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Binary Tree Terminology 
}   Go to the supplementary notes 
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Linked Representation of Binary Trees 
}  The degree of a node is the number of children it has.  The 

degree of a tree is the maximum of its element degree. 
}  In a binary tree, the tree degree is two 

}  Each node has two links 
}  one to the left child of the node 
}  one to the right child of the node 
}  if no child node exists for a node, the link is set to NULL 
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Binary Trees as Recursive Data Structures 
}  A binary tree is either empty … 

 or 
}  Consists of a node called the root 
}  Root points to two disjoint binary (sub)trees 

left and right (sub)tree 
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Tree Traversal is Also Recursive (Preorder example) 
If the binary tree is empty then 

do nothing 
Else  

N: Visit the root, process data 
L: Traverse the left subtree 
R: Traverse the right subtree 
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Anchor 

Inductive/Recursive step 



3 Types of Tree Traversal 
}  If the pointer to the node is not NULL: 

}  Preorder: Node, Left subtree, Right subtree 
}  Inorder: Left subtree, Node, Right subtree 
}  Postorder: Left subtree, Right subtree, Node 
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Inductive/Recursive step 

template<class T> 
void BinaryTree<T>::PreOrder( 
           void(*Visit)(BinaryTreeNode<T> *u), 
                        BinaryTreeNode<T> *t) 
{// Preorder traversal. 
   if (t) {Visit(t); 
    PreOrder(Visit, t->LeftChild); 
    PreOrder(Visit, t->RightChild); 
           } 
} 

template <class T> 
void BinaryTree<T>::InOrder( 
           void(*Visit)(BinaryTreeNode<T> *u), 
                        BinaryTreeNode<T> *t) 
{// Inorder traversal. 
   if (t) {InOrder(Visit, t->LeftChild); 
    Visit(t); 
    InOrder(Visit, t->RightChild); 
           } 
} 
 
template <class T> 
void BinaryTree<T>::PostOrder( 
           void(*Visit)(BinaryTreeNode<T> *u), 
                        BinaryTreeNode<T> *t) 
{// Postorder traversal. 
   if (t) {PostOrder(Visit, t->LeftChild); 
           PostOrder(Visit, t->RightChild); 
           Visit(t); 
           } 
} 



Traversal Order 
}  Given expression 
 A – B * C + D 
}  Child node: operand 
}  Parent node: corresponding operator 
}  Inorder traversal: infix expression 

 A – B * C + D 
}  Preorder traversal: prefix expression 

 + - A * B C D 
}  Postorder traversal: postfix or RPN expression 

 A B C * - D + 
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Preorder, Inorder and Postorder Traversals 
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A Faster Way for Tree Traversal 
}  You may eye-ball the solution without using recursion. 
}  First emanating from each node a “hook.” Trace from left to 

right an outer envelop of the tree starting from the root.  
Whenever you touch a hook, you print out the node. 

}  Preorder:  
}  put the hook to the left of the node 

}  Inorder:  
}  put the hook vertically down at the node 

}  Postorder:  
}  put the hook to the right of the node 
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Another Example (This is a Search Tree) 
}  Inorder (Left, Visit, Right): 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20 
}  Preorder (Visit, Left, Right): 15, 6, 3, 2, 4, 7, 13, 9, 18,17, 20 
}  Postorder (Left, Right, Visit): 2, 4, 3, 9, 13, 7, 6, 17, 20,18, 15 
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Output Fully Parenthesized Infix Form 
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template <class T> 
void Infix(BinaryTreeNode<T> *t) 
{// Output infix form of expression. 
  if (t) { 
    cout << ’(’; 
    Infix(t->LeftChild);  // left operand 
    cout << t->data;      // operator 
    Infix(t->RightChild); // right operand 
    cout << ’)’; 
  } 
} 
 
 + 
/ \   returns ((a)+(b)) 
a  b 



Infix to Prefix (Pre-order Expressions) 
}  Infix = In-order expression 
1.  Infix to postfix 
2.  postfix to build an expression tree  

