
1

Comp151

Garbage Collection & Destructors

2

Memory Layout of a Running Program

void f()
{

// x, y are local variables
// on the runtime stack
int x = 4;
Word y(“Brokeback”);

// p is another local variable
// on the runtime stack.
// But the array of 100 int
// that p points to
// is on the heap
int* p = new int[100];

}

static data

program code

(run-time)
stack

(run-time)
heap

[…, local variables,

temporary variables

passed arguments]

[objects dynamically
allocated by “new”]

3

Memory Usage on Runtime Stack and Heap

• Local variables are constructed (created) when they are
defined in a function/block on the run-time stack.

• When the function/block terminates, the local variables
inside and the CBV arguments will be destructed (and
removed) from the run-time stack.

• Both construction and destruction of variables are done
automatically by the compiler by calling the appropriate
constructors and destructors.

• BUT, dynamically allocated memory remains after
function/block terminates, and it is the user’s
responsibility to return it back to the heap for recycling;
otherwise, it will stay until the program finishes.

4

Garbage and Memory Leaks
int main()
{

for (int j = 1; j <= 10000; ++j)
{

int* snoopy = new int[100];
int* vampire = new int[100];
snoopy = vampire; // Now snoopy becomes vampire
….. // Where is the old snoopy?

}
}

• Garbage is a piece of storage that was created (allocated) by a
program, where there are no more pointers/references to it.

• A memory leak occurs when there is garbage.

Question: What happens if there is a huge piece of garbage, or
garbage is continuously created inside a big loop?!

5

Example: Before and After p = q

.

.

.

0x36a4p:

.

.

.

0x8a48q:

.

.

.

.

.

.

0x8a48q:

0x8a48p:

BEFORE

AFTER

6

delete: to prevent garbage
int main()
{

Stack* p = new Stack(9); // A dynamically allocated stack object
int* q = new int[100]; // A dynamically allocated array of integers
…
delete p; // delete an object
delete [] q; // delete an array of objects
p = NULL; // it is good practice to set a pointer to 0
q = NULL; // when it is not pointing to anything

}

• Explicitly deallocate the memory for a single object by calling delete
on a pointer to the object.

• Explicitly deallocate the memory for an array of garbage objects by
calling delete [] on a pointer to the first object of the array.

• Notice that delete ONLY puts the dynamically allocated memory back
to the heap, and the local variables (p and q above) stay behind on the
run-time stack until the function terminates.

7

Dangling References and Pointers

However, careless use of delete may cause dangling references.

int main()
{

char* p;
char* q = new char [128]; // dynamically allocate a char buffer
…
p = q; // p and q now points to the same char buffer
delete [] q; q = 0; // delete the char buffer

// Now p is a DANGLING POINTER !
p[0] = ‘a’; // Error: possibly segmentation fault
delete [] p; // Error: possibly segmentation fault

}

• A dangling reference is created when memory pointed to by a pointer is
deleted but the user thinks that the address is still valid.

• Dangling references are due to carelessness and pointer aliasing — where
an object is pointed to by more than one pointer.

8

Example: Dangling References

.

.

.

0x8a48p:

0x8a48q:

BEFORE

.

.

.

0x8a48p:

0q:

AFTER delete [] q; q = 0;

9

Other Solutions: Garbage, Dangling References

Memory leaks and dangling references are due to
careless pointer manipulation, especially in situations
where there is pointer aliasing.

– Some languages provide automatic garbage collection facility
which stops a program from running from time to time, checks for
garbages, and puts them back to the heap for recycling.

• e.g.: Lisp, Java, C#, …

– Some languages do not have explicit pointers at all!
(The large majority of program bugs are due to pointers.)

– However, you pay a performance penalty for such solutions.

10

Destructors: Introduction

void Example()
{

Word x(“bug”, 4);
…

}
int main() { Example(); … }

• On return from Example(), the local Word object x of Example()
is destroyed from the run-time stack of Example(). i.e. the memory
space of (int) x.frequency and (char*) x.str are released.

Quiz: How about the dynamically allocated memory for the string, “bug”
that x.str points to?

11

Destructors

C++ supports a more general mechanism for user-defined destruction
of class objects through destructor member functions.

~Word() { delete [] str;}

• A destructor of a class X is a special member function with the name
X::~X().

• A destructor takes no arguments, and has no return type – thus,
there can only be ONE destructor for a class.

• The destructor of a class is invoked automatically whenever its
object goes out of scope – out of a function/block.

• If not defined, the compiler will generate a default destructor of the
form X::~X(){ } which does nothing.

12

Example: Destructors

class Word {
int frequency;
char* str;

public:
Word(): frequency(0), str(0) { }
Word(const char* s, int k = 0) { … }
~Word() { delete [] str; }

};

int main() {
Word* p = new Word(“Brokeback Mountain”);
Word* x = new Word [5];
…
delete p; // destroy a single object
delete [] x; // destroy an array of objects

}

13

Bug: Default Assignment

void buggy(Word& x)
{

Word bug(“bug”, 4);
x = bug;

}

int main()
{

Word movie(“Brokeback Mountain”); // which constructor?
buggy(movie);

}

Quiz: What is movie.str after returning from the call buggy(movie)?

	Comp151
	Memory Layout of a Running Program
	Memory Usage on Runtime Stack and Heap
	Garbage and Memory Leaks
	Example: Before and After p = q
	delete: to prevent garbage
	Dangling References and Pointers
	Example: Dangling References
	Other Solutions: Garbage, Dangling References
	Destructors: Introduction
	Destructors
	Example: Destructors
	Bug: Default Assignment

