Complsl

Overloading, Construction & Initialization

Introduction

Our next major topic will be how to initialize new objects using constructors.
Before doing so we take a short break to introduce another concept that we
will need in that discussion, that of function overloading. This is a technique
that allows the same function name to have many “meanings”.

In ordinary life, you actually use overloading all the time. E.g., 1 + 2 is not
the same thingas 1.0 + 2.0 in C++; the + operator is overloaded.

As another example suppose you want to write one function to compute the
average of two numbers and another to compute the average of three
numbers:

double avg(double n1, double n2) {
return ((n1 + n2) / 2.0);

}

double avg3(double n1, double n2, double n3) {
return ((n1 + n2 + n3) / 3.0);

}

In C++, you can use the same name for both functions!

Introduction
e Thisis legal in C++ (but not in C):

double avg(double nl1, double n2) {
return ((n1 + n2) / 2.0);

}

double avg(double nl1, double n2, double n3) {
return ((n1 + n2 + n3) / 3.0);

}

Function Overloading

Overloading allows programmers to use the same name for
functions that do similar things but with different input arguments.

In general, both ordinary function names and member function
names can be overloaded in C++.

class Word {
public:
set(int k) { frequency =k; }
set(const char* s) { str = new char|[strlen(s)+1]; strcpy(str,s); }
set(char ¢) { str = new char[2]; str[0] = c; str[1] = \0’; }
private:
int frequency;
char* str;

J

Function Overloading..

* But to speak good C++, don’t abuse overloading. Make sure that
your overloaded functions really do similar things.

class Word {

set(int k) { frequency = k; }

set(const char* s) { str = new char[strlen(s)+1]; strcpy(str,s); }
set(char c) { str = new char[2]; str[0] = c; str[1] = \O’; }

set() { cout << str; } // bad overloading! obscures understanding

i

« Actually, operators (which are also functions!) are often overloaded.
E.g., what is the type of the operands for “+"?

Function Overloading

e As we’ll see, constructors are often overloaded.

class Word {
public:
Word() { };
Word(const char* s, int k = 1);
Word(const Word& w);
private:
Int frequency;,
char* str;

%

Default Arguments

If a function shows some default behaviors most of the time, and some _
exceptional behaviors only once in awhile, specifying default arguments is a
better option than using overloading.

class Word {

public:
Word(const char*s, intk=1) {
frequency = k;
str = new char|[strlen(s) + 1]; strcpy(str, s);
}
%

int main(){
Word movie(“Brokeback Mountain”);
Word director(“*Ang Lee”, 20);

}

In fact, this is also a kind of overloading. (Why?)

Default Arguments..

 There may be more than one default argument.
void download(char prog, char os = LINUX, char format = ZIP);

« All arguments without default values must be declared to the left of
default arguments. Thus, the following is an error:
void download(char os = LINUX, char prog, char format = ZIP); // error
int main() { download(LINUX, ‘X’); } // can’t tell how to interpret this!
 An argument can have its default initializer specified only once in a

file, usually in the public header file, and not in the function
definition. Thus, the following is an error:

I/l word.hpp I/l word.cpp
class Word { #include “word.hpp”
public: Word::word(const char* s, int k = 1)

Word(const char* s, int k = 1); {

Default Arguments..

 There may be more than one default argument.
void download(char prog, char os = LINUX, char format = ZIP);

« All arguments without default values must be declared to the left of
default arguments. Thus, the following is an error:
void download(char os = LINUX, char prog, char format = ZIP); // error
int main() { download(LINUX, ‘X’); } // can’t tell how to interpret this!
 An argument can have its default initializer specified only once in a

file, usually in the public header file, and not in the function
definition. Thus, the following is okay:

I/l word.hpp I/l word.cpp
class Word { #include “word.hpp”
public: Word::word(const char* s, int k) // ok

Word(const char* s, int k = 1); {

Summary: Overloading

If you have two or more function definitions for the same
function name that is called overloading.

When you overload a function name the different
definitions must have different numbers of formal
parameters, or some formal parameters of different types.

The compiler checks each function call and matches it
with the particular function definition whose number and
type of formal parameters matches.

The use of the same name to mean different things is
called polymorphism (Greek for "many forms").
— Technically, the kind of polymorphism we’ve just seen is called
ad hoc polymorphism.

— We’'ll see another kind of polymorphism when we discuss

templates.
10

Class Object Initialization

 If ALL data members of the class are public, they can be
Initialized when the are created as follows:

class Word {
public:
Int frequency;
char* str;

2
int main() { Word movie = {1, “Brokeback Mountain™}; }

11

Class Object Initialization ...

