
Model Checking Lots of Systems

Efficient Verification of Temporal Properties in Software Product Lines

Andreas Classen,∗
Patrick Heymans,

Pierre-Yves Schobbens
University of Namur, Belgium

{acs,phe,pys}
@info.fundp.ac.be

Axel Legay
IRISA/INRIA Rennes, France

axel.legay@irisa.fr

Jean-François Raskin
Université Libre de Bruxelles,

Belgium
jraskin@ulb.ac.be

ABSTRACT
In product line engineering, systems are developed in fam-
ilies and differences between family members are expressed
in terms of features. Formal modelling and verification is an
important issue in this context as more and more critical sys-
tems are developed this way. Since the number of systems
in a family can be exponential in the number of features,
two major challenges are the scalable modelling and the ef-
ficient verification of system behaviour. Currently, the few
attempts to address them fail to recognise the importance
of features as a unit of difference, or do not offer means for
automated verification.

In this paper, we tackle those challenges at a fundamental
level. We first extend transition systems with features in
order to describe the combined behaviour of an entire sys-
tem family. We then define and implement a model check-
ing technique that allows to verify such transition systems
against temporal properties. An empirical evaluation shows
substantial gains over classical approaches.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, Model checking

General Terms
Algorithms, Reliability, Theory, Verification

Keywords
Software Product Lines, Features, Specification

1. INTRODUCTION
A software product line (SPL) is traditionally defined as

“a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a

∗FNRS Research Fellow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

soda serveSodafree

(d) Distributing soda for free

skip

pay
soda serveSoda

open

tea serveTea

(b) Selling tea and soda

close

change

pay soda serveSoda open
(a) Basic vending machine

close

change

pay soda serveSoda open

cancel
return

(c) With a cancel purchase function

close
change

Figure 1: Several variants of a vending machine.

particular market segment or mission and that are developed
from a common set of core assets in a prescribed way” [10].
Software product line engineering (SPLE) promotes reuse
throughout the software lifecycle in order to benefit from
economies of scale when developing several (usually many)
similar systems. SPLE proved beneficial to the development
of embedded and critical systems [14], which makes formal
modelling and verification in SPLE all the more important.

The differences between the systems of an SPL (i.e. its
variability) are typically expressed in terms of features. In
SPLE, features are first-class abstractions that shape the
reasoning of the engineers and other stakeholders [8]. A set
of features can be seen as the specification of a product, i.e.
a particular member of the product line. Feature diagrams
(FDs) [21, 31] are commonly used to model the variability
of the SPL. An FD expresses the set of valid products, and
since products are combinations of features, there might be
an exponential number of them. For this reason, it is un-
realistic to specify or verify the behaviour of each product
individually. We illustrate these points with an example.

1.1 Motivating example
Throughout this paper, we use a beverage vending ma-

chine (inspired from [17]) as a running example. In its basic
version, the vending machine takes a coin, returns change,

335

Legend:

VendingMachine
v

Tea
t

FreeDrinks
f

CancelPurchase
c

Soda
s

Beverages
b

Products from Figure 1:
(a) Basic = {v, b, s}
(b) Tea and soda = {v, b, s, t}
(c) Cancel function = {v, b, s, c}
(d) Soda for free = {v, b, s, f}

a a= And = Or

Figure 2: FD for the vending machines of Figure 1.

serves soda, and eventually opens a compartment so that the
customer can take her soda, before it closes it again. This
behaviour is modelled by the transition system (TS) shown
in Figure 1(a). A number of variants of this basic machine
can be considered, as for instance a machine that also sells
tea, shown in Figure 1(b). A second variant lets the buyer
cancel her purchase after entering a coin, see Figure 1(c).
A third one offers free drinks and has no closing beverage
compartment, see Figure 1(d).

By combining these variants, yet other vending machines
can be obtained. In fact, these four products are part of
a larger SPL, which in terms of features is modelled by the
FD of Figure 2. Basically, this FD formally describes the set
of vending machine variants. In this case, there are twelve
of them. This means that a model of the behaviour of a
small example such as this would already require twelve,
largely identical, behavioural descriptions, four of which are
shown in Figure 1. For realistic cases, this number is so high
that it is outright impossible to verify, let alone model, each
product individually.

1.2 Current challenges
The above example illustrates two challenges that model-

based SPLE approaches need to address: (a) scalable mod-
elling and (b) efficient verification of system behaviour. Cur-
rent proposals are based on UML [34], modal transition sys-
tems [18, 17], modal I/O automata [23, 24], deontic log-
ics [2] and CCS [20]. With the exception of [24], these pro-
posals suffer from two main limitations, both of which are
addressed in the present paper.

Firstly, their behavioural models often fail to recognise the
importance of features as a unit of difference. This means
that they capture different behaviours, but offer little to no
means to relate products and their behavioural descriptions.
They also cannot make use of information contained in vari-
ability (e.g., feature) models, such as the co-occurrence or
mutual exclusion of two or more features. Secondly, none
of the proposals provides concrete means for checking be-
havioural models against temporal properties. A more thor-
ough discussion of related work is provided in Section 7.

1.3 Contribution
In this paper, we materialise the vision sketched in [9]

by tackling the above challenges at a foundational level.
Our first contribution is featured transition systems (FTS),
a variant of transition systems designed to describe the com-
bined behaviour of an entire system family. FTS has a pa-

rameterised semantics that allows to obtain the behaviour
of each product of the SPL. The second contribution is a
dedicated model checking technique supported by a proof-
of-concept tool. The tool allows to verify LTL properties for
all the products of an SPL at once, and pinpoints the prod-
ucts that violate (resp. satisfy) the properties. We applied
the tool to a specification exemplar, the mine pump con-
troller [22], in order to evaluate the approach empirically.
On the 64-product SPL, our model checking algorithm was
on average 3.5 (and up to 7) times faster than verifying all
products separately with the classical algorithm.

The principal advantages of FTS over existing work are
(i) the modelling of variability as a first-class citizen, (ii) the
ability to reason about the whole product line, or subsets
of it, (iii) the ability to model very detailed behavioural
variations, (iv) a running and freely available model checking
tool, and (v) the ability to take feature dependencies and
incompatibilities into account.

The paper is structured as follows. Section 2 recalls the
necessary background on FD and TS. FTS are introduced
in Section 3 and the model checking approach is described
in Section 4. The evaluation is reported in Section 5 and
future work is discussed in Section 6. Section 7 surveys
related work. Eventually, Section 8 concludes the paper.

2. BASE CONCEPTS
In this section, we recall basic concepts and definitions

that will be used throughout the rest of the paper. We
assume that the reader is familiar with automata theory
and has basic knowledge of formal verification (otherwise,
see [6, 4]).

