11.2-2

0	$\rightarrow 28 \rightarrow 19 \rightarrow 10 /$		
1	$/$		
2	$/$		
3	$\rightarrow 12$		
4	$/$		
5	$\rightarrow 5$	$/$	
6	$\rightarrow 15$	$\rightarrow 20$	$\rightarrow 33$
7	$/$		
8	$\rightarrow 17$		

11.2-4 (optional)

Under the assumption of simple uniform hashing, the running time of each operation is:

1) Unsuccessful search: $\theta(1+\alpha / 2)$
2) Successful search: $\theta(1+\alpha / 2)$
3) Insertion: $\theta(1+\alpha / 2)$
4) Deletion: $\theta(1+\alpha / 2)$

Proofs:

1)

- By assuming simple uniform hashing, any key k is equally likely to hash to any of the m lists.
- Assume that each list is sorted in ascending order. The search is unsuccessful if we compare k with the key of each element on a list until one key is greater than k. On average, this takes $\theta(\alpha / 2)$.
- It takes $\theta(1)$ to compute $h(k)$.
- The total running time is the time to compute $h(k)$ and to search the list.

2)

- Similar to 1), we compare k with each element in a list until both are equal. This also takes $\theta(\alpha / 2)$ on average.
- It takes $\theta(1)$ to compute $h(k)$.
- The total running time is the time to compute $h(k)$ and to search the list.

3)

- To insert k, compute $h(k)$ and then find the correct position to insert into the chosen list.
- It takes $\theta(1)$ to compute $h(k)$.
- Similar to 1), it takes $\theta(\alpha / 2)$ on average to find the inserting position.
- The total running time is the time to compute $h(k)$ and to search the list.

4)

- It takes $\theta(1)$ to compute $h(k)$.
- We need to search for the key value before deletions, which takes $\theta(1+\alpha / 2)$ for both successful and unsuccessful cases (see proofs $1 \& 2$)
- If found, there is a constant c time to update the linked list
- Total running time: $\theta(1+\alpha / 2+c)=\theta(1+\alpha / 2)$

Note: the average $\theta(\alpha / 2)$ is obtained by finding the expected number of elements examined.
Let $\mathrm{P}(\mathrm{X}=$ the i th elements $)=m / n$. Then the expected number of elements examined is:

$$
E(X)=\sum x \cdot P(X=x)=\sum_{i=i}^{n / m} i \cdot\left(\frac{m}{n}\right)=\frac{1}{2} \alpha+\frac{1}{2}
$$

11.4-1

Linear probing: $h(k)=h^{\prime}(k)+i \bmod 11$
$i=1,2,3, \ldots, 10,0$

0	1	2	3	4	5	6	7	8	9	10
22	88	1	1	4	15	28	17	59	31	10

Quadratic probing: $h(k)=h^{\prime}(k)+i+3 i^{2} \bmod 11$
$i+3 i^{2}=0,4,3,8,8,3,4,0,2,10,2,0,4,3$

0	1	2	3	4	5	6	7	8	9	10
22	1	88	17	4	1	28	59	15	31	10

Double hashing: $h(k)=h^{\prime}(k)+i h_{2}(k) \bmod 11$

0	1	2	3	4	5	6	7	8	9	10
22	1	59	17	4	15	28	88	1	31	10

11.3-3

Let y be a concatenation of characters $k_{0} \circ k_{1} \circ k_{2} \circ \cdots \circ k_{n}$, and $x=k_{i 0} \circ k_{i 1} \circ k_{i 2} \circ \cdots \circ k_{i n}$ be a permutation of y. Then the corresponding radix -2^{p} representations of x and y are:
$y=k_{0} \times 2^{p n}+k_{1} \times 2^{p(n-1)}+k_{2} \times 2^{p(n-2)}+\cdots+k_{n} \times 2^{p(0)}$
$x=k_{i 0} \times 2^{p n}+k_{i 1} \times 2^{p(n-1)}+k_{i 2} \times 2^{p(n-2)}+\cdots+k_{i n} \times 2^{p(0)}$, where $0 \leq k_{i}<2^{p}$.