1.  Push operands into a stack 
2.  If an operator is encountered, create a binary node with the operator 

as the root, push once as right child, push the 2nd time as left child, and 
push the complete tree into the stack 

3.  With the expression tree, traverse in preorder manner 
}  Parent-left-right 
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Binary Search Tree 



Linear Search on a Sorted Sequence 
}  Collection of ordered data items to be searched is organized in 

a list 
 
x1, x2, … xn 

}  Assume == and < operators defined for the type 
}  Linear search begins with item 1 

}  continue through the list until target found 
}  or reach end of list 
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Linear Search: Vector Based 
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template <typename t> 
void LinearSearch (const vector<t> &v, const t &item,  
                   boolean &found, int &loc) 
{ 

 found = false;  loc = 0;  
 for ( ; ; ) 
 { 
  if (found || loc == v.size()) 
   return; 

      if (item == v[loc]) 
   found = true; 

      else 
   loc++; 
 } 

} 



Binary Search: Vector Based 
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template <typename t> 
void LinearSearch (const vector<t> &v, const t &item,  
                   boolean &found, int &loc) 
{ 

 found = false; 
   int first = 0; 

 last = v.size() - 1;  
 for ( ; ; ) 
 { 
  if (found || first > last) return; 

     loc = (first + last) / 2; 
     if (item < v[loc])  
         last = loc - 1; 
    else if (item > v[loc]) 
         first = loc + 1; 
    else 

   /* item == v[loc] */ 
   found = true;   
 } 

} 

May be replaced 
by recursive codes 
with additional 
function parameters 
first and last 



Binary Search 
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}  Outperforms a linear search (infinitely faster asymptotically) 
}  Disadvantage: 

}  Requires a sequential storage 
}  Not appropriate for linked lists (Why?) 

}  It is possible to use a linked structure which can be searched in 
a binary-like manner 
}  Binary tree 



Dictionary 
}  A dictionary is a collection of elements 
}  Each element has a field called key 
}  No two elements have the same key value 
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AbstractDataType Dictionary { 
instances 

  collection of elements with distinct keys 
Operations 

Create (): create an empty dictionary 
Search (k,x): return element with key k in x; 

      return false if the operation 
      fails, true if it succeeds 

Insert (x): insert x into the dictionary 
Delete (k,x): delete element with key k and 

      return it in x 
} 



Binary Search Tree (BST)  
}  Collection of data elements in a binary tree structure 
}  Stores keys in the nodes of the binary tree in a way so that 

searching, insertion and deletion can be done efficiently 
}  Every element has a key (or value) and no two elements have 

the same key (all keys are distinct) 
}  The keys (if any) in the left subtree of the root are smaller than 

the key in the root 
}  The keys (if any) in the right subtree of the root are larger than 

the key in the root 
}  The left and right subtrees of the root are also binary search 

trees 
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Binary Search Tree  
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for any node y in this subtree 
key(y) < key(x) 

x 

for any node z in this subtree 
key(z) > key(x) 



Examples of BST 
}  For each node x, 

values in left subtree ≤ value in x ≤ value in right subtree 
}  a) is NOT a search tree, b) and c) are search trees 
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Binary Search Tree Property 
}  Two binary search trees representing the same set 
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Sorting: Inorder Traversal for a Search Tree 
}  Print out the keys in sorted order 

}  A simple strategy is to 
1.  print out all keys in left subtree in sorted order; 
2.  print 15; 
3.  print out all keys in right subtree in sorted order; 
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Indexed Binary Search Tree 
}  Derived from binary search tree by adding another field LeftSize to each 

tree node 
}  LeftSize gives the number of elements in the node’s left subtree plus one 
}  An example (the number inside a node is the element key, while that outside 

is the value of LeftSize) 
}  It is the rank of the node for the search tree rooted at that node (rank is the 

position in the sorted order) 
}  Can be used to figure out the rank of the node in the tree 
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Tree Search 

}  If we are searching for 15, then we are done 
}  If we are searching for a key < 15, then we should search for it 

in the left subtree 
}  If we are searching for a key > 15, then we should search for it 

in the right subtree 
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An Example 
Search for 9: 
1.  compare 9:15(the root), go to left 

subtree; 
2.  compare 9:6, go to right subtree; 
3.  compare 9:7, go to right subtree; 
4.  compare 9:13, go to left subtree; 
5.  compare 9:9, found it! 
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Find Min and Max 

15 

6 18 

3 8 30 

26 

Minimum element 
is always the  
left-most node. 

