
HKUST COMP 171 Fall 2002 Written Assignment 1 Reference Solution 3
2002-10-07 Wing Kuen Lee <cswkl@ust.hk>

 1/1

6.1-3
Let i denote the index of the element at the root of a subtree of a heap. Then its left child is A[2i] and its right
child is A[2i + 1], if available. Recall that the definition of the max-heap property is: For every node i other than
root, A[Parent(i)] ≥ A[i] where Parent(i) = i/2. Therefore,

For the left child 2i, A[Parent(2i)] = A[2i/2] = A[i] ≥ A[2i]
For the right child 2i+1, A[Parent(2i+1)] = A[(2i+1)/2]=A[i+1/2] = A[i] ≥ A[2i + 1]

Since i is arbitrary, the largest element in a subtree of a heap is at the root of the subtree.

6.2-1
The array index begins at 1:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
27 17 3 16 13 10 1 5 7 12 4 8 9 0

1)

8

1

2 3

4 5 6 7

9 10 11 12 13 14

27

17

16 13

5 7 12 4 8 9 0

10 1

3

2)

8

1

2 3

4 5 6 7

9 10 11 12 13 14

27

17

16 13

5 7 12 4 8 9 0

3 1

10

3)

HKUST COMP 171 Fall 2002 Written Assignment 1 Reference Solution 3
2002-10-07 Wing Kuen Lee <cswkl@ust.hk>

 2/2

8

1

2 3

4 5 6 7

9 10 11 12 13 14

27

17

16 13

5 7 12 4 8 3 0

9 1

10

4)

8

1

2 3

4 5 6 7

9 10 11 12 13 14

27

17

16 13

5 7 12 4 8 3 0

9 1

10

6.3-2
Notice that the conversion of an array into a heap is in a bottom-up manner. When processing node i, we want
the subtrees of node i already be heaps. In the other words, we want the node processing order to guarantee that
the subtrees rooted at children of a node i are heaps before HEAPIFY is executed at that node. Because the
elements at the bottom have larger index number than their parents’, we want the loop index i in line 2 of
BUILD-MAX_HEAP to decrease to 1.

[We may not obtain a heap if the process starts from the root to the bottom. Try apply the algorithm on
<4,1,3,8,6>].

HKUST COMP 171 Fall 2002 Written Assignment 1 Reference Solution 3
2002-10-07 Wing Kuen Lee <cswkl@ust.hk>

 3/3

7.1-1
[This solution is done using the algorithm from the lecture, which also appears in the first edition of the
textbook. It now appears as Q7-1 on page 159.]

pivot = A[1]=13

1)

i x j
 13 19 9 5 12 8 7 4 11 2 6 21

2)

 x, i j
 13 19 9 5 12 8 7 4 11 2 6 21

(swap i,j)

3)

 i x,j
 6 19 9 5 12 8 7 4 11 2 13 21

4)

 i j x
 6 19 9 5 12 8 7 4 11 2 13 21

(swap i,j)

5)

 i j x
 6 2 9 5 12 8 7 4 11 19 13 21

6)

 j i x
 6 2 9 5 12 8 7 4 11 19 13 21

Return 9 (index begins at 1)

7.2-4
The performance of quicksort is at best Θ(nlgn). However, the performance of insertion-sort is at best Θ(n).
Now consider the algorithm of insertion-sort on page 24 of the textbook. For an almost-sorted input, the while-
loop will be executed a few times more than in the best case. Since the extra steps are still constant, the
performance of insertion-sort is still Θ(n). Indeed, using the analysis similar to the one on page 24, T(n) = c1*n
+ c2*(n-1) + c4*(n-1) + c5*(n-1+k1) + c6*k2 + c7*k2 + c8*(n-1) = Θ(n), where k1, k2 are some extra steps.

On the other hand, no matter if the input is already sorted or not, the best-case of quicksort is Θ(nlgn). Thus,
when the input is almost-sorted, insertion-sort beats quicksort.

8.3-3
Base case:
Let d=1. We only sort on the least significant digit. Obviously, the radix sort works on the least sig. digit.

Hypothesis:
Radix sort works on numbers with arbitrary digits, using an intermediate stable-sort.

We need to assume that radix sort uses a stable sort to sort array A on digit i so the intermediate sort is stable.
Assume also that, for d = k, the least k-th sig. digits of the numbers are sorted properly.

HKUST COMP 171 Fall 2002 Written Assignment 1 Reference Solution 3
2002-10-07 Wing Kuen Lee <cswkl@ust.hk>

 4/4

Inductive case:
For d = k + 1, use a stable sort to sort array A on digit k+1. Since the least k-th digits are sorted properly by a
stable sort (by assumption), after a stable sort is used on digit k+1, the order of the least k-th digits is preserved.
Thus, the least k+1 th digits of n numbers are in order.

[Not all numbers in array need to have the same number d. The empty digit can be filled with ‘0’]

By induction, radix sort works.

8.6
c)
Suppose there are 2n elements: a1, a2, a3, …, a2n such that a1 ≤ a2 ≤ … ≤ a2n. Moreover, we have two sorted
arrays A1 and A2, where ai in A1 and ai+1 in A2. Assume that ai will not be compared with ai+1. Then,

Case 1: ai is compared with an element a≠ ai+1 in A2. However, a must be less than ai+1 because ai and ai+1 are
consecutive. Thus, all such elements in A2 will be merged, and ai will finally be compared with ai+1.

Case 2: ai+1 is compared with an element b≠ ai in A1. However, b must be less than ai because ai and ai+1 are
consecutive. Thus, all such elements in A1 will be merged, and ai+1 will finally be compared with ai.

By contradiction, if two elements are consecutive in the sorted order and from opposite lists, then they must be
compared.

d)
Suppose there are 2n elements: a1, a2, a3, …, a2n such that a1 ≤ a2 ≤ a3 ≤ … ≤ a2n. The first sorted list A1=< a1,
a3, …, a2n-1> and the second A2=<a2, a4, …, a2n>. By part c, we must have a1 ≤? a2 ≤? a3 ≤? … ≤? a2n where ≤?
denotes comparison. Therefore, there are 2n-1 comparisons for n elements in each list.

