the regular expressionA·B∗ is a closed-form solution for
Z2. Similarly, the solution of Eqn. (18) for Z2 over paired semiring
values is given by

Z2 = A⊗pB∗p , (21)

where B∗p denotes
⊕

p
i∈N

Bi (in which the repeated “multiplica-

tion” operation in Bi is ⊗p). If the answer obtained for Z2 is the
pair (w1, w2), we can read out the value for Z2 asR((w1, w2)) =
w1⊗w2.

The algorithm demonstrated above can be stated as follows:

ALGORITHM 3.4. To solve a linear equation system L,
1. Convert L into a left-linear equation system LReg (with weights

that consist of pairs of semiring values).
2. Find the least solution of equation system LReg.
3. Apply the readout operation R to the least solution of LReg to

obtain a solution to L.

In our example, for step (2) we expressed the least solution of
Eqn. (18) in closed form, as a regular expression (Eqn. (21)), which
means that the solution forZ2 can be obtained merely by evaluating
the regular expression. In general, when equation system LReg has
a larger number of variables, for step (2) we can use Tarjan’s path-
expression method [30], which finds a regular expression for each
of the variables in a set of mutually recursive left-linear equations.

This approach has a lot of promise for Newtonian program anal-
ysis because the structure of LReg—and hence of the correspond-
ing regular expressions—remains fixed from round to round. Con-
sequently, we only need to perform the expensive step of regular-
expression construction via Tarjan’s method once, before the first
round. The actions taken for step (2) on each Newton round are as
follows: (i) in each regular expression, replace the constant-valued
leaves {νi}, which represent previous-round values, with updated
constants, and (ii) reevaluate the regular expression.
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In our example, the original linearized system of Eqn. (9),
transformed to left-linear form, is

〈Z1, Z2〉 = 〈(1, a⊗ ν2)⊕p Z2⊗p(a, 1), A⊕p Z2⊗pB〉,
for which we have the closed-form solution

〈Z1, Z2〉 =

〈
(1, a⊗ ν2)⊕pA⊗pB∗p ⊗p(a, 1),
A⊗pB∗p

〉
. (22)

To solve the original system of equations given in Eqn. (3),
1. First, set ν2 to 0 in Eqn. (22) and evaluate the right-hand side:

〈Z1, Z2〉 =

〈
(1, 0)⊕p(1, d)⊗p(b, c)∗p ⊗p(a, 1),
(1, d)⊗p(b, c)∗p

〉
. (23)

2. Then, until convergence, repeat the following steps:
(a) ApplyR to the value obtained for Z2 to obtain the value of

ν2 to use during the next round.
(b) Use that value in Eqns. (19) and (20), and evaluate the right-

hand side of Eqn. (22) to obtain new values for Z1 and Z2.

3.3 What Fails?
Unfortunately, the method given as Alg. 3.4 is not guaranteed to
produce the desired least-fixed-point solution to an LCFL equation
system L. The reason is that the read-out operation R does not, in
general, distribute over ⊕p. Consider the equation system

X1 = 1 X2 = a1X1b1⊕ a2X1b2.

This system corresponds to a graph with two paths. The least so-
lution for X2 is a1b1⊕ a2b2, where a1b1 and a2b2 are the con-
tributions from the two paths. However, when treated as a paired-
semiring-value problem, we have

Z1 = (1, 1) Z2 = Z2⊗p((a1, b1)⊕p(a2, b2)).

The least solution for Z2 is (a1, b1)⊕p(a2, b2), whose readout
value isR((a1, b1)⊕p(a2, b2)). However, the latter does not equal
a1b1⊕ a2b2.

R((a1, b1)⊕p(a2, b2)) = R((a1⊕ a2, b1⊕ b2))
= (a1⊕ a2)⊗ (b1⊕ b2)
= a1b1⊕ a2b1⊕ a1b2⊕ a2b2
w a1b1⊕ a2b2
= R((a1, b1))⊕R((a2, b2)).

(24)

In other words, using combines of pairs leads to cross-terms, such
as a2b1 and a1b2, and consequently answers obtained by (i) solving
Eqn. (18) over paired semiring values for the combine-over-all-
values answer, and (ii) applying R to the result, could return an
overapproximation (A) of the least solution of the original LCFL
equation system L.

In the case of Eqn. (18), A = (1, d⊕ bν2ν2c) and B =
(b⊕ bν2, ν2c⊕ c). One of the “strings” described by A⊗pB∗p
is

AB = (1, d⊕ bν2ν2c)⊗p(b⊕ bν2, ν2c⊕ c)
= (b⊕ bν2, (d⊕ bν2ν2c)(ν2c⊕ c))
= (b⊕ bν2, dν2c⊕ dc⊕ bν2ν2cν2c⊕ bν2ν2cc),

and hence,

Eqn. (12)-
term? i #ν2 + 2#d

R(AB) = bdν2c X 1 3
⊕ bdc χ n/a 2
⊕ bbν2ν2cν2c X 1 3
⊕ bbν2ν2cc χ n/a 2
⊕ bν2dν2c χ n/a 4
⊕ bν2dc X 1 3
⊕ bν2bν2ν2cν2c χ n/a 4
⊕ bν2bν2ν2cc X 1 3

(25)

Of the eight terms on the right-hand side of R(AB), only four
meet the conditions of Eqn. (12): bdν2c, bbν2ν2cν2c, bν2dc, and
bν2bν2ν2cc. The remaining four terms are undesired cross-terms
that arise from the properties ofR, ⊕p, ⊗, and ⊕.

Because of the presence of the four cross-terms, the answer
computed by R(AB) is an overapproximation of what we would
like it to contribute to the answer; similarly, R(A⊗pB∗p) is an
overapproximation of the least-fixed-point solution of Eqn. (3).

4. “Regularizing” an LCFL Equation System Re-
dux

In light of the example presented in §3, the prospects for harnessing
Tarjan’s path-expression method for use during NPA look rather
bleak. However, there is still one glimmer of hope:

A transformation of the linearized problem to left-linear form
is not actually forced to use pairing: given a “coupled value”
c = (a, b), we never need to recover from c the value of either a
or b alone; we only need to be able to obtain the value a⊗ b.

Thus, by using some other binary operator to couple values to-
gether, it may still be possible to perform a transformation similar
to the conversion of Eqn. (10) into Eqn. (17). Of course, the final
answer read out of the solution to the left-linear problem must not
have contributions from undesired cross-terms.