 What happens if some of data members are private?

class Word {
public:

int frequency;,
private:

char* str;

;
int main() { Word movie = {1, “Brokeback Mountain™}; }

Error: a.cc:8: “movie” must be initialized by
constructor, not by “{ .. }’

12

C++ Constructors

C++ supports a more general mechanism for user-
defined initialization of class objects through constructor
member functions:

— Word movie;

— Word director = “Ang Lee”;

— Word movie = Word(“Brokeback Mountain”);

— Word *p = new Word(“action”, 1);

Syntactically, a constructor of a class is a special
member function having the same name as the class.

A constructor is called whenever an object is created,
even when the object is only created temporarily, e.g., as
a local variable.

A constructor must NOT specify a return type or explicitly
returns a value—NOT even the void type. 13

Default Constructor

class Word {
public:

Word() { frequency = 0; str =0; }
private:

Int frequency;

char* str;

J

Int main(int argc, char* argvl])

{

Word movie;

}

A default constructor is a constructor that is called with NO
argument: X::X() for class X.

It is used to initialize an object with user-defined default values. 14

Compiler Generates a Default Constructor

struct Word {
Int frequency;

char* str;
3
Int main(int argc, char* argv[])
{
Word movie; /l which constructor called?
}

» If there are NO user-defined constructors, the compiler will generate
the default constructor: X::X() for class X for you.

« Word() { } only creates a record with space for an int quantity and a
char* quantity. Their initial values CANNOT be trusted.

15

Compiler Generates a Default Constructor

class Word { /[identical meaning to the previous struct
public:
Int frequency;
char* str,;
I3
Int main(int argc, char* argv[])
{
Word movie; I/l which constructor called?
}

» If there are NO user-defined constructors, the compiler will generate
the default constructor: X::X() for class X for you.

« Word() { } only creates a record with space for an int quantity and a
char* quantity. Their initial values CANNOT be trusted.

16

Default Constructor: Bug

« BUT: only when there are NO user-defined constructors, will the
compiler automatically supply the default constructor.

class Word {

public:
Word(const char* s, int k = 0);
%
int main()
{
Word movie; /[which constructor?
Word song(“Brokeback Mountain”); /[which constructor?
}

a.cc: 16: no matching function for call to “Word::Word()’
a.cc: 12: candidates are: Word::Word(const Word &)

a.cc: 7: Word: :Word(const char*, int) 17

Caution: Weird C++ Syntax

« The default constructor is a function with no parameters
so you might think that it should actually be called using
Word movie();

the same way as any other function without parameters.
This in not correct. A default constructor should be called

as
Word movie;

without using the ().

18

Type Conversion Constructor

class Word {

public:
Word(const char* s) {
frequency = 1,
str = new char [strlen(s) + 1]; strcpy(str, S);
}
3

int main()

{
Word* p = new Word(“action”);
Word movie(“Brokeback Mountain”);
Word director = “Ang Lee”;

}

» A constructor accepting a single argument specifies a conversion from its
argument type to the type of its class: Word(const char*) converts from
type const char* to type Word.

19

Type Conversion Constructor..

class Word {

public:
Word(const char* s, int k =1) {
frequency = k;
str = new char [strlen(s) + 1]; strcpy(str,s);
}
I3

int main()

{

Word* p = new Word(“action”);
Word movie(“Brokeback Mountain”);
Word director = “Ang Lee”;

}

* Notice that if all but ONE argument of a constructor have default values, it is
still considered a conversion constructor.

20

Copy Constructor: Example

class Word {
public:
Word(const char* s, int k = 1);
Word(const Word& w) {
frequency = w.frequency;
str = new char|strlen(w.str) + 1]J;
strcpy(str, w.str);

}
J

Int main()

{

Word movie(“Brokeback Mountain”);
Word song(movie);

/l which constructor?
/l which constructor?

21

Copy Constructor

e A copy constructor has only ONE argument of the same
class

o Syntax: X(const X&) for the class X.
e Itis called upon:

— parameter passing to a function (call-by-value)

— initialization assignment: Word x("Oscars"); Word y = X;
— value returned by a function:

Word Word::to_upper_case()
{
Word x(*this);
for (char* p = x.str; *p I="0"; ++p)
*n+="A"-'a
return x;

}

22

Default Copy Constructor

For a class X, if no copy constructor is defined by the user, the compiler will
automatically supply: X(const X&)

class Word {
public:
Word(const char* s, int k = 0);

¥

int main() {
Word movie(“Brokeback Mountain”); // which constructor?
Word song(movie); /[which constructor?
Word song = movie; /[which constructor?