We informally recall the definition of feature diagrams
(FDs). Skipping the details, an FD is a tuple (N, r, DE)
where N is a set of features, r ∈ N is the root, and DE ⊆
N × N is the set of decomposition edges between features.
The semantics of an FD d, noted [[d]]FD , is the set of valid
products, i.e. a set of sets of features: [[d]]FD ⊆ P(N). As
an example, the semantics of the vending machine FD from
Figure 2 is as follows (using the short feature names):˘

{v, b, t}, {v, b, t, f}, {v, b, t, c}, {v, b, t, f, c}, {v, b, s},
{v, b, s, f}, {v, b, s, c}, {v, b, s, f, c}, {v, b, s, t},
{v, b, s, t, f}, {v, b, s, t, c}, {v, b, s, t, f, c}

¯
.

A complete formal definition of FDs can be found in [31].
In this paper, behaviour of individual products is repre-

sented with transition systems [4] (TS). A TS is a directed
graph whose transitions are labelled with actions, and whose
states are labelled with atomic propositions.1 Formally, we
have the following definition.

Definition 1 (Transition System). A TS is a tuple
M = (S, Act, trans, I, AP, L) where

• S is a set of states,

• Act is a set of actions,

• trans ⊆ S × Act × S is a set of transitions, with
(s1, α, s2) ∈ trans sometimes noted s1

α→ s2,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions,

• L : S → 2AP is a labelling function.

1To avoid clutter, we omit atomic propositions in the figures.

336

Sunshine
高亮

An execution (also called behaviour) of M is a non-empty,

infinite sequence s0α1s1α2 . . . with s0 ∈ I such that si
αi+1→

si+1 for all 0 ≤ i < n. The semantics of a TS, written [[t]]TS ,
is given by its set of executions.

In this paper, we mainly focus on two types of proper-
ties: (i) regular safety properties and (ii) ω-regular proper-
ties (among others, LTL properties). We follow the classi-
cal automata-based approach to model checking [33] which
represents the complement of regular safety properties by a
finite automaton (FA). Model checking of these properties
is thus reduced to reachability in the synchronous product
of this automaton and the TS. Similarly, the complement
of ω-regular properties is classically represented by a Büchi
automaton (BA). These properties can then be checked by
repeated reachability in the synchronous product. The for-
mal definition for FA and BA is given below. The language
of an FA (resp. BA) consists of finite (resp. infinite) words
and can be empty (accepts no word).

Definition 2. An FA (resp. BA) is a tuple (Q, Σ, δ,
Q0, F) where Q is a set of states, Σ is the alphabet, δ ⊆
Q × Σ × Q the transition relation, Q0 ⊆ Q a set of initial
states and F ⊆ Q a set of accepting states. An FA accepts
finite words that reach an accepting state, and a BA accepts
infinite words that visit accepting states infinitely often.

3. FEATURED TRANSITION SYSTEMS
In order to model the behaviour of each product in the

SPL concisely, we draw upon existing approaches [12, 18, 20,
24] that create a single parameterised model to be instan-
tiated differently for each product of the SPL. However, in
contrast to most approaches, we explicitly relate behaviours
to their originating features, and do this at the level of in-
dividual transitions.

3.1 Syntax
The syntax of FTS accounts for the fact that adding a

feature to a system modifies the behaviour of this system.
Consider the vending machine example. Figures 1(b,c and d)
show the impact of adding features Tea, CancelPurchase and
FreeDrinks, respectively, to a machine serving only soda. Tea
adds two transitions (tea and serveTea); CancelPurchase also
adds two transitions; and FreeDrinks replaces transitions pay
and change by a single transition free as well as open/close
by skip.

In order to describe the effects of several features on a
system concisely, our approach models a system that con-
tains all features, as well as annotations that indicate which
transitions of the model correspond to which feature. To be
able to express cases in which a feature removes (rather than
adds) transitions, we use a priority relation over alternative
transitions.2 This leads us to define a featured TS as a TS in
which each transition is labelled with a feature, and where
a priority relation may be associated to transitions leaving
the same state.

The FTS for the vending machine example is given in
Figure 3. The feature label of a transition is shown next
to its action label, separated by a slash. In addition, the
transitions are coloured in the same way as the features in
Figure 2. Intuitively, the FTS captures the impact of all

2In essence, removing a transition corresponds to adding an
alternative transition of higher priority.

87

6

5

1
pay/v

3
open/v

cancel/creturn/c

close/v

change/v

free/f
soda/s serveSoda/s

tea/t

skip/f pay/v

open/v
Priorities

2

4

serveTea/t

free/f >
skip/f >

Figure 3: FTS of the vending machine.

features in a single diagram. Formally, FTS are defined as
follows.

Definition 3 (Abstract syntax of FTS). An FTS
fts is a tuple fts = (S, Act, trans, I, AP, L, d, γ, >) where

• (S,Act, trans, I, AP,L) is a TS,

• d = (N, r,DE) is an FD,

• γ : trans→ N is a total function, labelling transitions
with features,

• > ⊆ trans×trans is a partial order, defining priorities
between transitions.

Transition priorities offer an intuitive way to model cases
in which one feature overrides the behaviour of another. If
a transition t labelled with feature f has priority over tran-
sition t′ labelled with feature f ′, this means that products
containing both f and f ′ only have transition t; they would
have both transitions if there were no priority relation. The
transition free of the FreeDrinks feature, for instance, has
priority over pay (which belongs to the root feature, Vend-
ingMachine). The result is that pay will not appear in any
product that contains the feature FreeDrinks, such as the one
in Figure 1(d).3

A common modelling pattern is that the behaviour of a
child feature (wrt. the FD) overrides the behaviour of its
parents. Formally, we can use the decomposition relation
DE of the FD (a directed graph), to induce the priority
relation of the FTS.

Definition 4 (Priorities induced by FD). A tran-

sition s
α→ s1 labeled with f1 has priority over s

β→ s2 labeled

with f2, written s
α→ s1 > s

β→ s2, iff f2 is an ancestor of f1
in DE.

The purpose of an FTS is to model the behaviour of the
whole SPL. From the FTS, one can obtain the behaviour of
one particular product through projection. Intuitively, the
diagrams (a), (b), (c) and (d) of Figure 1 can be obtained
by removing selected transitions from Figure 3.

Formally, in order to obtain the behaviour of a particular
product, one projects the FTS on the corresponding set of
features, say p ∈ [[d]]FD . This transformation is entirely
syntactical and consists in removing (i) all transitions linked
to features that are not in p, and (ii) all transitions that are
overridden by higher priority transitions. The result of the
projection is an ordinary TS.

3Since state 2 and transition change become unreachable,
they are omitted from the diagram.