4.1 A Different Kind of Pairing
We define the desired “coupling” operation in terms of two primi-
tives: transpose and tensor product:

DEFINITION 4.1. Let S = (D,⊕,⊗, 0, 1) be a semiring. S has a
transpose operation, denoted by ·t : D → D, if for all elements
a, a1, a2 ∈ D the following properties hold:

(a1⊗ a2)t = at2⊗ at1 (26)

(a1⊕ a2)t = at1⊕ at2 (27)

(at)t = a. (28)

A tensor-product semiring over S is defined to be another semiring
ST = (DT ,⊕T ,⊗T , 0T , 1T ), where S and ST support a tensor-
product operation, denoted by � : D × D → DT , such that for
all a, a1, a2, b1, b2, c1, c2 ∈ D, the following properties hold:

0� a = a� 0 = 0T (29)
a1� (b2⊕ c2) = (a1� b2)⊕T (a1� c2) (30)
(b1⊕ c1)� a2 = (b1� a2)⊕T (c1� a2) (31)

(a1� b1)⊗T (a2� b2) = (a1⊗ a2)� (b1⊗ b2). (32)

A tensor-product semiring defined over a semiring with trans-
pose has a (sequential) detensor-transpose operation, denoted by
 (t,·) : DT → D, if for all elements a1, a2 ∈ D and p1, p2 ∈ DT
the following properties hold:

 (t,·)(a1� a2) = (at1⊗ a2) (33)

 (t,·)(p1⊕T p2) =  (t,·)(p1)⊕ (t,·)(p2). (34)

We assume that Eqns. (27), (30), (31), and (34) also hold for infinite
combines.

For brevity, we say that S is an admissible semiring if (i) S
has a transpose operation, (ii) S has an associated tensor-product
semiring ST , and (iii) ST has a sequential detensor-transpose
operation. Henceforth, we consider only admissible semirings.

The operation to couple pairs of values from an admissible
semiring, denoted by C : D ×D → DT , is defined as follows:

C(a, b) def
= (at� b).
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Note that by Eqns. (26) and (32),

C(a1, b1)⊗T C(a2, b2) = (at1� b1)⊗T (at2� b2)
= (at1⊗ at2)� (b1⊗ b2)
= (a2⊗ a1)t� (b1⊗ b2)
= C(a2⊗ a1, b1⊗ b2)

(35)

The order-reversal vis à vis ⊗T and ⊗ in Eqn. (35) will substitute
for the order-reversal vis à vis ⊗p and ⊗ in Eqn. (15).

The operator that plays the role of R is  (t,·). The superscript
in  (t,·) serves as a reminder that Eqn. (33) performs an additional
transpose on the first argument of a coupled value (at� b), so that
 (t,·)(at� b) becomes (at)t⊗ b = a⊗ b. Consequently,

 (t,·)(C(a2⊗ a1, b1⊗ b2)) =  (t,·)((a2⊗ a1)t� (b1⊗ b2))
= ((a2⊗ a1)t)t⊗ (b1⊗ b2)
= a2⊗ a1⊗ b1︸ ︷︷ ︸⊗ b2︸ ︷︷ ︸

which has the desired matching of a1 with b1 and a2 with b2.
Moreover, by Eqn. (34),  (t,·) does not produce cross-terms:

 (t,·)((at1� b1)⊕T (at2� b2)) =  (t,·)(at1� b1)⊕T  (t,·)(at2� b2)
= a1b1⊕ a2b2.

4.2 The Regularizing Transformation
DEFINITION 4.2. Given an LCFL equation system L over admis-
sible semiring S, the regularizing transformation τReg creates a
left-linear equation system LT = τReg(L) over ST by transform-
ing each equation of L as follows:

Yj = cj ⊕
⊕
i,k

(ai,j,k ⊗Yi⊗ bi,j,k)

Zj = (1� cj)⊕T
⊕
T

i,k

(Zi⊗T (ai,j,k � bi,j,k))
τREG

where Zi and Zj are variables that take on values from tensor-
product semiring ST .

We also use τReg as a function on right-hand-side terms:

τReg(cj ⊕
⊕
i,k

(ai,j,k ⊗Yi⊗ bi,j,k))

def
= (1� cj)⊕T

⊕
T

i,k

(Zi⊗T (ai,j,k � bi,j,k)). (36)

We use Coeffi(·) to select Zi’s coefficient in Eqn. (36):

Coeffi(τReg(cj ⊕
⊕
i,k

(ai,j,k ⊗Yi⊗ bi,j,k)))
def
=
⊕
T

k

(ai,j,k � bi,j,k).

Finally, we extend τReg to operate component-wise on vectors:

τReg( ~E)
def
= 〈τReg(E1), . . . , τReg(En)〉.

EXAMPLE 4.3. Using τReg, Eqn. (10) would be transformed into

Z2 =

 (1t� (d⊕ b⊗ ν2⊗ ν2⊗ c))
⊕T Z2⊗T (bt� (ν2⊗ c))
⊕T Z2⊗T ((b⊗ ν2)t� c)

 (37)

which is depicted in Fig. 2. After collecting terms, we have

Z2 = A⊕T (Z2⊗T B), (38)

where A = (1t� (d⊕ b⊗ ν2⊗ ν2⊗ c))
and B = (bt�(ν2⊗ c))⊕T ((b⊗ ν2)t� c) (39)

4.3 Solving an LCFL Equation System
We can now harness Tarjan’s path-expression algorithm to solve an
LCFL equation system.

proc Z2

Z2

1
t
?

(d
⊕
b
ν
2
ν
2 c)

b
t
?

ν
2 c

Z2

Z2

proc Z1

1
t
?

a
ν
2

Figure 2. Graphical representation of the linearized equation sys-
tem over ~Z obtained from Eqn. (3) via Defn. 4.2.

ALGORITHM 4.4. To solve an LCFL equation system L over ad-
missible semiring S,
1. Apply τReg to L to create the left-linear equation system LT

over the tensor-product semiring ST .5

2. Use Tarjan’s path-expression algorithm to find a regular ex-
pression Regi for each variable Zi in LT .

3. Obtain ~Z, the least solution to LT : for each variable Zi, eval-
uate Regi; i.e., Zi ← [[Regi]]T , where [[·]]T denotes the inter-
pretation of the regular-expression operators in ST .

4. Apply  (t,·) to each component of ~Z to obtain the solution to
the original LCFL equation system L; i.e., Yi ←  (t,·)(Zi).

The regular expressions created in step 2 are actually general-
ized regular expressions that involve (i) ⊕T , ⊗T , and ∗T , which
are interpreted in ST ; (ii) ⊕, ⊗, ∗, and t, which are interpreted in
S; (iii) �, which is interpreted in S to create a value in ST ; (iv)
the symbols {νi}, which are associated with values in S; and (v)
constants from the semirings S and ST .

