
COMP2012H

Inheritance: Abstract Base Class

ABC Example: personal_asset.hpp

•  Let's design a system for maintaining our assets: stocks, bank accounts, real
estate, horses, cars, yachts, etc.

•  Each asset has a net worth (value), we would like to be able to make listings
and compute total net worth.

class Personal_Asset {
public:

 Personal_Asset(const Date& purchase_date);

 virtual double compute_net_worth() const; // What is asset’s current net worth?
 virtual bool is_insurable() const; // Can this asset be insured?
 void set_purchase_date(const Date& d);

private:

 Date purchase_date;
};

ABC Example: bank_asset.hpp

•  There are different kinds of assets, and they are all
derived from Personal_Asset, e.g.

class Bank_Account_Asset : public Personal_Asset
{
public:

 // ...
 virtual double compute_net_worth() const { return balance; }

private:
 double balance;
 double interest_rate;

};

ABC Example: asset_fcn.cpp

•  There can be other classes of assets such as Car_Asset, Stock_Asset,
House_Asset, etc.

•  To compute the total asset value for an array of assets:

double compute_total_worth(const Personal_Asset* assets[], int size)
{

 double total_worth = 0.0;
 for (int i = 0; i < size; ++i) {
 total_worth += assets[i]->compute_net_worth(); // virtual function call

 }
 return total_worth;

}

•  Things must be arranged so that this will work for any combination of
assets of different kinds.

ABC Example: asset_base.cpp

•  But now we have to implement the methods of the base class
Personal_Asset:

Personal_Asset::Personal_Asset(const Date& date)

 : purchase_date(date) { }

void Personal_Asset::set_purchase_date(const Date& date) {

 purchase_date = date;
}

double Personal_Asset::compute_net_worth() const {

 /* return what ??? */
}

•  How should we implement compute_net_worth()? It depends
completely on the type of the asset. There is no “standard way” of
doing it – no meaningful “default method” to compute net worth!

ABC Example: compute net_worth()??

•  The truth is: It makes no sense to have objects of type
Personal_Asset.

•  Such an object has only a purchase date, but otherwise no
meaning. It is not a bank account, not a car, not a house – it is
too general (too abstract) to be used.

•  We cannot implement the compute_net_worth() method in the
base class Personal_Asset as the information needed to
implement it is missing.

•  However, we do not want to remove the method, because that
would make it impossible to write a function that depends on
polymorphism, such as compute_total_worth().

Solution: Abstract Base Class (ABC)

•  The solution is to make Personal_Asset an abstract base class (or ABC for short):

class Personal_Asset {
public:

 Personal_Asset(const Date& purchase_date);

 virtual double compute_net_worth() const = 0; // What is asset’s current net worth?
 virtual bool is_insurable() const; // Can this asset be insured?
 void set_purchase_date(const Date& d);

private:

 Date purchase_date;
};

•  compute_net_worth() has become a pure virtual function or pure virtual method.
•  Any class that has one or more pure virtual methods is an ABC.

Abstract Base Class (ABC)

•  An ABC has two properties:

1. There cannot be objects of that type.

Personal_Asset pa(''2000.01.07''); // error
Bank_Account_Asset baa('‘2002.01.01'', 0.0); // ok

2. Derived classes are responsible for implementing the
pure virtual methods.

•  If a derived class (for instance, Securities_Asset) does not
implement the pure virtual methods, then the derived class is
also abstract, and there cannot be objects of that type (but it can
be used as a base class itself, for instance for Stocks_Asset,
Bonds_Asset, etc.)

Interface reuse

•  “An abstract base class provides a uniform interface to deal with a
number of different derived classes.”
–  A base class contains what is common about several classes.
–  If the only thing that is common is the interface, then the base

class is a “pure interface”, called an ABC in C++.
–  We discussed before that code reuse is a major advantage of

inheritance. With pure virtual functions we do not directly reuse
code, but create an interface that can be reused by derived
classes.

–  Interfaces are the soul of object-oriented programming. They are
the most effective way of separating use and implementation of
objects. The user [i.e., compute_total_worth()] only knows about
the abstract interface, while we can have many objects that
implement this interface in different ways.

–  In C++, an ABC serves a similar purpose as a Java “interface”.

Final Remark

•  Pure virtual functions are inherited as pure virtual
functions unless the derived class implements the
function.

•  An abstract base class cannot be used
–  as an argument type (called by value)
–  as a function return type (returned by value)
–  as the type of an explicit conversion

•  However, pointers and references to an ABC can be
declared.

•  Calling a pure virtual function from the constructor of
an ABC is undefined – DON'T do that.

Example: “Do”s and “Don’t”s

Personal_Asset x('' 2002.01.01 ''); // Error: can't create objects of ABC
Personal_Asset f1() { … } // Error: Can't return ABC objects
void f2(Personal_Asset x) {… } // Error: Can't CBV with ABC objects
Bank Account_Asset y('‘2002.01.01'', 0.0); // Ok!
Personal_Asset* passet = &y; // Ok!
Personal_Asset& rasset = y; // Ok!
Personal_Asset* f3(const Personal_Asset& x) {…} // Ok!

