6.1-3

Let *i* denote the index of the element at the root of a subtree of a heap. Then its left child is A[2i] and its right child is A[2i + 1], if available. Recall that the definition of the max-heap property is: For every node *i* other than root, $A[Parent(i)] \ge A[i]$ where $Parent(i) = \lfloor i/2 \rfloor$. Therefore,

For the left child 2*i*, A[Parent(2*i*)] = A[$\lfloor 2i/2 \rfloor$] = A[i] \geq A[2*i*] For the right child 2*i*+1, A[Parent(2*i*+1)] = A[$\lfloor (2i+1)/2 \rfloor$]=A[i] \geq A[2*i*+1]

Since *i* is arbitrary, the largest element in a subtree of a heap is at the root of the subtree.

6.2-1

The array index begins at 1:														
1	2	3	4	5	6	7	8 5	9	10	11	12	13	14	
27	17	3	16	13	10	1	5	7	12	4	8	9	0	
1)	1)													
	27													
	4 5 6 7													
	8 9 10 11 12 13 14													
		5		7	12	4	(\prec	9	0)			
2)														
			4		17	5		(7			
			4	16	1:			6 3)			
		0			\sum	$\left\langle \right\rangle$				\square				
		8	\prec	9	10/	4	12	\sim $>$	13	0	14			
3)														

3)

4)

6.3-2

Notice that the conversion of an array into a heap is in a bottom-up manner. When processing node i, we want the subtrees of node i already be heaps. In the other words, we want the node processing order to guarantee that the subtrees rooted at children of a node i are heaps before HEAPIFY is executed at that node. Because the elements at the bottom have larger index number than their parents', we want the loop index i in line 2 of BUILD-MAX_HEAP to decrease to 1.

[We may not obtain a heap if the process starts from the root to the bottom. Try apply the algorithm on <4,1,3,8,6>].

7.1-1

7.2-4

The performance of quicksort is at best $\Theta(n \lg n)$. However, the performance of insertion-sort is at best $\Theta(n)$. Now consider the algorithm of insertion-sort on page 24 of the textbook. For an almost-sorted input, the whileloop will be executed a few times more than in the best case. Since the extra steps are still constant, the performance of insertion-sort is still $\Theta(n)$. Indeed, using the analysis similar to the one on page 24, $T(n) = c1*n + c2*(n-1) + c4*(n-1) + c5*(n-1+k1) + c6*k2 + c7*k2 + c8*(n-1) = \Theta(n)$, where k1, k2 are some extra steps.

On the other hand, no matter if the input is already sorted or not, the best-case of quicksort is $\Theta(n \lg n)$. Thus, when the input is almost-sorted, insertion-sort beats quicksort.

8.3-3

Base case:

Let d=1. We only sort on the least significant digit. Obviously, the radix sort works on the least sig. digit.

Hypothesis:

Radix sort works on numbers with arbitrary digits, using an intermediate stable-sort.

We need to assume that radix sort uses a stable sort to sort array A on digit i so the intermediate sort is stable. Assume also that, for d = k, the least k-th sig. digits of the numbers are sorted properly.

Inductive case:

For d = k + 1, use a stable sort to sort array A on digit k+1. Since the least k-th digits are sorted properly by a stable sort (by assumption), after a stable sort is used on digit k+1, the order of the least k-th digits is preserved. Thus, the least k+1 th digits of n numbers are in order.

[Not all numbers in array need to have the same number d. The empty digit can be filled with '0']

By induction, radix sort works.

8.6

c)

Suppose there are 2*n* elements: $a_1, a_2, a_3, ..., a_{2n}$ such that $a_1 \le a_2 \le ... \le a_{2n}$. Moreover, we have two sorted arrays A1 and A2, where a_i in A1 and a_{i+1} in A2. Assume that a_i will not be compared with a_{i+1} . Then,

Case 1: a_i is compared with an element $a \neq a_{i+1}$ in A2. However, *a* must be less than a_{i+1} because a_i and a_{i+1} are consecutive. Thus, all such elements in A2 will be merged, and a_i will finally be compared with a_{i+1} .

Case 2: a_{i+1} is compared with an element $b \neq a_i$ in A1. However, b must be less than a_i because a_i and a_{i+1} are consecutive. Thus, all such elements in A1 will be merged, and a_{i+1} will finally be compared with a_i .

By contradiction, if two elements are consecutive in the sorted order and from opposite lists, then they must be compared.

d)

Suppose there are 2n elements: $a_1, a_2, a_3, ..., a_{2n}$ such that $a_1 \le a_2 \le a_3 \le ... \le a_{2n}$. The first sorted list A1=< a_1 , $a_3, ..., a_{2n-1}$ > and the second A2=< $a_2, a_4, ..., a_{2n}$ >. By part c, we must have $a_1 \le ?a_2 \le ?a_3 \le ?... \le ?a_{2n}$ where $\le ?$ denotes comparison. Therefore, there are 2n-1 comparisons for n elements in each list.