$$
\begin{aligned}
h(y) & =y \bmod m \\
& =k_{0} \times 2^{p n}+k_{1} \times 2^{p(n-1)}+k_{2} \times 2^{p(n-2)}+\cdots+k_{n} \times 2^{p(0)} \bmod m \\
& =\left[k_{0} \times 2^{p n}\right]_{m}+\left[k_{1} \times 2^{p(n-1)}\right]_{m}+\cdots+\left[k_{n} \times 2^{p(0)}\right]_{m} \\
& =\left[k_{0}\right]_{m} \cdot\left[2^{p n}\right]_{m}+\left[k_{1}\right]_{m} \cdot\left[2^{p(n-1)}\right]_{m}+\cdots+\left[k_{n}\right]_{m} \cdot\left[2^{p(0)}\right]_{m} \\
& =\left[k_{0}\right]_{m}+\left[k_{1}\right]_{m}+\cdots+\left[k_{n}\right]_{m} \\
& =\left[k_{0}+k_{1}+\cdots+k_{n}\right]_{m}=\left[k_{i 0}+k_{i 1}+\cdots+k_{i n}\right]_{m} \\
& =\left[k_{i 0} \times 2^{p n}+k_{i 1} \times 2^{p(n-1)}+\cdots+k_{i n} \times 2^{p(0)}\right]_{m} \\
& =x \bmod m=h(x)
\end{aligned}
$$

22.1-1

Assume: a directed graph; an adjacency-list representation
a) Algorithm for out-degree:

```
For each u in V do
    out-deg[u] < 0
For each u in V do
    for each v in Adj[u] do
        out-deg[u] \leftarrow out-deg[u] + 1 // count # of edges from u
```

Time for steps 1 and 2 take $\mathrm{O}(|\mathrm{V}|)$ since there are $|\mathrm{V}|$ vertices.

Steps 3 to 5 take $\mathrm{O}(\max (|\mathrm{V}|,|\mathrm{E}|))=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time. The reason is that we have to scan through $|\mathrm{V}|$ elements in array Adj, even if all of them point to NULL. On the other hand, the sum of the lengths of all adjacency lists is |E|. We examined each element in adjacency lists once.
$\therefore \mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)+\mathrm{O}(|\mathrm{V}|)=\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$
b) Algorithm for in-degree:

```
For each u in V do
    in-deg[u] \leftarrow 0
For each u in V do
    for each v in Adj[u] do
            in-deg[v] \leftarrow in-deg[v] + 1 // count # of edges to v
```

Steps 1 and 2 take $\mathrm{O}(|\mathrm{V}|)$.
Steps 3 to 5 take $\mathrm{O}(\max (|\mathrm{V}|,|\mathrm{E}|))=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time, since we have to scan all the adjacency lists (even if they may be all empty), and there are $|\mathrm{V}|$ lists. Moreover, the sum of the lengths of all adjacency lists is $\mathrm{O}(|\mathrm{E}|)$. Each element in adjacency lists swill be examined once.
$\therefore \mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)+\mathrm{O}(|\mathrm{V}|)=\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$

22.1-3

a) Adjacency-list algorithm:

```
For each u in V do
    AdjT[u] \leftarrow NULL
For each u in V do
    for each v in Adj[u] do
        Insert(adjT[u], v) // u is now being pointed by v
```