Maximum element 
is always the  
right-most node. 

Time Complexity 
Worse case? 
Height of tree, 
which can be the 
total number of 
nodes if tree is 
not balanced!   

5 
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Successor 

The successor of a node x is 

defined as: 
}  The node y, whose key(y) is the successor of key(x) in 

sorted order  
     sorted order of this tree. (2,3,4,6,7,9,13,15,17,18,20) 

Successor of 2 
Successor of 6 

Successor of 13 

Some examples: 
 
Which node is the successor of 2? 
Which node is the successor of 9? 
Which node is the successor of 13? 
Which node is the successor of 20?  Null 

Successor of 9 
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Finding Successor: 
Three Scenarios to Determine Successor 

Successor(x) 

x has right 
descendants 
=> 
minimum( right(x) ) 

x has no right 
descendants 

x is the left child of 
some node 
=> parent(x) 

x is the right 
child of some 
node 

Scenario I 

Scenario II Scenario III 



COMP2012H (BST) 

Scenario I: Node x Has a Right Subtree 

By definition of BST, all items greater than 
x are in this right sub-tree. 
 
Successor is the minimum( right( x ) ) 

maybe null 
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Scenario II: Node x Has No Right Subtree 
and x is the Left Child of Parent (x) 

Successor is parent( x ) 
 
 
Why? The successor is the node whose 
key would appear in the next sorted order. 
 
Think about traversal in-order.  Who would 
be the successor of x?   

 The parent of x! 
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Scenario III: Node x Has No Right Subtree and Is Not a Left-
Child of an Immediate Parent 

Keep moving up the tree until 
you find a parent which branches 
from the left(). Successor of x 

Stated in Pseudo code. 
y 

x 
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Successor Pseudo-Codes 

Scenario I 

Scenario III 

Verify this code 
with this tree. 
 
Find successor of  
3   à  4 
9  à 13 
13  à 15 
18  à 20 

Scenario II 

Note that parent( root ) = NULL 
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Problem 
}  If we use a “doubly linked” tree, finding parent is easy. 

 
 

}  But usually, we implement the tree using only pointers to the left and right 
node. L  So, finding the parent is tricky. 

For this implementation we need to use a Stack. 

class Node 
{ 

 int data; 
 Node *left; 
 Node *right; 
 Node *parent; 

}; 

class Node 
{ 

 int data; 
 Node *left; 
 Node *right; 

}; 
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Use a Stack to Find Successor 

PART I 
Initialize an empty Stack s. 
 
Start at the root node, and traverse the 
tree until we find the node x.  Push all 
visited nodes onto the stack. 

PART II 
Once node x is found, find successor 
using 3 scenarios mentioned before. 
 
 
 
 
Parent nodes are found by popping 
the stack! 
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An Example 

15 

6 

7 

Stack s 

Successor(root, 13) 
Part I 
  Traverse tree from root to find 13 
      order -> 15, 6, 7, 13 

push(15) 

push(6) 

push(7) 

13 found (x = node 13) 
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Example 

15 

6 

7 

Stack s 

Successor(root, 13) 
Part II 
    Find Parent  (Scenario III) 
  
    y=s.pop() 
  while y!=NULL and x=right(y) 
    x = y; 
    if s.isempty() 
       y=NULL 
    else 
       y=s.pop() 
    loop 
  return y 


y =pop()=15 
 ->Stop right(15) != x 
 return y as successor! 

x = 13 

y =pop()=7 

y =pop()=6 



Another Approach 
}  Observe that: 