337

Sunshine
高亮

Sunshine
高亮

Definition 5 (Projection). The projection of an FTS
fts to a product p ∈ [[d]]FD , noted fts |p, is the TS t = (S,
Act, trans′, I, AP, L) where

trans′ =
˘

(s1, α, s2)|(s1, α, s2) ∈ trans ∧ γ(s1, α, s2) ∈ p
∧ @(s1, α

′, s′2) ∈ trans • γ(s1, α
′, s′2) ∈ p

∧ (s1, α
′, s′2) > (s1, α, s2)

¯
.

Note that the concept of parallel composition also exists
for FTS. If the modelled SPL consists of several processes
running in parallel, each process can be modelled as a sepa-
rate FTS, all sharing the same underlying features and FD.
The FTS of the system can then be obtained by composing
these processes. For FTS, one can easily adapt the well-
accepted handshake communication model, whereby the ex-
ecution of parallel processes is synchronised on transitions
with shared actions and otherwise interleaved.

3.2 Semantics
Each TS obtained through projection describes the be-

haviour (see Definition 1) of a particular product of the SPL.
The semantics of an FTS is thus the union of the behaviours
of the projections on all valid products.

Definition 6 (Semantics of an FTS).

[[fts]]FTS =
[

c∈[[d]]
FD

[[fts |c]]TS

An important observation is that, except for trivial cases,
the FTS semantics we just defined is not equal to the usual
TS semantics (as given by Definition 1). Formally, there
exists an FTS fts for which [[fts]]FTS 6= [[TS(fts)]]TS , where
TS(fts) is the TS obtained by removing d, γ and> from fts.
The vending machine SPL is an example for such an FTS.
Indeed, an execution e in which the vending machine would
ask the first customer for a coin and offer a free drink to the
next one would be part of [[TS(fts)]]TS , since in the TS, the
choice between pay and free is non-deterministic. Yet, the
execution does not correspond to any of the machines in the
SPL: these should either always offer free drinks or always
require payment, hence e 6∈ [[fts]]FTS . More generally, we
have the following theorem.

Theorem 7 (FTS semantics vs. TS semantics).

∀fts • [[fts]]FTS ⊆ [[TS(fts)]]TS

This theorem illustrates that one cannot simply use clas-
sical model checking algorithms directly on an FTS to ver-
ify properties for the complete SPL. While this verification
might be sound, it is not always complete: by ignoring prior-
ities, it would find false positives. Definition 6 shows another
problem that we have to face when model checking an FTS:
the exponential blowup caused by considering all products
of the SPL. This adds to the state-explosion problem that
already exists in classical model checking.

These considerations justify the need for an FTS-specific
model checking algorithm, but before we get there, we need
a more operational definition of the FTS semantics.

3.3 Reachability in FTS
A model checker is meant to perform a search in the state

space of the FTS and thus needs an execution model that
is faithful to the FTS semantics. As we just showed, TS

semantics does not apply to FTS. In addition, we want our
model checker to indicate the products for which a property
does (or does not) hold. To explore the state space of an
FTS, a proper execution model thus needs to keep track of
products and respect transition priorities.

Consequently, we define the FTS reachability relation R0,
to be constructed as the state space is explored. R0 ⊆
S × P(P(N)) is a set of couples (s, px) such that state s
is reachable by the products in px. In particular, the initial
states of the FTS are reachable for all products.

Definition 8. Initially reachable states of an FTS are

Init0
4
=
˘

(s, [[d]]FD) | s ∈ I
¯
.

Given a state s reachable by products in px, a transition
leaving s, say t = s

α→ s′, can be fired for all products if its
feature is part of all products in px and if there is no higher-

priority transition s
α′→ s′′ that could also be fired. If these

conditions hold, s′ is reachable by the same products in px.
In case the conditions do not hold, the transition cannot be
fired for all products, that is, s′ will only be reachable by a
subset of px and we proceed as follows:

• If a higher-priority transition t′ could equally be fired,
then t can only be fired for (and thus s′ is only reach-
able by) the products that do not contain the feature
of t′.

• If the feature of t is part of some products in px only,
it can only be fired for (and thus s′ is only reachable
by) these products.

• If none of the products contains the feature of t, it
cannot be fired at all.

This is formalised in the following definition.

Definition 9. The successors of a state s ∈ S reachable
by products in px ∈ P(P(N)) can be computed with the fol-
lowing operator

Post0(s, px)
4
=n

(s′, px′) | s α→ s′ ∈ trans ∧
px′ =

˘
p ∈ px | γ(s

α→ s′) ∈ p ∧
{γ(s

α′→ s′′) | s α′→ s′′ > s
α→ s′} ∩ p = ∅

¯o
.

Let us illustrate this with the vending machine FTS of
Figure 3. State 1 is an initial state, and thus reachable by
all products. From there, the transition pay can only be fired
by products containing the feature v (the label of pay), and
not containing the feature f (the label of the higher-priority
transition free). State 2 is thus reachable by these products
only. From state 2, transition change can be fired for all
products containing v, and so state 3 is reachable by the
same products as state 2.

Recording the set of products would be too expensive.

The set of reachable states will be of size O(|S|.22|N|). We
propose a more concise representation for a set of products:
to state which features the products must have (required
features, rf) and which they cannot have (excluded features,
ef). This symbolic data structure is defined as follows.

Definition 10. A triple (s, rf, ef) ∈ S × P(N) × P(N)
is a symbolic encoding of a tuple (s, px) ∈ S×P(P(N)) such

that [[(s, rf, ef)]]
4
= (s, {p ∈ [[d]]FD | rf ⊆ p ∧ ef ∩ p = ∅}).

338

The new, efficient reachability relation R is thus a set of
triples (s, rf, ef), where the initially reachable states (Init)
and the successors (Post) are defined as follows.

Definition 11. In symbolic representation, the initially

reachable states of an FTS are Init
4
=
˘

(s, ∅, ∅) | s ∈ I
¯

; the
successors of a state s ∈ S reachable by products containing
features rf ⊆ N and not containing features ef ⊆ N are

Post(s, rf, ef)
4
=˘

(s′, rf ′, ef ′) | s
α→ s′

∧ rf ′ = rf ∪ {γ(s
α→ s′)}

∧ ef ′ = ef ∪
S
s
α′→s′′>s α→s′

γ(s
α′→ s′′)

∧ ef ′ ∩ rf ′ = ∅
¯
.

It can easily be shown that the symbolic successor function
is equivalent to its explicit counterpart, that is:

Theorem 12. For any (s, rf, ef),

Post0([[(s, rf, ef)]]) = [[Post(s, rf, ef)]]

where [[.]] is trivially extended to sets of triples.

Using this representation, the size of the reachability rela-
tion will be O(|S|.2|N|.2|N|). Since triples with rf ∩ ef 6= ∅
can be ignored, this shrinks to O(|S|.3|N|), which is signifi-
cantly smaller than what we had previously.

