
Comp151

Compilation and Separate Compilation 



Quick and Dirty Compilation in Unix 

• Recall the program NameEquivalence1.cpp from the last lecture:

// NameEquivalence1.cpp 
#include <iostream.h>
class X {public: int a;}; 
void main() 
{ 

X x1, x2; 
x1.a = 1; 
x2.a = 2; 
cout << " x1.a = " << x1.a << ", x2.a = " << x2.a << endl; 
x2 = x1; 
cout << " x1.a = " << x1.a << ", x2.a = " << x2.a << endl; 

} 



Quick and Dirty Compilation in Unix (cont) 

• We will use g++ to compile c++ programs under Unix. 

– g++ foo.cpp
compiles foo.cpp and leaves executable in a.out, e.g.:

228> g++ NameEquivalence1.cpp 
229> a.out
x1.a = 1, x2.a = 2 
x1.a = 1, x2.a = 1 

– g++ -o foobar foo.cpp
compiles foo.cpp and leaves executable in foobar, e.g.:

230> g++ -o NameEquivalence1 NameEquivalence1.cpp 
231> NameEquivalence1 
x1.a = 1, x2.a = 2 
x1.a = 1, x2.a = 1 



Motivation: “Divided We Win”

• We have a program “program.cpp” that uses a class called 
Picture to manipulate “character pictures”: for example, it permits 
framing them, and horizontally or vertically gluing them together. 

• It is useful to keep the implementation of the Picture class in a 
separate file “picture.cpp”, because: 
– This makes it easy to reuse it in another (application) program 
– Two programmers can work easily together: one implements Picture

and the other writes the main program, “program.cpp”. 
– When the program is changed, only “program.cpp” needs to be 

compiled again, so the compilation is faster. 
In large software projects this makes a big difference! 

• Note:  By convention, C++ program files usually have the suffix:
“.cpp”, “.cc”, “.C”, or “.cxx”. 



Class Header File: “.h”

• Since we don't want the user who writes “program.cpp”
to know the details of the class Picture (which might 
be a commercial secret), we need to separate the class 
interfaces (declarations) from the class implementation. 

• On the other hand, the main program “program.cpp” also 
needs to know about the definition of class Picture and 
its methods before it can be compiled. 

• The solution is to describe the class Picture in two files: 
– class header file, “picture.h” – containing the interface 
– class implementation file, “picture.cpp” – containing the 

implementation (of constructors and all methods) 



Class Header File: “.h”

/* program.cpp */ 
#include "picture.h" 
int main() 
{ 
// manipulate pictures... 

} 

/* picture.cpp */ 
#include "picture.h" 
Picture* frame(const Picture& x) 
{ 
// code to frame a picture ... 

} 

/* picture.h */ 
class Picture 
{ 
// ... 
Picture* frame(const Picture&); 

} 



Class Header File: “.h”

program*.cpp

program3.cpp

program2.cpp

program.cpp

picture.h picture.cpp

…
…

.

picture class



Separate Compilation 

• We can compile the program with g++ as follows: 

1> g++ -c program.cpp
2> g++ -c picture.cpp
3> g++ -o program program.o picture.o

• g++ has many options; type “man g++” for details. 

• The “-c” option on lines (1) and (2) create the object files 
“program.o” and “picture.o”. They can't run on their own. 

• Line (3) creates the executable program called “program” (with the 
“-o” option) by linking the object files together. 
A linker is a program that binds together separately compiled pieces 
of code. 



Linking Object Files 

file1.cpp

file2.cpp

file3.cpp

fileN.cpp

file1.o

file2.o

file3.o

fileN.o

a.out

…
…

..

…
…

..

compile
link



Down and Dirty 

• For small programs that do not have many files:

1> g++ -c program.cpp
2> g++ -c picture.cpp
3> g++ -o a.out program.o picture.o

gives the same result as the short form:

g++ program.cpp picture.cpp

That is, the executable code is created and stored in 
a.out by default.