}  x must be in the left branch of its successor y, because it is smaller in value 
}  To get to x from left( y ), we have the case that we always traverse right, i.e., the value is 

increasing beyond left(y).   
}  If we plot the values from y to x against the nodes visited, it is hence of a “V” shape, 

starting from y, dropping to some low value, and then increasing gradually to x (a value 
below y) 

}  Using stack storing the path from the root to x, we hence can detect the right turn 
in the reverse path simply as follows: 
}  Keep popping the stack until the key is higher than the value x.  This must be its successor. 

while (!s.empty()){ 
  y = s.pop(); 
  if( y > x) 
    return y; // the successor 
} 
return NULL;  // empty stack; successor not found 
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Insertion 
}  Insert a new key into the binary 

search tree 
}  The new key is always inserted as a 

new leaf 
}  Example: Insert 13 ... 
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Insertion: Another Example 
}  First add 80 into an existing tree 
}  Then add 35 into it 
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Inserting into a BST (1/2) 
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template<class E, class K> 
BSTree<E,K>& BSTree<E,K>::Insert(const E& e) 
{ 

// Insert e if not duplicate. 
BinaryTreeNode<E> *p = this->root, // search pointer 

    *pp = 0; // parent of p 
// find place to insert 
while (p) { 

 // examine p->data 
pp = p; 
// move p to a child 
if (e < p->data) p = p->LeftChild; 
else if (e > p->data) p = p->RightChild; 
else throw BadInput(); // duplicate 

} 

May be replaced 
by recursive codes 
with an additional 
function parameter 
of binary tree node 
pointer 



Inserting into a BST (2/2) 
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// get a node for e and attach to pp 
BinaryTreeNode<E> *r = new BinaryTreeNode<E> (e); 
 
if (root) { 

// tree not empty 
if (e < pp->data) pp->LeftChild = r; 
else pp->RightChild = r; 
} 

else // insertion into empty tree 
 root = r; 

 
return *this; 
} 
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BST Deletion: Delete Node z from Tree 

Three cases for deletion 
Case I Case II 

Node z is a leaf 

Set z parent’s pointer 
to  z to NULL 

Node z has exactly 1 (left or right) child 

Modify appropriate parent(z) to  
point to z’s child (Parent adoption) 



Case III: Node z Has 2 Children 
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Step 1.   
   Find successor y of ‘z’  (i.e. y = successor(z)) 
 
     Since z has 2 children, successor is y=minimum(right(z)) 
 
 


Successor  y of z will have 
no children or only a right-child. 
 
Why?  Look at the definition of  
minimum(..)  


Step 2. 
   Swap keys of z and y. 
 
   Now delete node y (which now has value z)! 
     This deletion is either case I or II. 

y y 

z z 

sw
ap

 

Delete 
this node. 


Case I Case II 

(deletion of node “z” is 
  always going to be Case I or II) 



Special Case:  
Deleting the Root with 1 Child Descendant 
}  Move the root to the child 
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A Deletion Example 
Three possible cases to delete a node x from a BST 
1. The node x is a leaf 
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A Deletion Example (Cont.) 
2. The node x has one child 
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A Deletion Example (Cont.) 
3. x has two children 
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i) Replace contents of x with 
inorder successor (smallest 
value in the right subtree) 

ii) Delete node pointed to by xSucc 
as described for cases 1 and 2 
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Another Deletion Example 
}  Removing 40 from (a) results in (b) using the smallest element in 

the right subtree (i.e., the successor) 
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Another Deletion Example (Cont.) 
}  Removing 40 from (a) results in (c) using the largest element in 

the left subtree (i.e., the predecessor) 
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Another Deletion Example (Cont.) 
}  Removing 30 from (c), we may replace the element with either 5 

(predecessor) or 31 (successor). If we choose 5, then (d) results. 
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Deletion Code (1/4) 
}  First Element Search, and then Convert Case III, if any, to Case I 

or II 
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template<class E, class K> 
BSTree<E,K>& BSTree<E,K>::Delete(const K& k, E& e) 
{ 

