
Comp151

Const-ness

Watch out!

• The keyword const has many different meanings in C++,
depending on where it’s used.

const

• const in variable declarations: used to express a user-defined
constant – a value that can't be changed.

const float PI = 3.1416;
int = 1;
const int j = 2*i;

• Constant variables are usually written in capital letters.
• In the bad old days, constants were defined by the ugly #define

preprocessor directive:

#define PI 3.1416

• The const keyword can be regarded as a safety net for programmers.
If an object should not change, make it a const object; the compiler
will issue an error message if you try to change a const object.

Example: Constants of Basic Types

#include <iostream.h>

const int i = 3;
const float PI = 3.1416;

void main()
{

for (int j = 1; j <=i; j++) {
cout << j << '‘*PI = '' << j * PI << endl;

}
}

A const MUST be initialized: the following is an error!

const int i; // will give a compile-time error

Example: Constant Objects
class Date // not really a complete class definition
{

int year, month, day;
Date(int, int, int); // day, month, year
int difference(const Date & NewDate); // NewDate is a const ref param
void add_month() { month += 1; };

};

int main()
{

const Date job_start(1,4,1998);
Date x(6,3,2000);

// How long have I worked at UST in days?
cout << ''Today I have worked '' << x.difference(job_start) << '' days.\n'';

// What about next month?
job_start.add_month(); // Error, but caught by compiler
cout << ''In a month I'll have worked '' << x.difference(job_start) << '' days.\n'';

}

const and Pointers

• Suppose that
const int i =5; int* pi;

and we were allowed to write
pi = &i; // actually, this is illegal

• Then it would be impossible for the compiler to stop
*pi = 10;

from changing i. This would violate the principle behind
const.

• C++ therefore does not allow a regular pointer to point to
a const. Only a special pointer to a const can point to a
const. If a regular pointer points to a const the compiler
will complain.

const int * pi;
pi = &i; // now this is ok

Pointer to a const

• const int * pi; is a pointer to a const. It is not a
pointer which is a const!
– pi can point to either a const or a non const.
– pi can be changed.
– *pi cannot be changed, i.e., it cannot be used in an assignment.
– Only a special pointer to a const can point to a const. If you try to

set a regular pointer to point to a const the compiler will complain.

int j = 10; const int i = 5;
const int * pi;
pi = &i; pi = &j; // ok: pi can change
pi = &i; *pi = 10; // error: *pi can not be assigned to
pi = &j; *pi = 10; // error: *pi cannot be assigned to (even though j can)
int *qi; qi = &i; // error: qi is not a pointer to const

const and Pointers

• We can also have a pointer that is a constant. This
implies nothing about the item being pointed to.

int i = 5;
int * const ri = &i; // const, so must be assigned

cout << *ri; // ok
*ri = 10; // ok

int j;
ri = &j; // compile-time error: cannot change ri

const and Pointers

• Finally, we can have both: a pointer to a constant that is also a
constant itself. That is, the pointer cannot be changed and the thing
it points to also cannot be changed.

const int i = 5;
const int * const ri = &i;
cout << ''*ri = '' << *ri << endl; // ok
*ri = 10; // compile-time error
int j; ri = &j; // compile-time error

• Note that such a pointer can point to a non const. It just can not
change it.

int k = 5;
const int * const ri = &k; // ok
*ri =10; // compile-time error

const and Pointers

• We have just seen three different types of pointers:
1. const int * pi;

// A pointer to a constant

2. int * const ri = &i;
// A pointer that is a constant

3. const int * const ri = &i;
// A pointer to a constant that is a constant itself

• The two distinct concepts to keep in mind are
– An object that is a constant cannot be changed.
– If pi is defined as a pointer to a const this means that *pi can

not be assigned to.

const and Pointers

• When using a pointer, two objects are involved:
the pointer itself, and the object pointed to.

– The syntax for pointers to constants and constant pointers can be
confusing.

The rule is that any const to the left of the * in a declaration refers to
the object pointed to; any const to the right of the * refers to the
pointer itself.

– It can be very helpful to read these declarations from right to left.

char c = 'Y';
char* const cpc = &c;
const char* pcc;
const char* const cpcc = &c;

const: References as Function Arguments

While there are 2 good reasons (what are they?) to pass an argument
as a reference, you can (and should!) express your intention to
leave a reference argument of your function unchanged by making it
const. This has 2 advantages:

1. If you accidentally try to modify the argument in your function, the
compiler will catch the error:

void cbr(Large_Obj& LO)
{

LO.height += 10; // ok
}
void cbcr(const Large_Obj& LO)
{

LO.height += 10; // compile-time error!
}

const: References as Function Arguments …

2. You can call a function that has a const reference parameter with
either const and non-const arguments. But a function that has a
non-const reference parameter can only be called with non-const
arguments.

void cbr(Larg_Obj& LO) { cout << LO.height; }
void cbcr(const Larg_Obj& LO) { cout << LO.height; }

int main() {
Large_Obj dinosaur(50);
const Large_Obj rocket(100);

cbr(dinosaur);
cbcr(dinosaur);
cbr(rocket); // compile-time error!
cbcr(rocket);

}

const: Member Functions

• To indicate that a class member function does not
modify the class object, one can (and should!) place the
const keyword after the argument list.

class Date
{

int year, month, day;
public:

int get_day() const { return day; }
int get_month() const { return month; }
void add_year(int y); // Non-const function

};

Summary

• Acceptable software engineering practice demands that
you make:

– objects that you don't intend to change const.

const double PI = 3.1415927;
const Date HandOver(1,7,1997);

– function arguments that you don't intend to change const.

void print_height(const Large_Obj& LO) { cout << LO.height(); }

– class member functions that do not change the object const.

int Date::get_day() const { return day; }

	Comp151
	Watch out!
	const
	Example: Constants of Basic Types
	Example: Constant Objects
	const and Pointers
	Pointer to a const
	const and Pointers
	const and Pointers
	const and Pointers
	const and Pointers
	const: References as Function Arguments
	const: References as Function Arguments …
	const: Member Functions
	Summary

