
COMP151

Static Methods and Data

[comp151] 1Named Constructors

• C++ constructors have the name of the class.

• Different constructors can only be distinguished if they have dif-
ferent argument types.

Example: We want 2 constructors with an integer argument, inter-
preting it either in HHMM format or # minutes after midnight.

class Clock // This won’t work!

{

private:

int hour, minute;

public:

Clock() : hour(0), minute(0) { }

explicit Clock(int mins) : hour(mins / 60), minute(mins % 60) { }

explicit Clock(int hhmm) : hour(hhmm / 100), minute(hhmm % 100) { }

void tick();

void print();

};

Clock c1; // 0:00

Clock c2(120); // 1:20

Clock c3(180); // 3:00

[comp151] 2One Solution: Global Functions

class Clock
{

private:
int hour, minute;

public:
Clock(int h = 0, int m = 0) : hour(h), minute(m) { }
void tick();
void print();

};

Clock make clock hhmm(int hhmm)
{ return Clock(hhmm / 100, hhmm % 100); }

Clock make clock minutes(int min)
{ return Clock(min / 60, min % 60); }

[comp151] 3Disadvantages of Global Functions

• Global functions all live in the same namespace, so the names of
the “constructor functions” have to be long.

• It is not clear that the functions belong to the class. When
the class is modified, it might be easy to forget to look at the
“constructor functions.”

• Global functions cannot access private data members of the class.
(This may be solved by friend functions.)

[comp151] 4Static Methods

Static methods of a class are really global functions with a “funny
name.” They belong to the class, and can access private data.

class Clock {

private:

int hour, minute;

Clock(int h, int m) : hour(h), minute(m) { }

public:

Clock() : hour(0), minute(0) { }

void tick();

void print();

static Clock HHMM(int hhmm) { return Clock(hhmm / 100, hhmm % 100); }

static Clock minutes(int i) { return Clock(i / 60, i % 60); }

};

// Now we can set clocks

Clock c1; // 0:00

Clock c2 = Clock::HHMM(120); // 1:20

Clock c3 = Clock::minutes(120); // 2:00

[comp151] 5Static Data

• Classes can also have static data members.

• Static data members are really global variables with a funny name
and better protection.

• Static data/methods are also called class data/methods.

Compare a class Car with a factory:

• The Car objects are the products made by the factory.

• Data members are data on the products, and methods are ser-
vices provided by the objects.

• Class data and class methods are data and services provided by
the factory.

• Even if no object of this type has been created, we can access
the class data and methods.

[comp151] 6Example: car.h

// File ”car.h”

class Car
{

private:
static int num cars;
int total km;

public:
Car() : total km(0) { ++num cars; }
∼Car() { --num cars; }
void drive(int km) { total km += km; }
static int cars produced() { return num cars; }

};

[comp151] 7Example: car main.cpp

#include ”car.h”

int Car::num cars = 0; // definition of static member

int main() {

cout � Car::cars produced() � endl;

Car vw; vw.drive(1000);

Car bmw; bmw.drive(10);

cout � Car::cars produced() � endl;

Car ∗cp = new Car[100];

cout � Car::cars produced() � endl;

{

Car kia; kia.drive(400);

cout � Car::cars produced() � endl;

}

cout � Car::cars produced() � endl;

delete [] cp;

cout � Car::cars produced() � endl;

return 0;

}

[comp151] 8Summary (1)

total_km

Car object #1

total_km

Car object #2

total_km

Car object #N

num_cars = N

• Static variables are shared among all objects of the same class.

• Static variables do not take up space inside an object.

• Static variables, though act like global variables, cannot be ini-
tialized in the class definition. Instead, they must be defined
outside the class definition.

• Usually the definitions of static variables are put in the class
implementation (.cpp) file.

[comp151] 9Summary (2)

• Static variables/methods are global variables/functions but with
a class scope and are subject to the access control specified by
the programmer.

• Static methods can only use static variables of the class.
Reason: static methods do not have the implicit this pointer like
regular member functions.

e.g. a regular member function of Car like

void drive(int km) { total_km += km; }

after compilation becomes:

void Car::drive(Car* this, int km)

{ this->total_km+=km; }

[comp151] 10Summary (3)

On the other hand, a static method of Car like

static int cars_produced() { return num_cars; }

after compilation becomes:

int Car::cars_produced() { return num_cars; }

[comp151] 11Example: student non static.h

Without static members:

// File: ”student non static.h”

class Student
{

private:
string name;
vector<string> memory;

public:
Student(string s) : name(s) { }
void memorize(string txt) { memory.push back(txt); }
void do exam();

};

[comp151] 12Example: student non static.cpp

#include ”student non static.h”

void Student::do exam()
{

if(memory.empty())
cout � name � ": " � "Huh???" � endl;

else
{

vector<string>::const iterator p;
for (p = memory.begin(); p != memory.end(); ++p)

cout � name � ": " � ∗p � endl;
}

cout � endl;
}

[comp151] 13Example: exam.cpp

#include ”student non static.h”
int main()
{

Student Jim("Jim");
Jim.memorize("Data consistency is important");
Jim.memorize("Copy constructor != operator=");

Student Steve("Steve");
Steve.memorize("Overloading is convenient");
Steve.memorize("Make data members private");
Steve.memorize("Default constructors have no arguments");

Student Mary("Mary");

Jim.do exam();
Steve.do exam();
Mary.do exam();

}

[comp151] 14Example: exam.cpp Output

Jim: Data consistency is important

Jim: Copy constructor != operator=

Steve: Overloading is convenient

Steve: Make data members private

Steve: Default constructors have no arguments

Mary: Huh???

[comp151] 15Example: student static.h

With static members:

// File: ”student static.h”

class Student
{

private:
string name;
static vector<string> memory;

public:
Student(string s) : name(s) {}
void memorize(string txt) { memory.push back(txt); }
void do exam();

};

[comp151] 16Example: student static.cpp

// File: ”student static.cc”
#include”student static.h”

vector<string> Student::memory;

void Student::do exam()
{

if (memory.empty())
cout � name � ": "� "Huh???" � endl;

else
{

vector<string>::const iterator p;
for (p = memory.begin(); p != memory.end(); ++p)

cout � name � ": " � ∗p � endl;
}
cout � endl;

}

[comp151] 17Example: Collective Memory

In this version of the Student class, all students share their memory.
So even though Mary didn not memorize anything, she can access
all the knowledge memorized by Jim and Steve.

Jim: Data consistency is important

Jim: Copy constructor != operator=

Jim: Overloading is convenient

Jim: Make data members private

Jim: Default constructors have no arguments

Steve: Data consistency is important

Steve: Copy constructor != operator=

Steve: Overloading is convenient

Steve: Make data members private

Steve: Default constructors have no arguments

Mary: Data consistency is important

Mary: Copy constructor != operator=

Mary: Overloading is convenient

Mary: Make data members private

Mary: Default constructors have no arguments

[comp151] 18Example: Linked List

Here is an example of a Person class that automatically links to-
gether all persons in a linked list.

class Person

{

private:

static Person∗ first;

string name;

Person∗ next;

public:

Person(string s) : name(s), next(first) { first = this; }

Person(const Person &p) : name(p.name), next(first) { first = this; }

∼Person()

{

if (first == this) { first = next; return; }

for (Person∗ p = first; p; p = p→next)

if (p→next == this) { p→next = next; return; }

abort("Destruct PANIC!");

}

Person& operator=(const Person& p) { name = p.name; }

};