DEFINITION 4.5. Generalized regular expressions are defined by
the following grammar:

expT ::= aT ∈ ST
| expt � exp
| exp⊕T exp
| exp⊗T exp
| exp∗T

expt ::= expt exp ::= a ∈ S
| νi
| exp⊕ exp
| exp⊗ exp
| exp∗

Given a vector of values ~ν, a generalized regular expression is
evaluated as follows, where LopM denotes the interpretation of op in
S or ST , as appropriate:

[[e]]T ~ν
def
=


aT if e = aT ∈ ST
([[e1]]~ν)LtML�M [[e2]]~ν if e = et1� e2
[[e1]]T ~ν L⊕T M [[e2]]T ~ν if e = e1⊕T e2
[[e1]]T ~ν L⊗T M [[e2]]T ~ν if e = e1⊗T e2
([[e1]]T ~ν)L∗T M if e = (e1)∗T

[[e]]~ν
def
=


a if e = a ∈ S
(~ν)i if e = νi
[[e1]]~ν L⊕M [[e2]]~ν if e = e1⊕ e2
[[e1]]~ν L⊗M [[e2]]~ν if e = e1⊗ e2
([[e1]]~ν)L∗M if e = (e1)∗

EXAMPLE 4.6. In step 2, the regular expression that would be ob-
tained for variable Z2—defined in Eqn. (38)—is Z2 = A⊗T B∗T .
In this expression, B∗T denotes tensored Kleene-star: B∗T =⊕
T

i∈N

Bi, where the repeated multiplication operation in Bi is the

operation ⊗T .

5 In essence, LT corresponds to an intraprocedural dataflow-analysis prob-
lem over ST .
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In step 4, to obtain the value Y2 that solves Eqn. (10), we would
evaluate  (t,·)(Z2) =  (t,·)(A⊗T B∗T ).

THEOREM 4.7. Given an LCFL equation system L over admissi-
ble semiring S, Alg. 4.4 finds the least solution of L.

4.4 Discussion
It is instructive to consider the contributions of the different powers
of B to the value of  (t,·)(A⊗T B∗T ).

 (t,·)(A⊗T B∗T ) =  (t,·)(A⊕AB⊕ABB⊕ . . .)
=  (t,·)(A)⊕ (t,·)(AB)⊕ (t,·)(ABB)⊕ . . .

To demonstrate why the use of tensor-products avoids the cross-
terms that spoiled the approach described in §3, we focus on
 (t,·)(AB):

 (t,·)(AB)

=  (t,·)
(

(1t� (d⊕ bν2ν2c))
⊗T ((bt� (ν2c))⊕T ((bν2)t� c))

)
=  (t,·)

(
(1t� (d⊕ bν2ν2c))⊗T (bt� (ν2c))

⊕T (1t� (d⊕ bν2ν2c))⊗T ((bν2)t� c)

)
(40)

=  (t,·)
(

((1tbt)� ((d⊕ bν2ν2c)(ν2c)))
⊕T ((1t(bν2)t)� ((d⊕ bν2ν2c)c))

)
(41)

=  (t,·)
(

(bt� (dν2c⊕ bν2ν2cν2c))
⊕T ((bν2)t� (dc⊕ bν2ν2cc))

)
=  (t,·)

(
(bt� dν2c)⊕T (bt� bν2ν2cν2c)

⊕T ((bν2)t� dc)⊕T ((bν2)t� bν2ν2cc)

)
=

(
 (t,·)(bt� dν2c)⊕T  

(t,·)(bt� bν2ν2cν2c)
⊕T  (t,·)((bν2)t� dc)⊕T  (t,·)((bν2)t� bν2ν2cc)

)
(42)

= bdν2c⊕T bbν2ν2cν2c⊕T bν2dc⊕T bν2bν2ν2cc. (43)

In contrast to the eight summands that arose in Eqn. (25), the
four summands that appear in Eqn. (43) each meet the matching
condition of Eqn. (12). Moreover, these four terms are exactly the
ones marked with X in Eqn. (25).

In general,  (t,·)(A⊗T Bk) contributes summands of the form
(b[ν2])k(d⊕ b⊗ ν2⊗ ν2⊗ c)([ν2]c)k that satisfy the matching
condition of Eqn. (12) (e.g., #ν2+2#d = k+2). Eqn. (43) shows
the contribution of  (t,·)(AB) (i.e., k = 1), and #ν2 + 2#d = 3
holds for each summand.

Compared to the derivation leading up to Eqn. (25) in §3.2, the
derivation above of the contribution of AB to  (t,·)(A⊗T B∗T )
illustrates how the properties of transpose, tensor product, and
detensor-transpose allow exactly the right pairings of semiring val-
ues b and c to arise in Eqn. (43). The two summands in Eqn. (39)—
and hence the arguments on the right-hand sides of the two occur-
rences of ⊗T in Eqn. (40)—are bt�(ν2⊗ c) and (b⊗ ν2)t� c.
These terms capture the two recursive summands that define Y2 in
Eqn. (10): b⊗Y2⊗ ν2⊗ c and b⊗ ν2⊗Y2⊗ c. In particular, in
Eqn. (40) the position of “�” in bt�(ν2⊗ c) and (b⊗ ν2)t� c
can be viewed as marking the position of the recursive occurrences
of Y2 in b⊗Y2⊗ ν2⊗ c and b⊗ ν2⊗Y2⊗ c, respectively. In ef-
fect, the derivation of Eqn. (41) from Eqn. (40) is where an LCFL-
like “substitution” takes place in the “middle” of bt�(ν2⊗ c) and
(b⊗ ν2)t� c.
4.5 Newtonian Program Analysis via Tensor Products
To sum up, Newtonian Program Analysis via Tensor Products
(NPA-TP) is based on a way to find the least solution to a system of
equations over a semiring S. We use Eqns. (4) and (5) of Esparza
et al. but apply Alg. 4.4 to solve Eqn. (5).

Our approach can also be restated as follows: we solve the
following sequence of problems for ~ν:

~ν(0) = 〈f1(~0), . . . , fn(~0)〉
~ν(i+1) = 〈 (t,·)(Z

(i)
1 ), . . . , (t,·)(Z

(i)
n )〉

(44)

where ~Z(i) = 〈Z(i)
1 , . . . , Z

(i)
n 〉 is the least solution of the following

equation system over ST :

τReg(~Y = ~f(~ν(i))⊕D ~f |~ν(i)(~Y )) (45)

(Recall that τReg replaces Y ’s with Z’s.)
In practice, the LCFL equation systems that arise on successive

rounds have a great deal of structure in common, and it is possible
to arrange to call Tarjan’s path-expression algorithm only a single
time to create parameterized regular expressions that can be used
to solve Eqn. (45) on each round. (See the discussion of step 4 of
Alg. 7.1.)