// Delete element with key k and put it in e. 
// set p to point to node with key k (to be deleted) 
BinaryTreeNode<E> *p = root, // search pointer 

    *pp = 0; // parent of p 
while (p && p->data != k){ 

 // move to a child of p 
pp = p; 
if (k < p->data) p = p->LeftChild; 
else p = p->RightChild; 

} 



Deletion Code (2/4) 
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if (!p) throw BadInput(); // no element with key k 
 
e = p->data; // save element to delete 
 
// restructure tree 
// handle case when p has two children 
if (p->LeftChild && p->RightChild) { 

// two children convert to zero or one child case 
// find predecessor, i.e., the largest element 
in // left subtree of p 
BinaryTreeNode<E> *s = p->LeftChild, 
*ps = p; // parent of s 
while (s->RightChild) { 

// move to larger element 
ps = s; 
s = s->RightChild; 
} 



Deletion Code (3/4) 
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 // move from s to p 
 p->data = s->data; 
 p = s;   // move/reposition pointers for deletion 
 pp = ps; 

} 
 
// p now has at most one child 
// save child pointer to c for adoption 
BinaryTreeNode<E> *c; 
if (p->LeftChild) c = p->LeftChild; 
else c = p->RightChild; // may be NULL 
 
// deleting p 
if (p == root) root = c;  // a special case: delete root 
else { 

// is p left or right child of pp? 
if (p == pp->LeftChild) pp->LeftChild = c;//adoption 
else pp->RightChild = c; 
} 

 



Deletion Code (4/4) 
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delete p; 
 
return *this; 
} 



Implementation: ADT of Binary Search Tree (BST) 
}  Construct an empty BST 
}  Determine if BST is empty 
}  Search BST for given item 
}  Insert a new item in the BST 

}  Need to maintain the BST property 

}  Delete an item from the BST 
}  Need to maintain the BST property 

}  Traverse the BST 
}  Visit each node exactly once 
}  The inorder traversal visits the nodes in ascending order 
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ADT of a BST 
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AbstractDataType BSTree { 
instances 

 binary trees, each node has an element with a 
 key field; all keys are distinct; keys in the left 
 subtree of any node are smaller than the key in 
 the node; those in the right subtree are larger. 

operations 
 Create(): create an empty binary search tree 
 Search(k, e): return in e the element/record with key k 
    return false if the operation fails, 
    return true if it succeeds 
 Insert(e): insert element e into the search tree 
 Delete(k, e): delete the element with key k and 
    return it in e 
 Ascend(): output all elements in ascending order of  
     key 

} 



A Simple Implementation without Inheritance 
}  tree_codes (BST.h and treetester.cpp) 

template <typename DataType> 
class BST 
{ 
 public: 
  // … member functions supporting BST operations  
 private: 
  /***** Binary node class *****/ 
  class BinNode  
  { 
  public: 
    DataType data; 
    BinNode * left; 
    BinNode * right; 
 
    // … BinNode constructors 
 
  };// end of class BinNode declaration 
 
  typedef BinNode *BinNodePointer; 
   
  // … Auxiliary/Utility functions supporting member functions 
  
 /***** Data Members *****/ 
  BinNodePointer myRoot;   // the root of the binary search tree 
 
}; // end of class template declaration COMP2012H (BST) 



Another Implementation with Inheritance, function 
pointers, and exception handling 
}  tree2_codes 

}  Binary search tree is derived from binary tree 
}  E is the record, and K is the key 
}  bst.h: 
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template<class E, class K> 
class BSTree : public BinaryTree<E> { 
public: 

bool Search(const K& k, E& e) const; 
BSTree<E,K>& Insert(const E& e); 
BSTree<E,K>& InsertVisit 

     (const E& e, void(*visit)(E& u)); 
BSTree<E,K>& Delete(const K& k, E& e); 
void Ascend() {InOutput();} 

}; 



Skeleton of tree2_codes 
}  btnode.h: the node structure to be used in a binary tree 