Its size can be further reduced by exploiting the following
property: if a state s is known to be reachable by products
in px, then it is also reachable by the products in any subset
of px. Formally, if (s, px) ∈ R0 and (s, px′) ∈ R0 with
px′ ⊆ px, it is sufficient to only keep (s, px) in R0. More
generally, it is sufficient to keep the maximal elements (an
antichain) of the partial order induced by the subset relation
⊆ over {px | (s, px) ∈ R0} for each state s. In terms of
the symbolic representation that we are using, an equivalent
partial order can be defined as follows.

Definition 13. For a state s ∈ S and a set R ⊆ s ×
P(N) × P(N), the relation v is defined as a partial order

over R: (s, rf, ef) v (s, rf ′, ef ′)
4
= (rf ⊇ rf ′) ∧ (ef ⊇ ef ′).

With this optimisation, testing whether a state s is reach-
able by products in px cannot be done by just checking
whether (s, px) ∈ R0. Indeed, if the state s is reachable by a
greater set of products px′ with px ⊆ px′, only (s, px′) will
be in R0. One therefore has to check whether ∃(s′, px′) ∈
R • s = s′ ∧ px ⊆ px′. In the symbolic representation,
for a state (s, rf, ef), this boils down to checking whether
∃(s′, rf ′, ef ′) ∈ R • s = s′ ∧ (s, rf, ef) v (s′, rf ′, ef ′).

4. MODEL CHECKING FTS
Our objective is to verify regular and ω-regular properties

in such a way that (a) if a property is satisfied by the FTS,
then it is also satisfied by every product of the SPL, and
(b) if a property is violated, the algorithm reports a coun-
terexample (a trace that violates the property) as well as
the products of the SPL that violate the property.

This differs from classical model checking algorithms which,
in case of a violation, just return the counterexample. In
SPL model checking, information about the violating prod-
ucts is needed to help the engineer correct the model.

4.1 FTS model checking scenarios
We first need to define what it means for an FTS to be

a model of a temporal property. As stated in the following
definition, an FTS satisfies a temporal property if all its
projections satisfy the property.

Definition 14 (Satisfaction in FTS). An FTS fts
satisfies a (regular, or ω-regular) property φ, iff

∀p ∈ [[d]]FD • fts |p |= φ.

Extending the |= relation, we note this fts |= φ.

The FTS model checking problem can now be formalised.

Definition 15 (MC(fts, φ)). Given a property φ and
an FTS fts, MC(fts, φ) returns true iff fts |= φ. If fts 6|=
φ, it returns false, a counterexample e, and a non-empty set
of products px ⊆ [[d]]FD such that ∀p ∈ px • fts |p 6|= φ with
e as counterexample.

The basic model checking scenario is analogous to classical
model checking: just as the returned counterexample might
be one out of many violating traces, the set of violating
products is not necessarily complete. In case of a violation, it
is therefore not possible to know whether there are products
that do satisfy the property. This gives rise to an SPL-
specific model checking problem: determine which products
satisfy and which violate the property.

Definition 16 (ExtMC(fts, φ)). Given a property φ
and an FTS fts, ExtMC(fts, φ) returns true iff fts |= φ. If
fts 6|= φ, it returns false and a set c of couples (e, px) where
e is a counterexample and px a non-empty set of products
such that ∀p ∈ px • fts |p 6|= φ. Furthermore, it holds that

∀p ∈ [[d]]FD • p 6∈
[

(e,px)∈c

px =⇒ fts |p |= φ.

The last condition of the above definition states that the
list of counterexamples has to be exhaustive, i.e. all products
that are not mentioned satisfy the property. The procedure
thus implicitly returns a set of violating and a set of satis-
fying products. A further variation of these two scenarios is
useful for SPLE: limiting the verification to a subset of the
products of the SPL. Basically, both scenarios would take
px ⊆ [[d]]FD , the set of products to verify, as an additional
parameter. From there on, the definitions are analogous.

4.2 Synchronous product
As stated in Section 2, we follow the approach of automata-

based model checking [33], where regular and ω-regular prop-
erties are expressed by automata. In this case, model check-
ing is equivalent to checking whether or not the synchronous
product of the system with the automaton representing the
negation of the property has an empty language.

The synchronous product of an FTS and an automaton is
similar to that of a TS and an automaton [4]. That is, it uses
the state labelling (the atomic propositions) of the FTS, and
not the transition labels (as the parallel composition does).
The difference from the standard definition is that it has to
preserve feature labels and priorities of the original FTS.

Definition 17 (Synchronous product). For an FTS
fts = (S, Act, trans, I, AP, L, d, γ, >) and an FA/BA
a= (Q,P(AP), δ, Q0, F), the synchronous product is an FTS
fts⊗ a = (S ×Q,Act, trans′, I ′, AP ′, L′, d, γ′, >′), where

339

• AP ′ = Q and L′(s, q) = q, i.e. the new FTS is labeled
with the states of the FA/BA,

• (s, q)
α

→′ (t, p) iff s
α→ t ∧ q

L(t)→ p,

• I ′ = {(s0, q) | s0 ∈ I ∧ ∃q0 ∈ Q0 • (q0, L(s0), q) ∈ δ},
i.e. the initial states are those that can be reached from
an initial state of the FA/BA,

• γ′
`
(s, q)

α

→′ (t, p)
´

= γ(s
α→ t),

• (s, q)
α

→′ (t, p) >′ (s, q)
α′

→′ (t′, p′) iff s
α→ t > s

α′→ t′.

Note that the synchronous product of an FTS fts and
an automaton a is an FTS fts′, not an automaton. Its lan-
guage, though, can be defined in the same way as for FA/BA
in Definition 2. The accepting states are the states that are
labelled with an accepting state of a, {s ∈ S×Q|L′(s) ∈ F}
and the words are the executions e ∈ [[fts′]]FTS .

4.3 Model checking regular safety properties
To prove that an FTS fts satisfies a regular property φ,

the latter is negated and transformed into an FA: FA(¬φ).
FA(¬φ) is then composed with the FTS: fts ⊗ FA(¬φ)
yielding a new FTS fts′ which has to be proven empty.
Conversely, to prove that fts violates φ is to prove that fts′

has an accepting run. This boils down to checking whether
an accepting state, a ‘bad’ state s with L′(s) ∈ FFA(¬φ), is
reachable in fts′.

This is accomplished with a search in the reachability re-
lation R, as discussed in Section 3.3. The easiest way to do
this is by computing a fixpoint: the reachable states are the
initially reachable states and those that can be reached from
them, i.e. the least fixpoint of the successor operator [6].

Definition 18. The symbolic reachability relation R ⊆
S × P(N)× P(N) for an FTS is defined as

R = µX • Init ∪ Post(X),

where Post is extended to sets of triples as follows: Post(x)
=
S

(s,rf,ef)∈x Post(s, rf, ef). The relation can be calcu-
lated following Tarski’s fixpoint theorem by applying the
successor relation until it stabilises, i.e.

