6.1-3

Let i denote the index of the element at the root of a subtree of a heap. Then its left child is $\mathrm{A}[2 i]$ and its right child is $\mathrm{A}[2 i+1]$, if available. Recall that the definition of the max-heap property is: For every node i other than root, $\mathrm{A}[\operatorname{Parent}(i)] \geq \mathrm{A}[i]$ where $\operatorname{Parent}(i)=\lfloor i / 2\rfloor$. Therefore,

For the left child $2 i, \mathrm{~A}[\operatorname{Parent}(2 i)]=\mathrm{A}[\lfloor 2 i / 2\rfloor]=\mathrm{A}[i] \geq \mathrm{A}[2 i]$
For the right child $2 i+1, \mathrm{~A}[\operatorname{Parent}(2 i+1)]=\mathrm{A}[(2 i+1) / 2\rfloor]=\mathrm{A}[L i+1 / 2\rfloor]=\mathrm{A}[i] \geq \mathrm{A}[2 i+1]$
Since i is arbitrary, the largest element in a subtree of a heap is at the root of the subtree.

6.2-1

The array index begins at 1 :

1	2	3	4	5	6	7	8	9	10	11	12	13	14
27	17	3	16	13	10	1	5	7	12	4	8	9	0

1)

2)

3)

4)

6.3-2

Notice that the conversion of an array into a heap is in a bottom-up manner. When processing node i, we want the subtrees of node i already be heaps. In the other words, we want the node processing order to guarantee that the subtrees rooted at children of a node i are heaps before HEAPIFY is executed at that node. Because the elements at the bottom have larger index number than their parents', we want the loop index i in line 2 of BUILD-MAX_HEAP to decrease to 1 .
[We may not obtain a heap if the process starts from the root to the bottom. Try apply the algorithm on $<4,1,3,8,6>]$.

7.1-1

[This solution is done using the algorithm from the lecture, which also appears in the first edition of the textbook. It now appears as Q7-1 on page 159.]

```
pivot = A[1]=13
```

1)

$i \quad x$

13	19	9	5	12	8	7	4	11	2	6	21

2)

x, i

13	19	9	5	12	8	7	4	11	2	6	21

3)

i

| 6 | x, j |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4)

5)

i	i										
6	2	9	5	12	8	7	4	11	19	13	21

6)

6	2	9	5	12	8	7	4	11	19	13	21

Return 9 (index begins at 1)

7.2-4

The performance of quicksort is at best $\Theta(n \lg n)$. However, the performance of insertion-sort is at best $\Theta(n)$. Now consider the algorithm of insertion-sort on page 24 of the textbook. For an almost-sorted input, the whileloop will be executed a few times more than in the best case. Since the extra steps are still constant, the performance of insertion-sort is still $\Theta(n)$. Indeed, using the analysis similar to the one on page $24, \mathrm{~T}(n)=\mathrm{c} 1 * \mathrm{n}$ $+\mathrm{c} 2 *(\mathrm{n}-1)+\mathrm{c} 4 *(\mathrm{n}-1)+\mathrm{c} 5 *(\mathrm{n}-1+\mathrm{k} 1)+\mathrm{c} 6 * \mathrm{k} 2+\mathrm{c} 7 * \mathrm{k} 2+\mathrm{c} 8 *(\mathrm{n}-1)=\Theta(\mathrm{n})$, where $\mathrm{k} 1, \mathrm{k} 2$ are some extra steps.

On the other hand, no matter if the input is already sorted or not, the best-case of quicksort is $\Theta(n \lg n)$. Thus, when the input is almost-sorted, insertion-sort beats quicksort.

8.3-3

Base case:
Let $\mathrm{d}=1$. We only sort on the least significant digit. Obviously, the radix sort works on the least sig. digit.
Hypothesis:
Radix sort works on numbers with arbitrary digits, using an intermediate stable-sort.
We need to assume that radix sort uses a stable sort to sort array A on digit i so the intermediate sort is stable. Assume also that, for $\mathrm{d}=\mathrm{k}$, the least k -th sig. digits of the numbers are sorted properly.

Inductive case:
For $\mathrm{d}=\mathrm{k}+1$, use a stable sort to sort array A on digit $\mathrm{k}+1$. Since the least k -th digits are sorted properly by a stable sort (by assumption), after a stable sort is used on digit $\mathrm{k}+1$, the order of the least k -th digits is preserved. Thus, the least $k+1$ th digits of n numbers are in order.
[Not all numbers in array need to have the same number d. The empty digit can be filled with ' 0 ']
By induction, radix sort works.

8.6

c)

Suppose there are $2 n$ elements: $a_{1}, a_{2}, a_{3}, \ldots, a_{2 n}$ such that $a_{1} \leq a_{2} \leq \ldots \leq a_{2 n}$. Moreover, we have two sorted arrays A1 and A2, where a_{i} in A1 and a_{i+1} in A2. Assume that a_{i} will not be compared with a_{i+1}. Then,

Case 1: a_{i} is compared with an element $a \neq a_{i+1}$ in A2. However, a must be less than a_{i+1} because a_{i} and a_{i+1} are consecutive. Thus, all such elements in A2 will be merged, and a_{i} will finally be compared with a_{i+1}.

Case 2: a_{i+l} is compared with an element $b \neq a_{i}$ in A1. However, b must be less than a_{i} because a_{i} and a_{i+l} are consecutive. Thus, all such elements in A1 will be merged, and a_{i+l} will finally be compared with a_{i}.

By contradiction, if two elements are consecutive in the sorted order and from opposite lists, then they must be compared.
d)

Suppose there are $2 n$ elements: $a_{1}, a_{2}, a_{3}, \ldots, a_{2 n}$ such that $a_{1} \leq a_{2} \leq a_{3} \leq \ldots \leq a_{2 n}$. The first sorted list A1 $=<a_{1}$, $a_{3}, \ldots, a_{2 n-1}>$ and the second A2=<a2, $a_{4}, \ldots, a_{2 n}>$. By part c, we must have $a_{1} \leq ? a_{2} \leq ? a_{3} \leq$? ... \leq ? $a_{2 n}$ where \leq ? denotes comparison. Therefore, there are $2 \mathrm{n}-1$ comparisons for n elements in each list.