5. NPA-TP for Predicate-Abstraction Domains
In this section, we explain how NPA-TP applies to predicate-
abstraction domains—an instantiation denoted by NPA-TP[PA].
For a given predicate-abstraction domain, NPA-TP[PA] has the fol-
lowing ingredients:

Semiring: A predicate-abstraction domain over predicate set P is a
relational weight domain (2A×A,∪, ; , ∅, id) (Defn. 2.2), where
A is the set of Boolean assignments to P ; that is, A = P →
Bool. (P → Bool is isomorphic to 2P .) LetN denote |A|. Each
semiring element R can be thought of as an N × N Boolean
matrix

R =

 r1,1 · · · r1,N
...

. . .
...

rN,1 · · · rN,N

 .
We will write this as “R(A,A′)” when we wish to introduce
names for the index sets of the matrix.

Transpose: The transpose operation is matrix transpose. Semanti-
cally, transpose reverses a relation:

Rt = {(a′, a) | R−1(a′, a)} = {(a′, a) | R(a, a′)}.

Tensor Product: The tensor-product operation is Kronecker prod-
uct of Boolean matrices:

R�S =

 r1,1S · · · r1,NS
...

. . .
...

rN,1S · · · rN,NS


which is an N2 ×N2 binary matrix whose entries are

(R�S)[(a− 1)N + b, (a′− 1)N + b′] = R(a, a′)∧S(b, b′).

Semantically, tensor-product builds 4-ary relations:

R�S = {(a, b, a′, b′) | R(a, a′) ∧ S(b, b′)}.

Coupling: The coupling ofR and S is the tensor-transpose relation
Rt�S; hence, Rt�S = {(a′, b, a, b′) | R(a, a′) ∧ S(b, b′)},

Rt�S =

 r1,1S · · · rN,1S
...

. . .
...

r1,NS · · · rN,NS


and thus

(Rt�S)[(a′−1)N+b, (a−1)N+b′] = R(a, a′)∧S(b, b′).
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X1

proc X1

b

a

c

d

d

proc X2

1

c

X1

X2

X2

proc X1

b

a

1

X1 = a(cX1d)∗b
X1 = a(1⊕X2)b
X2 = cX1d(1⊕X2)

(a) (b)

Figure 3. Two equation systems and their graphical representa-
tions. (a) A recursive program that contains a loop. (b) “Loop-free”
variant in which the loop is encoded by recursive procedure X2.

Detensor Transpose: If T is a tensor-transpose relation,

 (t,·)(T (A′, B,A,B′))
def
= ∃A′, B : T (A′, B,A,B′)∧A′ = B.

(46)

THEOREM 5.1. The transpose, tensor-product, and detensor-
transpose operations defined above satisfy Eqns. (26)–(34).

6. Loops
In this section, we summarize how programs with loops can be han-
dled in the method of Esparza et al., and then present an alternative
method for handling loops.

6.1 Loops for Esparza et al.
As presented by Esparza et al., NPA applies to a system of equa-
tions in which each right-hand-side expression is a polynomial:
semiring expressions consist of semiring constants, variables, ex-
tend, and combine (where each occurrence of a variable corre-
sponds to a procedure call). The restriction to polynomials means
that each procedure must consist of loop-free code. Recursive equa-
tions are permitted, and thus a program whose (original) procedures
contain loops can be handled by systematically replacing each loop
with a call to an appropriate recursive, loop-free procedure.

EXAMPLE 6.1. Consider program (i) below, which is shown in
graphical form in Fig. 3(a).

X1() {
sa;
while (?) {

sc;
X1();
sd

}
sb

}

X1() {
sa;
if (?) X2()
sb

}

X2() {
sc;
X1();
sd;
if (?) X2()

}

(i) (ii)

Program (ii) shows one possible transformation of program (i) to
put it in loop-free form. Fig. 3(b) shows program (ii) in graphical
form, and also as an equation system.

6.2 An Alternative Approach to Handling Loops
We now show how to extend NPA and NPA-TP to handle programs
with loops in a different way. Our approach involves introducing
a Kleene-star operator, and allowing the right-hand side of each
equation to be a regular expression:

ν1

proc Y1

b

a

c

d ν1

b

c

d

a

ν1

c

d

Y1

proc Z1

Z1

1
t
?

a
(c
ν
1 d
)
*b

Y1 = a(cν1d)∗b
⊕ a(cν1d)∗Y1(cν1d)∗b

Z1 =
(1t� a(cν1d)∗b)

⊕T Z1⊗T
(

(a(cν1d)∗)t

� (cν1d)∗b

)
(a) (b)

Figure 4. (a) NPA and (b) NPA-TP equation systems that result
from the equation “X1 = a(cX1d)∗b” (from Fig. 3(a)), when both
NPA and NPA-TP are extended to handle Kleene-star.

DEFINITION 6.2. Let S be an ω-continuous semiring and X a
finite set of variables. The following grammar defines an equation
system over S and X , with regular right-hand sides:

equation system ::= set of equation
equation ::= var = exp

exp ::= a ∈ S | var ∈ X | exp⊕ exp
| exp⊗ exp | exp∗

Fig. 3(a) shows the recursive equation over S and {X1}, with
regular right-hand side “a(cX1d)∗b,” that corresponds to program
(i) from Ex. 6.1.

Given a program, there may be some massaging required to cre-
ate the corresponding system of equations with regular right-hand
sides. However, this transformation can be performed automatically
by applying Tarjan’s path-expression algorithm to the CFG of each
procedure of the program.6 The result of this pre-processing step is
a system of equations with regular right-hand sides.

The Differential of a Regular Expression. Because equation
right-hand sides can now include occurrences of Kleene-star, we
need to be able to obtain the differential of an expression of the
form (g( ~X))∗.

THEOREM 6.3. Let f( ~X) = (g( ~X))∗, then

DXjf |~ν(~Y ) = (g(~ν))∗⊗DXjg|~ν(~Y )⊗ (g(~ν))∗ (47)

Thm. 6.3 implies that the differential of a component function
fi( ~X) in an equation system with regular right-hand sides can be
obtained by the rule given in Defn. 2.4, extended with one more
case for Kleene-star:

DXjfi|~ν(~Y ) = (g(~ν))∗⊗DXjg|~ν(~Y )⊗ (g(~ν))∗ if fi = g∗

This rule, like the others given in Defn. 2.4, produces a linear term.
Consequently, when Defn. 2.4 is augmented with the above rule,
the NPA linearizing transformation is still guaranteed to create an
LCFL equation system over S. Therefore, for NPA-TP we can still

6 This application of Tarjan’s path-expression algorithm should not be con-
fused with the later use of the path-expression method to create parameter-
ized regular expressions that are used to solve Eqn. (45) on each round of
NPA-TP. See steps 1 and 4 of Alg. 7.1.



create a left-linear equation system over ST by applying τReg to the
LCFL equation system. Fig. 4(a) and Fig. 4(b) show the LCFL and
left-linear equations for Y1 and Z1 obtained from Fig. 3(a) by these
transformations.