R = Init ∪
[
i≥1

Posti(Init).

Alternatively, one can check reachability directly with a
depth-first search (DFS) in the FTS. The advantage of a
DFS is that it is more natural to obtain a counterexample
for a violated property. Our DFS algorithm is given in the
procedure IsReachable (see right column of this page). The
procedure takes five parameters so that it can be used for
all model checking scenarios identified in Section 4.1:

(i) the FTS, that is: fts⊗ FA(¬φ);

(ii) the set of accepting states of FA(¬φ): FFA(¬φ);

(iii) a flag instructing the procedure to stop upon discovery
of a reachable state: true to compute MC(fts, φ) and
false to compute ExtMC(fts, φ);

(iv/v) and the set of products to be verified (using the sym-
bolic representation from Definition 10) in case the
property should be checked for a subset of the products
only (as discussed in Section 4.1).

Input: An FTS fts= (S, Act, trans, I, AP, L, d, γ, >),
a set of accepting states F ⊆ AP , a flag break
instructing to stop upon discovery of a bad
state, a set of required (resp. excluded) features
rf0 and ef0 to delimit the products to explore.

Output: True if a state s with L(s) ∈ F was found
and a set of quadruplets (state, set of
required, set of excluded features, error trace)
with the violations, otherwise false.

R← {(s0, rf0, ef0) | s0 ∈ I} ; % reachable states1

Trace← [] ; % current trace2

bad← ∅ ; % set of bad states3

while I 6= ∅ do4

Take s0 from I;5

I ← I \ {s0};6

push((s0, rf0, ef0), T race);7

while Trace 6= [] do8

(s, rf, ef)← top(Trace);9

if L(s) ∈ F then10

bad← bad ∪ {(s, rf, ef, T race)};11

if break then return true, bad12

end13

unvisited←

8<:(s′, rf ′, ef ′) ∈ Post(s, rf, ef)˛̨̨̨
@(s′, rf ′′, ef ′′) ∈ R

• (s′, rf ′, ef ′) v (s′, rf ′′, ef ′′)

9=; ;
14

if unvisited = ∅ then15

pop(Trace)16

else17

Take (s′, rf ′, ef ′) ∈ unvisited;18

R← maxv(R ∪ {(s′, rf ′, ef ′)});19

push((s′, rf ′, ef ′), T race)20

end21

end22

end23

return (bad 6= ∅), bad24

Procedure IsReachable(fts, F, break, rf0, ef0)

With these parameters, the procedure checks whether there
is a trace violating φ and thus returns true iff MC(fts, φ)
(resp. ExtMC(fts, φ)) is false. The violating products are
then returned in the compact symbolic representation.

The procedure basically computes the symbolic reacha-
bility relation defined in Section 3.3. It maintains the set
of reachable states R, a stack T of triples (s, rf, ef) and
a set of property violations bad. The initial states are al-
ways reachable for all products that are going to be verified,
and R is initialised accordingly (line 1). The procedure iter-
ates over the initial states (line 4) and performs a DFS for
each of them (line 8). It first checks whether the current
state is bad (line 10); if it is, the current trace (that is, the
counterexample) and the products for which the bad state
is reachable (rf, ef) are saved (line 11). If the break flag is
set, the procedure will terminate here (line 12).

The procedure continues by calculating the set of un-
visited successors of the current state (line 14). This cal-
culation uses the Post operator from Definition 11 to de-
termine the successors, and filters out those that are al-
ready in R (with the antichain optimisation discussed in
Section 3.3). If all successors were visited, the procedure

340

backtracks (line 16). Otherwise the search proceeds with
one of the successor states, which is added to R (line 19)
again using the antichain optimisation detailed in Section 3.3
(intuitively, maxv removes the redundant triples from R).

In its current form, the procedure does not take the struc-
tural information of the FD into account. This means that
a symbolic couple (rf, ef) might designate also some in-
valid products of the FD, but would be considered during
the DFS regardless. The DFS would thus visit states that
are not actually reachable. While this overhead could be
deemed acceptable, it is a problem if the procedure finds an
alleged bad state that is actually not a bad state because
it does not belong to a valid product. In order to address
this, one could easily add a validity check after line 14 so
that only unvisited states valid wrt. the FD are kept, i.e.
{(s, rf, ef) | ∃p ∈ [[d]]FD • rf ⊆ p∧ ef ∩ p = ∅}. A straight-
forward and efficient implementation of this check can be
done with a SAT solver [27].

4.4 Model checking ω-regular properties
Verification of an ω-regular property φ, e.g. expressed in

LTL, is similar. The property is negated and transformed
into a BA: BA(¬φ). This BA composed with the FTS to
be checked, yielding a new FTS: fts′ = fts⊗ BA(¬φ), has
to be proven empty [33]. The difference wrt. the previous
case is the Büchi acceptance condition which requires that
an accepting (bad) state be visited infinitely often.

Algorithmically, this can again be done by a search in the
reachability relation R. A bad state has to be found that is
reachable from an initial state (as before) and reachable from
itself (on a cycle). While this could be done by a fixed-point
calculation [15], we propose a DFS-based approach for the
reasons stated above. Due to space restrictions, we omit the
details of the algorithm, called IsPersistent hereafter. The
principal differences from the classical model checking algo-
rithm are sufficiently illustrated in Section 4.3. IsPersis-

tent performs a double DFS [11]: the outer DFS searches for
a reachable bad state (identical to IsReachable) and once
one is found, an inner DFS checks whether the state is on a
cycle. The optimisations of Section 3.3 (symbolic represen-
tation of products, antichain for the reachability relation)
are used for both the inner and the outer DFS.

The procedure takes the same parameters as IsReachable
(except that ¬φ is translated into a BA), and has the same
return values: true if the property is violated, and false if it
is satisfied. Since the procedure checks persistence instead
of mere reachability, its counterexample is an infinite trace:
the prefix of the trace consists of the transitions that lead to
the bad state (found in the outer DFS) while the remainder
consists of the transitions leading back to itself (found in the
inner DFS), which can be repeated indefinitely.

5. EVALUATION

5.1 Theoretical evaluation
The bottleneck of automata-based model checking is the

construction of the BA that accepts the negation of the prop-
erty φ to be checked. LTL model checking by automata-
based techniques is therefore O(|TS|.2|φ|). Furthermore, the
LTL model checking problem is PSPACE-Complete [30].