}  binary.h: binary tree 
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template<class T> 
class BinaryTree { 
   //… some friend functions 
   public: 
      //… member functions and note the use of 
      // function pointers 
   private: 
      BinaryTreeNode<T> *root;  // pointer to root 
      //helper/utility functions and static functions 
}; 

template <class T> 
class BinaryTreeNode { 
   //… friend functions 
   public: 
   // … constructors 
   private: 
      T data;    // data is a record 
      BinaryTreeNode<T> *LeftChild,  // left subtree 
                        *RightChild; // right subtree 
}; 



Code Implementation (tree2_codes) 
}  bst.h 

}  datatype.h: DataType is to be used in the binary node with field data 
#ifndef DataType_ 
#define DataType_ 
 
class DataType { 
   friend ostream& operator<<(ostream&, DataType); 
   public: 
      operator int() const {return key;} // implicit cast to obtain key  
      int key;  // element key, maybe hashed from ID 
      char ID;  // element identifier 
}; 
 
ostream& operator<<(ostream& out, DataType x) 
   {out << x.key << ' ' << x.ID << ' '; return out;} 
#endif 

template<class E, class K> 
bool BSTree<E,K>::Search(const K& k, E &e) const 
{// Search for element that matches k. 
   // pointer p starts at the root and moves through 
   // the tree looking for an element with key k 
   BinaryTreeNode<E> *p = this->root; 
   while (p) // examine p->data 
      if (k < p->data) p = p->LeftChild;  //implicit cast 
      else if (k > p->data) p = p->RightChild; 
      else {// found element 
          e = p->data;   // copy the record to e 
          return true;} 
   return false; 
} 

May be replaced 
by recursive codes 

COMP2012H (BST) 



COMP2012H (BST) 

Time Complexity of Binary Search Trees 

}  Find(x)    O(height of tree) 
}  Min(x)   O(height of tree) 
}  Max(x)   O(height of tree) 
}  Insert(x)   O(height of tree) 
}  Delete(x)   O(height of tree) 
}  Traverse   O(N)   
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Binary Search Trees 
}  Problem 

}  How can we predict the height of the tree? 

}  Many trees of different shapes can be composed of the same 
data 

}  How to control the tree shape? 



Problem of Lopsidedness 
}  Trees can be unbalanced 
}  Not all nodes have exactly 2 child nodes 
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Problem of Lopsidedness 
}  Trees can be totally lopsided 
}  Suppose each node has a right child only 
}  Degenerates into a linked list 
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Processing time affected 
by "shape" of tree 
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Binary Search Tree 

4 

2 6 

1 3 5 7 

4 

2 

6 

1 3 

5 

7 

Tree 1 
Same data as Tree 2 

Tree 2 
Same data as Tree 1 

Which tree would you prefer to use? 

(we say this tree is “balanced”) 

(this tree is “unbalanced”) 
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Tree Examples 

(Tree resulting from randomly generated input) 
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Tree Examples 

(Unbalanced tree) 



How Fast is Sorting Using BST? 
}  n numbers (n large) are to be sorted by first constructing a binary tree and 

then read them in inorder manner 
}  Bad case: the input is more or less sorted 

}  A rather “linear” tree is constructed 
}  Total steps in constructing a binary tree: 1 + 2 + … + n = n(n+1)/2 ~ n2 

}  Total steps in traversing the tree: n 
}  Total ~ n2 

}  Best case: the binary tree is constructed in a balanced manner 
}  Depth after adding i numbers: log(i) 
}  Total steps in constructing a binary tree: log1 + log2 + log3 + log4 + … + log n < 

log n + log n + … + log n = n log n 
}  Total steps in traversing the tree: n 
}  Total ~ n log n , much faster 

}  It turns out that one cannot sort n numbers faster than nlog n 
}  For any arbitrary input, one can indeed construct a rather balanced binary 

tree with some extra steps in insertion and deletion 
}  E.g., An AVL tree 
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An AVL Tree à A Rather Balanced Tree for 
Efficient BST Operations (See Animation) 

(Balanced Tree . .  This is actually a very good tree called AVL tree) 