Step 1 to 2 take $\mathrm{O}(|\mathrm{V}|)$.
Step 3 to 5 take $O(\max (|\mathrm{~V}|,|\mathrm{E}|))=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$.
Reason: since all adjacency lists must be scanned (even if they may all be empty), and there are $|\mathrm{V}|$ lists.
However, the sum of lengths of all adjacency lists is $|E|$. Each element in adjacency list will be examined once.
$\therefore \mathrm{O}(|\mathrm{V}|)+\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)=\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$
b) Adjacency-matrix algorithm (base index $=1$):

```
For i = 1 to |V| - 1 do
    For j = i + 1 to |V| do
            aT}\mp@subsup{\mp@code{Ti}}{}{T}=\mp@subsup{a}{ij}{
            aT}\mp@subsup{}{ij}{}=\mp@subsup{a}{ji}{
For i = 1 to |V| do
    aT}\mp@subsup{}{ii}{}=\mp@subsup{a}{ii}{
```

All entries in adjacency-matrix A will be scanned.

$$
\begin{aligned}
& \sum_{i=1}^{|V|-1} \sum_{i+1}^{|V|} 1 \\
= & \sum_{i=1}^{|V|-1}(|V|-(i+1)+1)=(|V|-1)(|V|+1)-\sum_{i=1}^{|V|-1}(i+1) \\
= & |V|^{2}+1-[(|V|-1)(|V|) / 2-(|V|-1)] \\
= & \frac{1}{2}|V|^{2}+\frac{3}{2}|V| \in O\left(\frac{1}{2}|V|^{2}\right)=O\left(|V|^{2}\right)
\end{aligned}
$$

(i.e. using half of the size of $|\mathrm{V}| \times|\mathrm{V}|$ matrix A to access all entries in matrix A)

22.3-10

Case 1:
There is one and only one vertex u in a directed graph G .

Case 2:

The vertex u has only one outgoing edge, which is (u, u), i.e. a self-loop.

22.4-5 (Optional)

a) TOPOLOGICAL SORTING algorithm.

Assume the graph is represented by an adjacency-lists.
Let R be a queue. Let L be a linked-list

```
For each u in V do
    Indeg[u] \leftarrow 0
For each u in V do
    For each v in adj[u] do
        Indeg[v] < indeg[v] + 1
For each u in V do
    If indeg[u] = 0 then
        ENQUEUE (R,u)
        LIST-INSERT(L,u)
While R \not= NULL do
        u < DEQUEUE (R)
        For each v in adj[u] do
            Indeg[v] \leftarrow indeg[v] - 1
            If indeg[v] = 0 then
                ENQUEUE (R,v)
                LIST-INSERT (L,v)
Return L
```

Construct the in-degree table; takes $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time

Search all vertices with in-degree $=0$ and record vertices in the queue.

ENQUEUE, DEQUEUE, and LIST-INSERT all take $\mathrm{O}(1)$. Steps $6-9$ take $\mathrm{O}(|\mathrm{V}|)$ since there are $|\mathrm{V}|$ vertices, each has 1 ENQUEUE + 1 DEQUEUE operations.

R queue keeps the vertices that to be removed. When a vertex is removed and causes its "neighbour" in-degree $=0$, removes this "neighbour" as well.

1) In total, $|V|$ vertices will be ENQUEUE once in R. Each of these vertices will be DEQUEUE once from R; $\therefore|\mathrm{V}|(\mathrm{O}(1)+\mathrm{O}(1))=\mathrm{O}(|\mathrm{V}|)$; but
2) All elements in adjacency lists will be examined once, and the sum of length of adjacency lists is $|\mathrm{E}|$. Thus, Steps $10-16$ take $\mathrm{O}(\max (|\mathrm{V}|,|\mathrm{E}|))=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ as we have to go through all vertices, as well as elements in adjacency lists.

Note: can output each vertex with indegree $=0$ Total time:
instead of putting into a linked-list. But their $\quad \mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)+\mathrm{O}(|\mathrm{V}|)+\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ effects are same
b) When the linked-list L (i.e. sorted result) is returned, no vertex in the cycles parts will be in the queue L. Only vertices that are not in cycles will be in L . So if none of the vertices in G has indegree $=0$, then L will be empty when returned.