LTL model checking of an FTS with n features against a
property φ with our algorithm is O(|FTS|.2|φ|+nlog9). That
is, the complexity of IsPersistent, O(|FTS|.9n), multi-

plied by the factor 2|φ| for the LTL to BA translation. The
complexity of IsPersistent is the same as for IsReachable
and obtained as follows. The loop at line 8 will explore the
reachability relation, it is thus O(|FTS|.3n). In that loop,
line 14 is the most costly step: O(3n) since it has to go
through the fragment of the reachability relation belonging
to a single state (although we believe that an efficient imple-
mentation could reduce that to O(2n)). The complexity of
IsPersistent follows from that, since it basically executes
two such DFS (double DFS optimisation [11] can be used for
FTS, too). Just as in LTL model checking, the procedure
is thus linear in the size of the state space. The FTS LTL
model checking problem is also PSPACE-Complete, by an
argument similar to [30].

5.2 Empirical evaluation
We implemented the FTS model checking technique de-

scribed in the previous section in Haskell, a functional pro-
gramming language. The tool4 comes in the form of a library
that can be loaded into a Haskell interpreter to be accessed
through a command line interface, or compiled to perform
verifications in batch mode. The advantage of using Haskell
is its pervasive use of lazy evaluation and the natural trans-
lation of mathematical formulae into program code. The
tool interfaces with ltl2ba,5 based on [19], to automate the
translation from LTL to BA, and uses Graphviz6 to render
FTS graphically.

In order to evaluate our approach, we conducted a study of
examples found in the literature (see [7]). Here, we report on
the analysis of the mine pump controller exemplar [22]. The
purpose of the system is to keep a mine shaft clear of water
while avoiding the danger of a methane related explosion.
It consists of a water pump, a sensor measuring the water
level and a sensor measuring the abundance of methane in
the mine. The system is supposed to activate the pump
once the water level reaches a preset threshold, but only if
the methane is below a critical limit.

The system, as designed in [22], is composed of a base
system, base, and three high level features: c, a command
interface that (de)activates water regulation; m, a methane
alarm interface; and l, the water regulator itself. The sys-
tem and its environment are modelled with five separate
FTS (detailed in [7]): the main FTS represents the control
structure of the program, a second FTS models the changes
to the system state, and three other FTS model the state of
the environment: the water level, the methane level and the
state of the pump. The system FTS is the parallel compo-
sition of these FTS. It has 457 states and 1306 transitions,
and the priority relation is empty. We introduce variability
by modelling c and a as optional features. With only these
high level features, the SPL has four products. Counting
all products explicitly, the system has 1828 states and 4612
transitions. In a second step, we introduced more variability
by further decomposing the high level features. Transitions
in the main FTS were just labelled differently; no transitions
were added or removed. This second SPL has nine features
and 64 products. The explicit count here is 29760 states and
69856 transitions.

We used our prototype to prove properties such as those

4Download at www.info.fundp.ac.be/~acs/fts
5www.lsv.ens-cachan.fr/~gastin/ltl2ba
6www.graphviz.org

341

Table 1: Benchmark results for exhaustive counter example search ExtMC(FTS, φ).
4 features, 4 products 9 features, 64 products

Formula φ Cur. Our Diff. Cur. Our Diff.
(1.1) �♦(start ∧©msg ∧ (methane⇒ palarm)) X 9.389 s 5.563 s 1.69 57.706 s 8.162 s 7.07

⇒ (�♦(methane⇒ ♦pumpoff)
(1.2) ¬�♦(start ∧©msg ∧ (methane⇒ ♦palarm)) 7 25.741 s 37.663 s 0.68 138.970 s 102.716 s 1.35
(1.3) �♦(start ∧©msg)⇒ �(pumpon⇒ ♦running) X 5.084 s 4.308 s 1.18 13.716 s 5.317 s 2.58
(1.4) �♦(msg ∧©level)⇒ �♦(lowwater ⇒ ♦pumpoff) X 4.970 s 4.156 s 1.20 16.450 s 4.926 s 3.34
(1.5) �♦(msg ∧©level ∧ ready) X 5.172 s 4.462 s 1.16 14.981 s 5.033 s 2.98

⇒ �((highwater ∧�!methane)⇒ ♦pumpon)
(1.6) �♦(msg ∧©level ∧ ready) 7 5.437 s 4.405 s 1.23 17.741 s 4.914 s 3.61

⇒ �((highwater∧!methane)⇒ ♦pumpon)

identified in [1] for both SPLs, comparing the performance
of the classical model checking algorithm (also implemented
in the tool) to our method. All benchmarks were run on a
MacBook Pro with a 2,4 GHz Core 2 Duo processor and 4 Gb
of RAM; the library was compiled using GHC.7 Each bench-
mark comprises the construction of the BA, the computation
of the parallel composition, of the synchronous product and
of an exhaustive counterexample search. The reported run-
time is the average of three executions. The results are listed
in Table 1, where X(resp. 7) means property satisfied (resp.
violated), ‘Cur.’ is the time needed to verify all products
separately with the classical algorithm, ‘Our’ is the runtime
of our algorithm, and ‘Diff.’ the speedup factor.

Property (1.1), for instance, requires that “the pump shall
eventually be off when the methane level is critical.” The
formal property needs a fairness assumption: �♦start ∧
©msg forces the system to progress, preventing traces that
only contain environment transitions. And �♦methane ⇒
palarm is the assumption that in case of critical methane,
the system will eventually be notified with an alarm mes-
sage. Property (1.2) is used to check that the assumption
actually holds for some products. This assumption indeed
holds for products that have features base and m, which
means that property (1.1) also holds for these products.

These results show that even with a very low number of
products, our approach achieves an average 20% improve-
ment over classical algorithms. Exceptions appear in cases
where the number of counterexamples is high, such as for
property (1.2). However, the gains over the classical ap-
proach increase dramatically with the number of products.
With 64 products (which still isn’t large), we are on average
3.5 times faster, up to 7 times faster for property (1.1). Fur-
thermore, the results show that our approach, as opposed to
the classical one, scales with the number of products. It is
noteworthy that both implementations are rather naive and
do not make use of known optimisation techniques. Their
primary purpose is to benchmark the speedup resulting from
our algorithms. These initial results are encouraging and
motivate us to pursue further evaluations and optimisations.
Other future work is described in the next section.

6. FUTURE WORK
A natural generalisation of FTS would be to label each

transition with a Boolean expression over the set of features,
in the spirit of [12, 13]. Definition 5 (projection) would have
to be adapted so that a transition becomes part of the pro-
jected TS only if the interpretation of the product satisfies its

7www.haskell.org/ghc

Boolean expression. This would provide greater flexibility
when modelling. For instance, one could express situations
in which a transition belongs to several features. Conceptu-
ally, such an extension is straightforward. The reachability
relation will consist of couples (s, b) where s is a state and b
is a Boolean expression characterising the products in which
s is reachable. There are no fundamental changes required in
the algorithms, although an efficient implementation would
have to use BDDs or a SAT solver.