7. Algorithm Pragmatics
NPA-TP can be implemented in a straightforward manner using
Eqns. (44) and (45). However, as mentioned in §4.5, the LCFL
equation systems that arise on successive rounds have a great deal
of structure in common. To exploit these commonalities, our imple-
mentation of NPA-TP implements Eqns. (44) and (45) as decribed
below.

In steps 4 and 5 of the algorithm, we work with regular expres-
sions over an alphabet whose symbols have the form 〈k, j〉. We use
the notationR[〈k, j〉 ← E] to denoteR with regular expressionE
substituted in for all occurrences of 〈k, j〉.

ALGORITHM 7.1 (NPA-TP). The input is an interprocedural
dataflow-analysis problem over admissible semiring S. Let ~X de-
note the set of n procedures of the program.
1. Apply Tarjan’s path-expression algorithm to the CFG of each

procedure in ~X to create a system of recursive equations E in
which
• each variable corresponds to one of the procedures in ~X
• the right-hand side of each equation is a regular expression

over variables in ~X and constants in S.
That is, E = {Xj = Rhsj( ~X) | Xj ∈ ~X}.

2. For each equation Xj = Rhsj( ~X) ∈ E , create the left-linear
equation for Zj over variables in ~Z and coefficients that are
generalized regular expressions.

Zj = τReg(D Rhsj |~ν(~Y )).

(Recall that τReg replaces Y ’s with Z’s.)
3. Create a dependence graph G for the equation system created

in step 2.
• G contains an edge Zk → Zj labeled 〈k, j〉 if the equation

for Zj contains an occurrence of Zk on the right-hand side.
• In addition, G contains a dummy vertex Λ, and for each Zj ,

an edge Λ→ Zj labeled 〈0, j〉.
4. Apply Tarjan’s path-expression algorithm to G (with entry ver-

tex Λ) to create, for each variable Zi ∈ ~Z, a regular expression
Ri (with tensored operators) over the alphabet {〈k, j〉 | 0 ≤
k ≤ n, 1 ≤ j ≤ n} (i.e., [0..n]× [1..n]).

5. Create the map m, in which variable Zi, 1 ≤ i ≤ n, is mapped
to the regular expression

Ri[〈0, j〉 ← (1t�Rhsj(~ν))]

[〈1, j〉 ← Coeff1(τReg(DX1Rhsj |~ν(~Y )))]
. . .

[〈n, j〉 ← Coeffn(τReg(DXnRhsj |~ν(~Y )))]

6. i← 0; ~µ← ~f(~0)
7. Repeat

(a) ~ν(i) = ~µ
(b) ~µ = 〈 (t,·)([[m(Zj)]]T ~ν

(i)) | Zj ∈ ~Z〉
(c) i← i+ 1
until (~ν(i−1) = ~µ)

8. Return ~µ

Steps 6 and 7 create the Newton iterates. There are a few aspects
of Alg. 7.1 that are worth commenting on.
• Tarjan’s algorithm has two separate roles:

1. In step 1, it is applied to each CFG of the program to create
an equation system with regular right-hand sides, which is
the input to step 2. Because this equation system can contain

occurrences of Kleene-star, it was necessary for us to extend
the NPA linearizing transformation, as described in §6.2.

2. In step 4, it is applied to dependence graph G. If you
think of the symbols 〈k, j〉 on G’s edges as proxies for
the regular expressions that replace the symbols in step
5, G is a relatively straightforward encoding of Eqn. (45):
(i) The values (1t�Rhsj(~ν)) associated with edge-labels
of the form 〈0, j〉 represent the (tensored) “seed values”
(1t� fj(~ν)) from the first summand “~f(~ν(i))⊕ . . .” of
Eqn. (45). (ii) The remaining edges of G encode the regu-
lar structure of the recursive portion of Eqn. (45), τReg(~Y =

. . .⊕D ~f |~ν(i)(~Y )).
• Because of the calls to Coeffi in the substitutions performed in

step 5, each alphabet symbol 〈k, j〉 is replaced by a general-
ized regular expression. Note that a generalized regular expres-
sion does not have any occurrences of a variable Zk. Thus, the
only variable-like quantities in each generalized regular expres-
sion m(Zj) are occurrences of symbols, such as νk. These val-
ues are “constants” from S during a given Newton round, but
change value from round to round. In step 7b, rather than ex-
plicitly substituting the value (~ν(i))k—i.e., the kth component
of ~ν(i)—for νk in m(Zj) as a constant-valued leaf, we merely
fetch (~ν(i))k by look-up during regular-expression evaluation
(Defn. 4.5).
• In the implementation, identical subexpressions of regular ex-

pressions are shared. We use a variant of Defn. 4.5 that imple-
ments function caching to avoid redundant evaluations in step
7b.

EXAMPLE 7.2. Consider Eqn. (37) and the corresponding graph-
ical depiction in Fig. 2. The regular expression created for Z2 is
〈0, 2〉⊕T 〈0, 2〉(〈2, 2〉)∗T . After step 5, m(Z2) is

m(Z2) =
(1t� (d⊕ b⊗ ν2⊗ ν2⊗ c))

⊕T
(

(1t� (d⊕ b⊗ ν2⊗ ν2⊗ c))
⊗T

(
(bt�(ν2⊗ c))⊕T ((b⊗ ν2)t� c)

)∗T )
Similarly, the regular expression created for Z1 is
〈0, 1〉⊕T (〈0, 2〉⊕T 〈0, 2〉(〈2, 2〉)∗T )〈2, 1〉, and m(Z1) is

m(Z1) = (1� aν2)⊕T m(Z2)⊗T (at� 1).

Steps 6 and 7 then repeat the following actions until convergence:
• Evaluate m(Z1) and m(Z2) with respect to the current value

of ~ν = 〈ν1, ν2〉 to obtain, say, w1, w2 ∈ ST , respectively.
• Set 〈ν1, ν2〉 to 〈 (t,·)(w1), (t,·)(w2)〉.

THEOREM 7.3. Given an interprocedural dataflow-analysis prob-
lem over admissible semiring S, Alg. 7.1 finds the least solution.