}

=> CAUTION: the compiler-generated default copy constructor does
memberwise copy! i.e.,

song.frequency = movie.frequency;
song.str = movie.str;

Default Copy Constructor

Beware: performs a memberwise copy !
l

Default song(movie) | Desirable song(movie)
l
| .

ie: movie:
MOVIE-T frequency = 1 : frequency =1
str = Ox24ff N “Brokeback! str = Ox24ff |, “Brokeback
Mountain” : Mountain”
=ong. frequency =1 / | song: frequency =1

str = 0x53a7 | _, “Brokeback

|
str = Ox24ff /. | ‘Brokebac
ountain
|
|
|

24

Constructor: Quiz

Quiz: How is class initialization done in the following
statements?

 Word vowel(“a”);
 Word article = vowel;

« Word movie = “Brokeback Mountain’;

25

Member Initialization List

Most of the class members may be initialized inside the
body of constructor or through member initialization list
as follows:

class Word {
int frequency;
char* str;
public:
Word(const char* s, int k = 1) : frequency(k) {
str = new char [strlen(s) + 1]; strcpy(str, S);

}
J

26

Member Initialization List ..

Member initialization list also works for data members which are
user-defined class objects.

class WordPair {
const Word w1;
Word w2;
public:
WordPair(const char* s1, const char* s2) :
wl(sl),
w2(s2)
{
}
I3

But make sure that the corresponding member constructors exist!
27

Member Initialization List ..

Member initialization list also works for data members which are
user-defined class objects.

class WordPair {
const Word w1;

Word w2;
public:
WordPair(const char* s1, const char* s2) :
w2(s2)
{
wl =sl; I/l quiz: what's the difference here?
}
I3

But make sure that the corresponding member constructors exist!
28

Initialization of const or & Members

const or reference members can ONLY be initialized
via the member initialization list. (Why?)

class Word2 {
const char language;
const Word2& w2;
int frequency;
char* str;
public:
Word2(const char* s1, const Word2& w, int k=1) :
language(‘E’), w2(w), frequency(k) {
str = new char [strlen(s) + 1]; strcpy(str, S);
}
I3

29

Initialization of const or & Members

const or reference members can ONLY be initialized
via the member initialization list. (Why?)

class Word2 {
const char language;
const Word2& w2;
int frequency;
char* str;
public:
Word2(const char* s1, const Word2& w, int k=1) :
language(‘E’), w2(w), frequency(k) {
str = new char [strlen(s) + 1]; strcpy(str, S);
language = ‘E’; // compile-time error
}
}

30

Default Memberwise Assignment

Word x(“Brokeback Mountain”, 1); // Word(const char*, int) constructor
Word vy; // Word() constructor
Yy =X; // default memberwise assignment

= Yy.frequency = x.frequency;
y.Str = X.Str;

 If an assignment operator function is NOT supplied (through
operator overloading), the compiler will provide the default
assignment function — memberwise assignment

« c.f. the case of copy constructor: if you DON’T write your
own copy constructor, the compiler will provide the default
copy constructor—which does memberwise copy,

 Memberwise assignment/copy does NOT work whenever
memory allocation is required for the class members.

31

Default Memberwise Assignment ..

l
Default x =y : Desirable x =y
l
X: I X
frequency = 1 | frequency = 1
l
str = Ox24ff |, “Brokeback 1| str = Ox24ff |, “Brokeback
Mountain” | Mountain”
. I .
y: frequency = 1 / : y: frequency = 1
str = Ox24ff / I str = 0x53a7 _|_, “Brokeback
I Mountain”
l
l

32

Member Class Initialization

Class members should be initialized through member initialization list which
calls the appropriate constructors than by assignments.

class WordPair

{
Word wordl1;

Word word2;
WordPair(const char* x, const char* y) : word1(x), word2(y) { }

J

— wordl/word2 are initialized using the type conversion constructor,
Word(const char*).

WordPair(const char* x, const char* y) { wordl = x; word2 =vy; }

= error-prone because wordl/word2 are initialized by assignment. If there is
no user-defined assignment operator function, the default memberwise
assignment may NOT do what is required.

33

	Comp151
	Introduction
	Introduction
	Function Overloading
	Function Overloading..
	Function Overloading
	Default Arguments
	Default Arguments..
	Default Arguments..
	Summary: Overloading
	Class Object Initialization
	Class Object Initialization …
	C++ Constructors
	Default Constructor
	Compiler Generates a Default Constructor
	Compiler Generates a Default Constructor
	Default Constructor: Bug
	Caution: Weird C++ Syntax
	Type Conversion Constructor
	Type Conversion Constructor..
	Copy Constructor: Example
	Copy Constructor
	Default Copy Constructor
	Default Copy Constructor�Beware: performs a memberwise copy !
	Constructor: Quiz
	Member Initialization List
	Member Initialization List ..
	Member Initialization List ..
	Initialization of const or & Members
	Initialization of const or & Members
	Default Memberwise Assignment
	Default Memberwise Assignment ..
	Member Class Initialization