This paper assumes that the state-space of the SPL is
given in the form of a single (or multiple parallel) FTS.
While this is not a problem for illustrative examples and
small cases, one may question the applicability to industrial
systems. This is why we are planning to define translations
from high-level modelling languages, such as Statecharts and
Promela, to FTS. The intention of the present work is to lay
the foundations of formal verification of SPL, we thus do not
expect an engineer to model directly in FTS.

Even if the engineers use a high-level modelling language,
it is likely that the full specification of an SPL cannot be
created as a single model. We are thus also exploring merg-
ing techniques, which create an FTS of the SPL based on
the TS fragments of high-level features [9].

7. RELATED WORK
SPL-specific approaches. Before we examine each re-

lated approach in detail, we note that they can be broadly
categorised along two lines. On the one hand, there are ap-
proaches that provide a modelling language with verification
mechanisms [18, 20, 24], as we do, and others that just pro-
vide the modelling language. Among the latter, there are
a number of formal approaches that do not provide mech-
anisms for the verification of temporal properties [23, 17,
16, 2, 32] as well as UML-based approaches [34, 12, 13, 26]
where family models can be used to syntactically derive the
model of a specific product, but not be verified against tem-
poral properties. One the other hand, one can distinguish
between approaches that consider variability as a first-class
citizen [12, 13, 24, 26] and those that express variability as
part of the behavioural model [34, 18, 23, 17, 20, 16, 32, 2].
In [3], Bachmann et al. propose orthogonal variability mod-
elling (OVM), a modelling paradigm that consists in docu-
menting variability as first-class citizen in a separate model,
which is related to the other (e.g., data or behavioural) mod-
els, called base models. We believe that OVM has a number
of important benefits, the most important being a clear sep-
aration of concerns. Approaches that represent variability
as part of the behavioural model are problematic for several

342

reasons. Firstly, they bury variability information inside a
behavioural model although variability crosscuts all kinds
of models, not only behaviour. Secondly, when variability
information is scattered across base models, the variability
in these models has to be kept in sync. For instance, as the
product line evolves, optional functionality might become
mandatory, requiring similar changes in all base models.
Thirdly, variable artefacts in these approaches do not have
an identity other than what is provided by the modelling
language, making it hard to explicitly capture the notion of
a product as a set of features or decisions.

Ziadi et al. [34] propose a UML profile for variability
with stereotypes for optionality, alternatives and refinement
(called ‘virtuality’). This profile can be used to model prod-
uct line behaviour with UML sequence diagrams. The ap-
proach does not provide verification mechanisms nor does it
use a first-class variability approach.

Czarnecki et al. [12, 13] propose a pruning-based approach
to UML modelling of SPL that separates variability from the
base models. They propose to annotate model fragments
with ‘presence conditions’, i.e. Boolean expressions over fea-
tures that define to which products a fragment belongs. The
authors do not deal with semantic issues and only verify syn-
tactical correctness of possible projections.

Larsen et al. propose modal I/O automata as a way to
model configurable components and provide a formal notion
of compatibility between components [23]. Their notion of
variability is limited to that of variable component interfaces
and the approach does not deal with the problem of specify-
ing variable behaviour in order to verify temporal properties.

Modal transition systems (MTS) were first proposed by
Fischbein et al. [18] to model SPL behaviour. Transitions in
an MTS are mandatory or optional. An MTS thus specifies
a family of behaviours since optional transitions may or may
not be fired when executing. Similarly to our approach, a
single MTS model check allows to verify all possible prod-
ucts at once. Yet, MTS lack the notion of feature and pri-
ority between transitions. Intuitively, they execute without
a memory of the decisions taken.

Fantechi and Gnesi [17, 16] extended this approach by in-
troducing explicit variability operators into MTS, similar to
the way Ziadi et al. did for UML. In addition to optionality,
they allow to specify cases in which i..j outgoing transitions
may be taken. This proposal does not overcome the in-
herent MTS limitation that individual variation points are
unrelated. Asirelli et al. show how an MTS can be com-
pletely characterised with deontic logic formulae [2], which
means that deontic logic is as expressive as MTS and could
be used as a specification language as well.

Gruler et al. propose PL-CCS, a variant of CCS extended
with a product line variant operator that allows to model
an alternative choice between two processes [20]. The goal
of their verification procedure is similar to ours: verify all
systems of the product line at once. However, their model
checking procedure is only sketched and, as far as we know,
no implementation is available. Also, their properties have
to be expressed with multi-valued modal µ-calculus, whereas
we use the more widely accepted LTL. Moreover, we do not
introduce a new operator, making it easier to adapt existing
tools for our approach. Finally, we believe that modelling
variability with the alternative choice operator can result in
verbose descriptions since common parts of the alternatives
have to be duplicated; see [7] for a side-by-side comparison

of FTS and PL-CCS using the example from Gruler et al.
Model checking of CTL properties in SPLE is addressed

by Lauenroth et al. with an approach based on automata
labeled with features [24]. While similar to FTS, their mod-
elling language does not support priorities between features,
and uses a non-standard definition of the parallel composi-
tion (which adds transitions that were not in the original
automata). Their algorithms are of higher computational

complexity: O(|φ|.|A|!) = O(|φ|.|A||A|), where |A| is the
size of the (generally huge) state space.

For safety analysis in SPLE, Liu et al. [26] use Statecharts
to model (parts of) SPL components. As in [12, 13], in-
stances can be derived syntactically by pruning. Each pos-
sible instance is manually run against a bad scenario to check
whether or not it may occur. There is no support for verifi-
cation of arbitrary temporal properties.

Other approaches. In addition to the above, there is
a body of related research in the field of feature interaction
detection [5]. The purpose of these approaches is to de-
tect and manage incompatibilities, called harmful interac-
tions, between features (mostly in telecommunication sys-
tems). Feature interaction research lacks the product line
perspective: their techniques generally focus on pair-wise
checks and do not deal with the problem of an exponential
number of possible feature combinations. Also, their pur-
pose is generally not the verification of behavioural models
against arbitrary properties. An exception is the approach
by Plath and Ryan [29], which allows verification of arbi-
trary properties, but is restricted to pair-wise checks.

A compositional approach for CTL model checking is pro-
posed by Li et al. [25]. A feature automaton can be attached
to two precisely defined interface states of the base system.
The advantage of this approach is that each feature can be
verified in isolation. The disadvantage is lost expressiveness:
features can only add sequentially at the interface and not
at several places at the same time. Furthermore, features
cannot remove transitions or states.

Morin et al. propose a method to check for inconsistencies
between features in adaptive systems [28]. Instead of veri-
fying all possible combinations at design time, they verify a
feature combination when it is activated at runtime, which
is prevented in case of an inconsistency. However, their ver-
ification only covers structural properties of the system.

In the context of workflow modelling, van der Aalst et al.
propose workflow templates that contain variation points [32].
The authors propose a technique for configuring workflow
models incrementally, continuously verifying that they are
deadlock free. Their approach does not generalise to check-
ing arbitrary user-defined properties.