8. Local Variables
This section discusses how to extend NPA and NPA-TP to handle
programs with local variables. We adopt the approach introduced
by Knoop and Steffen [14]. At a call site at which procedure P
calls procedure Q, the local variables of P are modeled as if the
current incarnations of P ’s locals are stored in locations that are
inaccessible to Q and to procedures transitively called by Q—
consequently, the contents of P ’s locals cannot be affected by the
call toQ; we use special merge functions to combine them with the
value returned by Q to create the state after Q returns. (Other work
using merge functions includes [16, 21].)

DEFINITION 8.1 (Merge function for a semiring [16]). Given
semiring S = (D,⊕,⊗, 0, 1), a binary functionM : D×D → D
is an acceptable merge function for S if M obeys the following
properties:
1. (0-strictness) For all a, b ∈ D, M(a, 0) = 0 and M(0, b) = 0.
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2. (Distributivity) M distributes over finite and infinite combines
in both argument positions; e.g., for all a, b, c ∈ D,

M(a⊕ b, c) = M(a, c)⊕M(b, c)
M(a, b⊕ c) = M(a, b)⊕M(a, c)

3. (Path extension) For all a, b, c ∈ D, M(a⊗ b, c) =
a⊗M(b, c).

EXAMPLE 8.2. Consider the following equation system:

X1 = a⊕M(M(b,X2), X1)
X2 = c⊕M(M(d,X3), X2)
X3 = g⊕(M(e,X2)⊗ f).

(48)

By the path-extension property (Defn. 8.1(3)), Eqn. (48) can be re-
written as follows:

X1 = a⊕(b⊗M(1, X2)⊗M(1, X1))
X2 = c⊕(d⊗M(1, X3)⊗M(1, X2))
X3 = g⊕(e⊗M(1, X2)⊗ f).

(49)

Note that by setting b = 1, the path-extension property becomes

For all a, c ∈ D,M(a, c) = a⊗M(1, c). (50)

In an interprocedural-dataflow analysis problem, a corresponds to
the abstract value at the call-site in the caller, and c corresponds
to the abstract value at the exit-site in the callee. Eqn. (50) shows
that for a given procedure Q, much of the work needed for the
merge operation for different call-sites on Q can be factored out as
m = M(1, c). The merge needed at the ith call-site on Q can then
be completed by performing ai⊗m.

We extend our language of regular expressions with the
unary operator Project(·), whose semantics is [[Project(e)]]~ν =
M(1, [[e]]~ν). Eqn. (49) can be rewritten using Project as follows:

X1 = a⊕(b⊗ Project(X2)⊗ Project(X1))
X2 = c⊕(d⊗ Project(X3)⊗ Project(X2))
X3 = g⊕(e⊗ Project(X2)⊗ f).

(51)

Merge/Project for a Relational Weight Domain. When the
state of a Boolean program has contributions from both global
states G and local states L, we use the relational weight domain
on G × L, defined as ((G × L) × (G × L) → B,∪, ; , ∅, Id). A
typical element will be denoted by R(G,L,G′, L′). In this case,
the following is an acceptable merge function:

M(R1, R2) = R1⊗M(1, R2)
= R1⊗ Project(R2)

Project(R(G,L,G′, L′)) = (∃L,L′ : R) ∧ (L = L′).

The Differential of Project. We extend the definition from §2 of
the differential DXjfi|~ν(~y) of a component function fi(~x) with a
case for Project:
DXjfi|~ν(~y) = Project(DXjg|~ν(~y)) if fi = Project(g).

EXAMPLE 8.3. The application of the NPA linearizing transfor-
mation to Eqn. (51) creates the following equation system:

Y1 =

a ⊕ (b⊗Project(ν2)⊗Project(ν1))
⊕ (b⊗Project(ν2)⊗Project(Y1))
⊕ (b⊗Project(Y2)⊗Project(ν1))


Y2 =

c ⊕ (d⊗Project(ν3)⊗Project(ν2))
⊕ (d⊗Project(ν3)⊗Project(Y2))
⊕ (d⊗Project(Y3)⊗Project(ν2))


Y3 =

(
g ⊕ (e⊗Project(ν2)⊗ f)
⊕ (e⊗Project(Y2)⊗ f).

)
(52)

Correctness. With the extension given here for local variables
and in §6 for loops, the component functions of an equation system
L : ~X = ~f( ~X) can now contain both regular operators and

occurrences of the operator Project. Let ~X? denote the least fixed-
point ofL. ~X? exists because we are working with an ω-continuous
semiring. Our goal is to relate Kleene iterate ~κ(i), Newton iterate
~ν(i), and ~X? as follows:

THEOREM 8.4. For all i, ~κ(i) v ~ν(i) v ~X?.

Thm. 8.4 shows that each Newton iterate ~ν(i) is trapped be-
tween the corresponding Kleene iterate ~κ(i) and the least solution
~X?. Because successive Kleene iterates approach ~X?, successive
Newton iterates must also approach ~X?.

Esparza et al. proved a similar theorem [7, Thm. 3.9] for an
equation system over a general semiring, but without occurrences
of Kleene-star and Project.

Merge Functions and NPA-TP[PA]. For NPA-TP[PA] domains
with local variables, we will focus on a slightly different problem,
which is that of computing a projection value for each variable in
the original equation. Eqn. (49) now becomes

W1 = Project(X1) = Project(a⊕(b⊗W2⊗W1))
W2 = Project(X2) = Project(c⊕(d⊗W3⊗W2))
W3 = Project(X3) = Project(g⊕(e⊗W2⊗ f)).

(53)

In a program-analysis problem, the value of Wi serves as a sum-
mary of procedure Xi. Once the ~W values are in hand, one can
obtain the ~X values by evaluating the right-hand side of the origi-
nal equation.

The merge function for a tensor-transpose relational weight can
be defined as follows:

MT (T1, T2) = T1⊗T ProjectT (T2)
ProjectT (T (G′1, L

′
1, G2, L2, G1, L1, G

′
2, L
′
2))

= (∃L′1, L2, L1, L
′
2 : T ∧ (L′1 = L2))

∧(L1 = L1′) ∧ (L2 = L2′)

(54)

OBSERVATION 8.1. The ProjectT operation defined in Eqn. (54)
has the properties

ProjectT (ProjectT (a)⊗T b) = ProjectT (a)⊗T ProjectT (b)
ProjectT (a⊕T b) = ProjectT (a)⊕T ProjectT (b)

ProjectT (ProjectT (a)) = ProjectT (a)

The latter can be used to show that for X defined by X =
ProjectT (a⊕T X ⊗T b), ProjectT (X) = X . These properties al-
low us to push occurrences of ProjectT down to tensor-product-
semiring constants, which we show by means of an example:

X = ProjectT (a⊕T X ⊗T b)
= ProjectT (a)⊕T ProjectT (X ⊗T b)
= ProjectT (a)⊕T ProjectT (ProjectT (X)⊗T b)
= ProjectT (a)⊕T ProjectT (X)⊗T ProjectT (b)
= ProjectT (a)⊕T X ⊗T ProjectT (b)

2

The introduction of the Project(·) operator creates an impedi-
ment to applying Tarjan’s algorithm, which is limited to equation
systems over the standard regular operators. Fortunately, we are
able to sidestep this difficulty because in an equation system like
Eqn. (53) the locations of Project(·) are always associated with the
bodies of procedures. Therefore, in steps 1 and 2 of Alg. 7.1, we
work with an equation system with no occurrences of Project(·).
After step 2, occurrences of ProjectT can be introduced.

