
Comp151

Definitions & Declarations 



Example: Definition 

/* program1.cpp */ 

#include <iostream.h> 
#include <string.h> 

int global_var = 23; // global variable definition 

void reverse_print(const char* s) // function definition 
{ 

for (int j = strlen(s) - 1; j >= 0; --j) 
cout << s[j]; 
cout << endl; 

} 



Example: Declaration 

/* program2.cpp */ 

#include <iostream.h> 

extern int global_var; // external variable declaration 
extern void reverse_print(const char* s); // external function declaration 

void main(int argc, const char* argv[]) 
{ 

float local_var; // local variable definition 
local_var = 987.654; 

cout << ''global var = '' << global_var << endl; 
cout << ''local var = '' << local_var << endl; 
cout << ''input string backwards = ''; 
reverse_print(argv[1]); 

} 



Definition 

• A definition introduces a variable's or a function's name 
and type. 

• A variable definition reserves a number of bytes of 
memory for the variable. 

• A function definition generates code for the function. 
• In both cases, definitions cause memory to be allocated 

to store the variable or function. 
• An object must be defined exactly once in a program.*

*Except inline function definitions (which we’ll discuss in a moment).



Declaration 

• The declaration of a variable announces that the variable exists 
and is defined somewhere else (in the same file, or in a different file). 
The connection is made when the object files are linked. 

• A declaration consists of the variable's name and its type preceded 
by the keyword extern. 

• A declaration does not generate code, and does not reserve 
memory. 

• There can be any number of declarations for the same object name 
in a program. 

• If a declaration is used in a file different from that with the definition 
of the object, the linker will insert the real memory address of the 
object instead of the symbolic name. 

• In C++, a variable must be defined or declared to the program 
before it is used. 



Advantages of Header Files

• In general, a header file provides a centralized location for:
– external object declarations 
– function declarations 
– class definitions (but not non-inline member function definitions)
– inline function & member function definitions 

• The advantages are: 
– 1. By including the header files, all files of the same piece of

software are guaranteed to contain the same declaration for a 
global object or function. 

– 2. Should a declaration require updating, only one change to the
header file will need to be made. 



Variables

• A variable is a symbolic name 
assigned to some memory 
storage. 

• The size of this storage 
depends on the type of the 
variable, compiler, and platform.
– e.g., on x86 under Windows, 

char is 1 byte long and int is 
4 byte long. 

• The difference between a 
variable and a literal constant is 
that a variable is addressable. 

.

.

.

3542000 :x

2004 :y76

.

.

.



Key distinction:  lvalue vs. rvalue

[ interpretation of " x = x + 1 " ] 

x+1x:

• A variable has dual roles, depending on where it appears in the 
program, it can represent 
– lvalue: the location of the memory storage 
– rvalue: the value in the storage 

• They are so called because a variable represents an lvalue (or 
rvalue) if it is written to the left (or right) of an assignment statement. 
Thus, the following are invalid statements in C++: 

4 = 1; 
grade + 10 = new - grade;


	Comp151
	Example: Definition
	Example: Declaration
	Definition
	Declaration
	Advantages of Header Files
	Variables
	Key distinction:  lvalue vs. rvalue