8. CONCLUSION
This paper lays the foundations for scalable modelling

and efficient verification of software product lines. We in-
troduced FTS, featured transition systems, a formalism de-
signed to describe the combined behaviour of a whole system
family. While allowing to model very detailed behavioural
variations, FTS leverages on treating features as first-class
abstractions and supports separation of concerns. A tool-
supported model checking technique allows to verify FTS
against temporal properties. Thereby, we can verify all the
products of a family at once and pinpoint the products that
violate properties. An empirical evaluation showed substan-
tial gains over individual product verification. The source

343

code of the implemented Haskell library is freely available.
Integration of our formal machinery with software engineer-
ing languages and tools is under way.

Acknowledgements. We thank the anonymous referees
for their helpful comments. This work was funded by the
FNRS, the Interuniversity Attraction Poles Programme of
the Belgian State, Belgian Science Policy (MoVES project)
and the Belgian National Bank.

9. REFERENCES
[1] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel.

Learning operational requirements from goal models.
In ICSE 31, pages 265–275, 2009.

[2] P. Asirelli, M. H. ter Beek, S. Gnesi, and A. Fantechi.
Deontic logics for modeling behavioural variability. In
VaMoS’09, pages 71–76, 2009.

[3] F. Bachmann, M. Goedicke, J. C. S. do Prado Leite,
R. L. Nord, K. Pohl, B. Ramesh, and A. Vilbig. A
meta-model for representing variability in product
family development. In Int. Workshop on Product
Family Engineering (PPE), pages 66–80, 2003.

[4] C. Baier and J.-P. Katoen. Principles of Model
Checking. MIT Press, 2007.

[5] M. Calder, M. Kolberg, E. H. Magill, and
S. Reiff-Marganiec. Feature interaction: a critical
review and considered forecast. Computer Networks,
41(1):115–141, 2003.

[6] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[7] A. Classen. Modelling with FTS: a collection of
illustrative examples. Technical Report P-CS-TR
SPLMC-00000001, PReCISE Research Center,
University of Namur, Namur, Belgium, 2010.
www.info.fundp.ac.be/∼acs/fts.

[8] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s
in a feature: A requirements engineering perspective.
In FASE’08, Held as Part of ETAPS’08, volume 4961
of LNCS, pages 16–30. Springer, 2008.

[9] A. Classen, P. Heymans, T. T. Tun, and B. Nuseibeh.
Towards safer composition. In ICSE 31, Companion
Volume, pages 227–230. IEEE, 2009.

[10] P. C. Clements and L. Northrop. Software Product
Lines: Practices and Patterns. SEI Series in Software
Engineering. Addison-Wesley, August 2001.

[11] C. Courcoubetis, M. Vardi, P. Wolper, and
M. Yannakakis. Memory-efficient algorithms for the
verification of temporal properties. Form. Methods
Syst. Des., 1(2-3):275–288, 1992.

[12] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. In GPCE’05, pages 422–437, 2005.

[13] K. Czarnecki and K. Pietroszek. Verifying feature-
based model templates against well-formedness OCL
constraints. In GPCE ’06, pages 211–220. ACM, 2006.

[14] C. Ebert and C. Jones. Embedded software: Facts,
figures, and future. Computer, 42(4):42–52, 2009.

[15] E. A. Emerson and C. S. Jutla. Tree automata,
mu-calculus and determinacy (extended abstract). In
FOCS 32, pages 368–377. IEEE, 1991.

[16] A. Fantechi and S. Gnesi. A behavioural model for
product families. In ESEC-FSE’07, Companion, pages
521–524. ACM, 2007.

[17] A. Fantechi and S. Gnesi. Formal modeling for
product families engineering. In SPLC 2008, pages
193–202. IEEE CS, 2008.

[18] D. Fischbein, S. Uchitel, and V. Braberman. A
foundation for behavioural conformance in software
product line architectures. In ROSATEA ’06, ISSTA
2006 workshop, pages 39–48. ACM Press, 2006.

[19] P. Gastin and D. Oddoux. Fast LTL to Büchi
automata translation. In CAV 2001, number 2102 in
LNCS, pages 53–65, 2001.

[20] A. Gruler, M. Leucker, and K. Scheidemann. Modeling
and model checking software product lines. In IFIP
WG 6.1 FMOODS ’08, pages 113–131. Springer, 2008.

[21] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report
CMU/SEI-90-TR-21, SEI, CMU, November 1990.

[22] J. Kramer, J. Magee, M. Sloman, and A. Lister.
Conic: an integrated approach to distributed
computer control systems. Computers and Digital
Techniques, IEE Proceedings E, 130(1):1–10, 1983.

[23] K. G. Larsen, U. Nyman, and A. Wasowski. Modal i/o
automata for interface and product line theories. In
ESOP, pages 64–79, 2007.

[24] K. Lauenroth, S. Töhning, and K. Pohl. Model
checking of domain artifacts in product line
engineering. In IEEE/ACM ASE, 2009.

[25] H. C. Li, S. Krishnamurthi, and K. Fisler. Verifying
cross-cutting features as open systems. In SIGSOFT
FSE, pages 89–98, 2002.

[26] J. Liu, J. Dehlinger, and R. Lutz. Safety analysis of
software product lines using state-based modeling. J.
Syst. Softw., 80(11):1879–1892, 2007.

[27] M. Mendonca, A. Wasowski, and K. Czarnecki.
SAT-based analysis of feature models is easy. In
SPLC’09, pages 231–240, 2009.

[28] B. Morin, O. Barais, G. Nain, and J.-M. Jézéquel.
Taming dynamically adaptive systems using models
and aspects. In ICSE ’09, pages 122–132. IEEE, 2009.

[29] M. Plath and M. Ryan. Feature integration using a
feature construct. Sci. Comput. Program.,
41(1):53–84, 2001.

[30] P. Schnoebelen. The complexity of temporal logic
model checking. In Advances in Modal Logic 4, pages
393–436, 2002.

[31] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps. Feature Diagrams: A Survey and A
Formal Semantics. In RE’06, pages 139–148, 2006.

[32] W. M. P. van der Aalst, M. Dumas, F. Gottschalk,
A. H. M. ter Hofstede, M. L. Rosa, and J. Mendling.
Correctness-preserving configuration of business
process models. In FASE’08, Held as Part of
ETAPS’08, pages 46–61, 2008.

[33] M. Y. Vardi and P. Wolper. An automata-theoretic
approach to automatic program verification. In
LICS’86, pages 332–344. IEEE CS, 1986.

[34] T. Ziadi, L. Hélouët, and J.-M. Jézéquel. Towards a
UML profile for software product lines. In Int.
Workshop on Product Family Engineering (PPE),
pages 129–139, 2003.

344