EXAMPLE 8.5. For Eqn. (52), we would obtain the following
equations:



Z1 =

 ProjectT (1�(a⊕(b⊗ ν2⊗ ν1)))
⊕T Z1⊗T ProjectT ((b⊗ ν2)t� 1)
⊕T Z2⊗T ProjectT (bt� ν1)


Z2 =

 ProjectT (1�(c⊕(d⊗ ν3⊗ ν2)))
⊕T Z2⊗T ProjectT ((d⊗ ν3)t� 1)
⊕T Z3⊗T ProjectT (dt� ν2)


Z3 =

(
ProjectT (1�(g⊕(e⊗ ν2⊗ f)))

⊕T Z2⊗T ProjectT (et� f).

)
Equivalently, one can wait until step 5 and use the following

method to create map m: each variable Zi, 1 ≤ i ≤ n, is mapped
to the regular expression

Ri[〈0, j〉 ← ProjectT (1t�Rhsj(~ν))]

[〈1, j〉 ← ProjectT (Coeff1(τReg(DX1Rhsj |~ν(~Y ))))]
. . .

[〈n, j〉 ← ProjectT (Coeffn(τReg(DXnRhsj |~ν(~Y ))))]

EXAMPLE 8.6. Consider again Ex. 7.2. The regular expression
created for Z2 in step 4 is 〈0, 2〉⊕T 〈0, 2〉(〈2, 2〉)∗T . After step
5, m(Z2) becomes

ProjectT (1t� (d⊕ b⊗ ν2⊗ ν2⊗ c))

⊕T
(

ProjectT (1t� (d⊕ b⊗ ν2⊗ ν2⊗ c))
⊗T

(
ProjectT ((bt�(ν2⊗ c))⊕T ((b⊗ ν2)t� c))

)∗T )
Similarly, the regular expression created for Z1 is
〈0, 1〉⊕T (〈0, 2〉⊕T 〈0, 2〉(〈2, 2〉)∗T )〈2, 1〉, and m(Z1) is

ProjectT (1� aν2)⊕T m(Z2)⊗T ProjectT (at� 1).

9. Implementation and Experiments

The Implemented Solvers. We experimented with implementa-
tions of NPA and NPA-TP, along with two non-Newton solvers.
• One conventional solver used chaotic iteration (implemented

using the post∗ algorithm for EWPDSs [16], followed by
“path_summary” [23]). The other used an adaptation of Tar-
jan’s path-expression algorithm [30] for interprocedural anal-
ysis (the post∗ algorithm for FWPDSs [15], followed by
path_summary). We refer to these as “EWPDS” and “FWPDS,”
respectively.
• For the Newton solvers, we first applied Tarjan’s path-

expression algorithm to each CFG of the program to create
a system of equations with regular right-hand sides. We then
applied the differential operator (Defn. 2.4)—with the exten-
sions presented in §6 and §8—and τReg for the NPA-TP version.
The NPA solver used FWPDS to solve each LCFL problem,
whereas the NPA-TP solver used the steps given in Alg. 7.1.

EWPDS and FWPDS are standard solvers available in the
Weighted Automaton Library (WALi) [12]; NPA and NPA-TP were
implemented using primitives available in WALi.

OBDD Variable-Ordering Issues. The predicate-transformer rela-
tions of the predicate-abstraction domain are represented with Or-
dered Binary Decision Diagrams (OBDDs) [3]. As is well-known,
the size of the OBDD for a Boolean function is sensitive to the
order chosen for the Boolean variables.

Equation-Solving Experiments. Our experiments were designed
to determine which method for solving a set of equations is the
fastest. In particular, for solving predicate-abstraction problems,
1. How many Newton rounds do NPA and NPA-TP perform?
2. Is NPA faster than chaotic iteration?
3. Is NPA-TP faster than NPA?
4. Is NPA-TP faster than chaotic iteration?
5. What is the algorithm of choice?

#Newton
#Completed #Timeouts #Spaceouts Rounds

EWPDS 495 16 73 N/A
FWPDS 483 32 69 N/A
NPA 290 142 152 3.38
NPA-TP 386 16 182 3.67

Table 1. Completion rates for the solvers, along with the average
number of Newton rounds (completed runs only).

Our test suite consisted of 584 Boolean programs from the 3,366
Boolean programs distributed with Microsoft’s Static Driver Veri-
fier [27]. The test suite consisted of all of the programs for which
any of the four analyzers took more than 1 second to run (prior to
some optimizations implemented in the final week before submis-
sion). Timings were taken on a Dell OptiPlex 3020 with four Intel
Core i5-4570 CPUs (3.20GHz), equipped with 16 GB of memory,
running Windows 7 Enterprise 64-bit (6.1, Build 7601) SP1.
Results. Completion rates for the solvers are shown in Tab. 1.
Note that NPA had significantly more timeouts, although somewhat
fewer spaceouts than NPA-TP.

As one might expect, NPA and NPA-TP generally performed
only a small number of Newton rounds: column 5 of Tab. 1 reports
the average number of rounds (for completed runs only), including
the final round needed to determine quiescence.

Figs. 5 and 6 present scatter plots that compare the times for
running one solver against another. In each of the plots, the solver
on the x-axis has better performance: there are more points in the
upper-left triangle, and both geometric means are ≥ 1.
• Fig. 5(a) shows that chaotic iteration (EWPDS) performs far

better than NPA (geometric means: 8.75 → 31.6). Thus, at
least for this test suite of Boolean programs, these results an-
swer Question 2 in the negative.
• Fig. 5(b) shows that the implementation of NPA-TP performs

better than NPA (geometric means: 1.62 → 4.61). Thus, for
this test suite, our results answer Question 3 in the positive: for
Boolean programs, Alg. 7.1 succeeds in extending the capabil-
ities of Newtonian Program Analysis.
• Fig. 5(c) shows that NPA-TP is still slower than chaotic iter-

ation (geometric means: 5.20 → 6.84), which answers Ques-
tion 4 in the negative. However, we see that NPA-TP did better
against chaotic iteration than NPA did.
• Fig. 5(d) show that EWPDS is about 2x faster than FWPDS

(geometric means: 2.22 → 2.15), although FWPDS is faster
for some of the more compute-intensive problems.
• Fig. 6(a) shows that FWPDS is much faster than NPA (geomet-

ric means: 4.62→ 14.7).
• Fig. 6(b) shows that FWPDS is faster than NPA-TP (geometric

means: 1.94→ 3.19), but again we see that NPA-TP did better
against FWPDS than NPA did.

