
Comp151

Generic Programming:
Container Classes

Container Classes

• Container classes are a typical use for class templates, since we
need container classes for objects of many different types, and the
types are not known when the container class is designed.

• Let’s design a container that looks like an array, but that is a first-
class type: so that assignment and call-by-value is possible.

• We want the container to be homogeneous: all the elements must
have the same type.

• But should a container with 10 int elements be the same type as a
container with 20 int elements?
Both choices are sensible design decisions.

Remark: The vector type in STL is better than the classes we’ll write
in this lecture, so this is just for understanding. We are doing this to
illustrate how C++’s actual vector, list, etc. can be implemented.

Example: Container Class – bunch.hpp

template<typename T, int N>
class Bunch {
public:

Bunch();
Bunch(const Bunch &B);
~Bunch();

int size() const { return N; }
T& operator[](int i) { return value_m[i]; }
T& operator=(const Bunch &B);

private:
T value_m[N];

};

Example: Use of Class Bunch

Bunch<int, 10> a;
cout << a[3];
a[7] = 13;
++a[2];

Bunch<string, 50> b;
b[49] = ''Hello world'';

Bunch<string, 50> c;
c = b; // Legal
Bunch<int, 20> d;
d = a; // Error: d and a are of different types

A More Flexible Container Class – array.hpp

#ifndef ARRAY_HPP
#define ARRAY_HPP

template<typename T>
class Array {
private:

T* value_m;
int size_m;

public:
Array(int n = 10); // Default/conversion constructor
Array(const Array& A); // Copy constructor
~Array();

int size() const { return size_m; }
Array<T>& operator=(const Array<T>& A); // Assignment operator
T& operator[](int i) { return value_m[i]; }; // Access to an element
const T& operator[](int i) const { return value_m[i]; }; // Const access to an element

};

#endif

Example: Use of Class Array
#include <iostream>
#include ''array.hpp''
using namespace std;
int main()
{

Array<int> a;
cout << a.size() << endl;
a[9] = 17; // Ok: uses non-const version of operator[]
++a[2]; // Ok: uses non-const version of operator[]
cout << a[2] << endl;

Array<int> b(5);
cout << b.size() << endl;

const Array<int> c(20);
c[1] = 5; // Error: assignment to read-only location
cout << c[1] << endl;

a = c;
cout << a[2] << endl;

}

Example: Constructors/Destructor of Class Array

template<typename T>
Array<T>::Array(int n) : value_m(new T[n]), size_m(n) { }

template<typename T>
Array<T>::Array(const Array<T>& A)

: value_m(new T[A.size_m]), _size(A.size_m)
{

for (int i = 0; i < size_m; ++i) {
value_m[i] = A.value_m[i];

}
}

template<typename T>
Array<T>::~Array() { delete[] value_m; }

Shallow Copy and Deep Copy

Array<int> A(10);
Array<int> B(A);

• Shallow Copy:
– If you don't define your own copy constructor, the copy

constructor provided by the compiler simply does member-wise
copy.

– Then A and B will share to the same value_m array.
– If you delete A, and then B, you will have an error as you will

delete the embedded value_m array twice from the heap.
– Basically, shallow copy is a bad idea if an object owns data.

• Deep Copy:
– To take care of the ownership, redefine the copy constructor so

that each object has its own copy of the “owned" data members.

Assignment Operator

• Idea: To assign b = a, first throw away the old data
b.value_m, then create a new one and assign the
elements from a.value_m.

template<typename T>
Array<T>& Array<T>::operator=(const Array<T>& A)
{

delete [] value_m;
size_m = A. size_m;
value_m = new T[size_m];
for (int i = 0; i < size_m; ++i) {

value_m[i] = A.value_m[i];
}
return *this;

}

Assignment Operator (cont’d)

• There is a serious problem with the previous code. In the
assignment a = a, the data in the container is lost!

• Solution: When the assignment argument is the same as the object
being assigned to, don't do anything.

template<typename T>
Array<T>& Array<T>::operator=(const Array<T>& A)
{

if (this != &A) {
delete [] value_m;
size_m = A. size_m;
value_m = new T[size_m];
for (int i = 0; i < size_m; ++i) {

value_m[i] = A.value_m[i];
}

}
return *this;

}

Assignment Operator (cont’d)

• Here is another way of implementing the assignment operator.
Quiz: Why does this elegant trick work??

template<typename T>
Array<T>& Array<T>::operator=(const Array<T>& A)
{

size_m = A.size_m;
Array<T> temp(A);
std::swap(value_m, temp.value_m);
return *this;

}

// Here’s what std::swap() basically looks like:
template<typename T>
void swap(T& a, T& b)
{

T temp = a;
a = b;
b = temp;

}

Output Operator

• The following output operator is not a member of the
Array<T> class, but a function template.

• Function templates and class templates work together
very well: We can use function templates to implement
functions that will work on any class created from a class
template.

template<typename T>
ostream& operator<<(ostream& os, const Array<T>& A)
{

for (int i = 0; i < A.size(); ++i) {
os << A[i] << ' ';

}
return os;

}

Why 2 Different Subscript Operators?

• We have 2 subscript operators, and it looks as if we are
violating the overloading rule. Both have the same name
and the same arguments.

Array<int> a(3);
a[2] = 7; // Quiz: which version of operator[] is called?

• In the above code, we need a subscript operator that
returns an int&, not a const int&.

• But this subscript operator does not work in this code:

int last_element(const Array<int>& a)
{

return a[a.size() - 1];
}

Why 2 Different Subscript Operators?

• The argument a of last_element() is a const
Array<int>&.

• Therefore it can only call const member functions: in
this example,
– int size() const
– const T& operator[](int i) const

• Note: On the other hand, if bad programmers are not so
strict with const correctness (which is a bad idea), they
could simply define one subscript function as:

T& operator[](int i) const { return value_m[i]; } // This is dangerous! (Why?)

	Comp151
	Container Classes
	Example: Container Class – bunch.hpp
	Example: Use of Class Bunch
	A More Flexible Container Class – array.hpp
	Example: Use of Class Array
	Example: Constructors/Destructor of Class Array
	Shallow Copy and Deep Copy
	Assignment Operator
	Assignment Operator (cont’d)
	Assignment Operator (cont’d)
	Output Operator
	Why 2 Different Subscript Operators?
	Why 2 Different Subscript Operators?