// Date.h
// Header file for Date 

class Date 
{ 
public: 

// Basic Constructor 
// sets date to be y.m.d
Date(int m, int d, int y); 

// Default Constructor 
Date(); 

// Set Date 
// sets date to be y.m.d
void set(int m, int d, int y); 

// Print Date 
void print(); 

private: 
int month, day, year; 

}; 



// Date.cpp
// Implementation file for Date 

#include <iostream.h> // standard library file, so uses <> 
#include "Date.h" // user-defined, so uses "" 

Date::Date(int m, int d, int y) 
{ month=m; day=d; year=y; }

Date::Date() 
{ month=1; day=1; year=2004; } // default date is 2004.01.01

void Date::set(int m, int d, int y) 
{ month=m; day=d; year=y; }

void Date::print() 
{ cout << year << “."; 

cout << month << “." << date << endl; 
} 



// CheckDate.cpp
// a program that uses the Date class 

#include <iostream.h> // standard library file, so uses <> 
#include "Date.h" // user-defined, so uses "" 

void main() 
{ 

Date Today(2,4,2001), When; 

cout << "Today is "; Today.print(); 

When.set(6,1,2002); 
cout << "When is "; When.print(); 

} 



An Example 
• Given 

– Date.h:  declaration of Date class 
– Date.cpp:  definition of Date class 
– CheckDate.cpp:  test program using Date class 

both 

g++ Date.cpp CheckDate.cpp

g++ -c Date.cpp
g++ -c CheckDate.cpp
g++ -o a.out Date.o CheckDate.o

result in the same executable a.out.  Running a.out gives 

Today is 2001.4.2
When is 2002.1.6 



Separate Compilation

• If CheckDate.cpp is changed but Date.cpp is not, then the first 
line of the 3-line compilation sequence is unnecessary and you just 
need: 

g++ -c Checkdate.cpp
g++ -o a.out Date.o Checkdate.o

This can save a lot of time! 

• The separate compilation process can be simplified using gmake on 
a “Makefile”.  This will ‘automatically’ check which files have been 
changed and need to recompiled before linking and which have not
been changed (so their old object files can be used).  You will learn 
more about this in the lab. 



Preprocessor Directives:  #include 

• Besides statements allowed in a programming language, 
some useful features are added via directives which are 
handled by a program called a preprocessor before the 
source code is compiled. 

– In C++, preprocessor directives begin with a # sign in the very 
first column. 

– The #include directive reads in the contents of the named file. 
#include <standard_file.h> 
#include "my_file.h"

– Angle brackets (<>) are used to include standard header files 
which are searched for in the standard library directories. 

– Quotes (" ") are used to include user-defined header files which 
are searched for first in the current directory. 

– g++ -I may be used to change the search path. 



Libraries 

• To produce a working executable, the linker needs to 
include the codes for functions that are declared in the 
standard C++ header files (iostream.h, string.h, etc.). The 
corresponding codes can be found in the standard C++ 
libraries. 

– A library is a collection of object files, intended for re-use. 
– You can build your own libraries, or use the many existing libraries.
– The linker automatically selects object code from the libraries that 

contain the definitions for functions used in the program files, and 
includes them in the executable. 

– Some libraries are used automatically by the C++ linker, such as the 
standard C++ library.  Other libraries have to be specified during the 
linking process, with the “-l” option. 
E.g., to link with the standard math library "libm.a", 

g++ -o myprog myprog.o -lm 



Library Example 
// use_sqrt.cpp
// Illustrates the use of the math library 

#include <iostream.h>
#include <math.h>

void main() 
{ cout << "The square root of 5 is " << sqrt(5.0) << endl; }

• To compile/link this program you need to invoke 
g++ -o use_sqrt use_sqrt.o -lm

• Without the -lm and the include <math.h> the 
compilation should fail. 



#ifndef, #define, #endif

/* program.h */ /* b.h */ /* c.h */ 
#include "b.h" #include "a.h" #include "a.h" 
#include "c.h" #include "d.h" #include "e.h" 
... ... ... 

• Since #include directives may be nested, the same 
header file may be included twice! 
– multiple processing → waste of time 
– re-definition of #define constants/macros 

• Thus, the need of conditional directives (a.k.a. “guards”)
#ifndef PICTURE_H 
#define PICTURE_H 
// object declarations, class definitions, functions 
#endif // PICTURE_H


	Comp151
	Quick and Dirty Compilation in Unix
	Quick and Dirty Compilation in Unix (cont)
	Motivation: “Divided We Win”
	Class Header File: “.h”
	Class Header File: “.h”
	Class Header File: “.h”
	Separate Compilation
	Linking Object Files
	Down and Dirty
	
	
	
	An Example
	Separate Compilation
	Preprocessor Directives:  #include
	Libraries
	Library Example
	#ifndef, #define, #endif