Overall, our results indicate that, among the four algorithms tested,
the answer to Question 5 is that EWPDS is the algorithm of choice
for predicate-abstraction problems.

10. Related Work
To the best of our knowledge, this work is the first to consider the
problem of solving LCFL equations on semirings. Yannakakis [33]
considered the Boolean case (LCFL reachability). The technique of
McNaughton and Yamada [20] for obtaining a regular expression
that describes the paths in a finite labeled graph can be generalized
from regular languages to LCFLs, but is much more costly than
Tarjan’s path-expression algorithm [30].

Tarjan’s path-expression algorithm was used earlier by Lal and
Reps [15] in a much more straightforward algorithm for interpro-
cedural dataflow analysis. As in our method, they apply the path-
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(a) EWPDS vs. NPA. Geometric means: 8.75→ 31.6 (b) NPA-TP vs. NPA. Geometric means: 1.62→ 4.61

(c) EWPDS vs. NPA-TP. Geometric means: 5.20→ 6.84 (d) EWPDS vs. FWPDS. Geometric means: 2.22→ 2.15

Figure 5. Log-log scatter plots of solver times on Boolean programs from SDV, with a 300-second timeout. (Spaceouts are also plotted at
300 seconds.) The solid diagonal line indicates equal performance; the dotted and dashed lines indicate 2x speedup/slowdown. For each plot,
we report two geometric means of the Y/X values: (i) when Y and X both complete, and (ii) when non-completion counts as 300 seconds.

expression algorithm to each CFG of the program to create a sys-
tem of recursive equations with regular right-hand sides. They then
solve those equations directly via chaotic iteration. In contrast,
NPA-TP converts the equation system to left-linear form, switch-
ing from S values to ST values in the process. Because the equa-
tion right-hand sides that are the input to this step can contain oc-
currences of Kleene-star, it was necessary for us to extend the NPA
linearizing transformation, as described in §6.2. The resulting equa-
tion system is left-linear and Tarjan’s algorithm is applied a second
time to find a closed-form solution for each of the ST -valued vari-
ables. The resulting regular expressions specify the computation
that is performed on each Newton round.

The performance of Tarjan’s path-expression algorithm can de-
generate on non-reducible graphs. Although the graphs to which
we apply the algorithm are not guaranteed to be reducible, in our

experiments we found that the algorithm did not consume a signif-
icant amount of time.

A different implementation of NPA is discussed in [25]. The
two experiments reported were both with commutative semirings,
for which NPA-TP is not needed.

Grathwohl et al. [10] developed an extension of Kleene algebra
with tests to allow a finite amount of mutable state. They noted that
one model of their extension could be represented using Kronecker
products of 2 × 2 Boolean matrices, but did not make further use
of that fact.

Tensor Product and Detensor-Transpose. Lal et al. [17] gave an
algorithm for a variant of intersection of two weighted automata,
which involved a side-condition on weight-products that can be
formulated using an LCFL [17, §4]. The problem can be recast



(a) FWPDS vs. NPA. Geometric means: 4.62→ 14.7 (b) FWPDS vs. NPA-TP. Geometric means: 1.94→ 3.19

Figure 6. Experimental results (continued).

using an LCFL equation system to which the algorithm of the
present paper can be applied.

Admissible semirings were used by Lal et al. [19] for context-
bounded analysis of concurrent programs. Tensor product was used
to support the intersection of weighted transducers. Analyses of dif-
ferent processes were performed independently, and the restructur-
ing of values enabled by � allowed the different analysis results to
be stitched together. An operation similar to  (t,·) was used to read
out answers.

That work has a high-level point of similarity with our work,
which might be termed the tensor-product principle:

Tensor products—plus an appropriate detensor operation—
allow computations to be rearranged in certain ways; they
can be used to delay performing every multiplication in a
sequence of multiplications, which is useful if either (a)
a value that is only obtainable at a later time needs to be
placed in the middle of the sequence, or (b) a subsequence
of values in the middle of the sequence needs to be adjusted
in certain ways before contributing to the overall product.

In this paper, we use only one level of tensor products because
that is all that is needed for “regularizing” an LCFL equation
system. Lal et al. use 2k + 1 levels of tensor products to capture
k + 1 execution contexts and k context switches. Each execution
context contributes a subsequence of values that must be reordered
to compute the correct answer.

11. Conclusion
Our work attempted to unleash the promise of Newtonian program
analysis. Our NPA-TP technique applies to equation systems over
any semiring that meets the conditions of Defn. 4.1. The main
technical result is a method to transform an LCFL equation system
over semiring S into a left-linear—and hence regular—system of
equations over a tensor-product semiring ST . This transformation
is both novel and surprising: formal-language theory tells us that
LCFL ) Regular, and the canonical example of a non-regular
language, {bici | i ∈ N}, is an LCFL. Nevertheless, we showed
that there are non-commutative semirings for which we can apply
such a transform with no loss of precision. We are not aware of any
previous work that uses a similar “regularizing” transformation.

In addition, we showed how to extend Newtonian program
analysis in two ways: (i) to handle loops via Kleene-star, and (ii)
to handle local variables by means of merge functions.

The experiments, based on Boolean programs, show that NPA-
TP is only a qualified success. Our work was motivated by the ob-
servation that standard NPA is slower than chaotic iteration (cf.
Fig. 5(a)). Our goal of speeding up Newtonian program analysis
was achieved (Fig. 5(b)); however, NPA-TP is still slower than EW-
PDS (Fig. 5(c)). NPA-TP is also slower than FWPDS (Fig. 6(b)),
a more straightforward way of using Tarjan’s algorithm for inter-
procedural dataflow analysis [15]. The head-to-head comparison
of FWPDS with EWPDS shows that EWPDS is about 2x faster
than FWPDS, although FWPDS is faster for some of the more
compute-intensive problems (Fig. 5(d)). Overall, our results indi-
cate that, among the four algorithms tested, EWPDS is the algo-
rithm of choice for predicate-abstraction problems.
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