
Binary Trees &
Binary Search Trees

(data structures for the dictionary ADT)

COMP2012H
Spring 2014
Dekai Wu

Outline
}  Binary tree terminology
}  Tree traversals: preorder, inorder and postorder
}  Dictionary and binary search tree
}  Binary search tree operations

}  Search
}  min and max
}  Successor
}  Insertion
}  Deletion

}  Tree balancing issue

COMP2012H (BST)

Binary Tree Terminology
}  Go to the supplementary notes

COMP2012H (BST)

Linked Representation of Binary Trees
}  The degree of a node is the number of children it has. The

degree of a tree is the maximum of its element degree.
}  In a binary tree, the tree degree is two

}  Each node has two links
}  one to the left child of the node
}  one to the right child of the node
}  if no child node exists for a node, the link is set to NULL

COMP2012H (BST)

Left child Right child

left right

data

79

13

32

95

42

16

32

79
/

42

13
/ /

95
/ /

16
/ /

root

Binary Trees as Recursive Data Structures
}  A binary tree is either empty …

 or
}  Consists of a node called the root
}  Root points to two disjoint binary (sub)trees

left and right (sub)tree

COMP2012H (BST)

Anchor

Inductive step

r
left

subtree
right
subtree

Tree Traversal is Also Recursive (Preorder example)
If the binary tree is empty then

do nothing
Else

N: Visit the root, process data
L: Traverse the left subtree
R: Traverse the right subtree

COMP2012H (BST)

Anchor

Inductive/Recursive step

3 Types of Tree Traversal
}  If the pointer to the node is not NULL:

}  Preorder: Node, Left subtree, Right subtree
}  Inorder: Left subtree, Node, Right subtree
}  Postorder: Left subtree, Right subtree, Node

COMP2012H (BST)

Inductive/Recursive step

template<class T>
void BinaryTree<T>::PreOrder(
 void(*Visit)(BinaryTreeNode<T> *u),
 BinaryTreeNode<T> *t)
{// Preorder traversal.
 if (t) {Visit(t);
 PreOrder(Visit, t->LeftChild);
 PreOrder(Visit, t->RightChild);
 }
}

template <class T>
void BinaryTree<T>::InOrder(
 void(*Visit)(BinaryTreeNode<T> *u),
 BinaryTreeNode<T> *t)
{// Inorder traversal.
 if (t) {InOrder(Visit, t->LeftChild);
 Visit(t);
 InOrder(Visit, t->RightChild);
 }
}

template <class T>
void BinaryTree<T>::PostOrder(
 void(*Visit)(BinaryTreeNode<T> *u),
 BinaryTreeNode<T> *t)
{// Postorder traversal.
 if (t) {PostOrder(Visit, t->LeftChild);
 PostOrder(Visit, t->RightChild);
 Visit(t);
 }
}

Traversal Order
}  Given expression
 A – B * C + D
}  Child node: operand
}  Parent node: corresponding operator
}  Inorder traversal: infix expression

 A – B * C + D
}  Preorder traversal: prefix expression

 + - A * B C D
}  Postorder traversal: postfix or RPN expression

 A B C * - D +

COMP2012H (BST)

-

*

+

B

D

C

A

Preorder, Inorder and Postorder Traversals

COMP2012H (BST)

A Faster Way for Tree Traversal
}  You may eye-ball the solution without using recursion.
}  First emanating from each node a “hook.” Trace from left to

right an outer envelop of the tree starting from the root.
Whenever you touch a hook, you print out the node.

}  Preorder:
}  put the hook to the left of the node

}  Inorder:
}  put the hook vertically down at the node

}  Postorder:
}  put the hook to the right of the node

COMP2012H (BST)

Another Example (This is a Search Tree)
}  Inorder (Left, Visit, Right): 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20
}  Preorder (Visit, Left, Right): 15, 6, 3, 2, 4, 7, 13, 9, 18,17, 20
}  Postorder (Left, Right, Visit): 2, 4, 3, 9, 13, 7, 6, 17, 20,18, 15

COMP2012H (BST)

Output Fully Parenthesized Infix Form

COMP2012H (BST)

template <class T>
void Infix(BinaryTreeNode<T> *t)
{// Output infix form of expression.
 if (t) {
 cout << ’(’;
 Infix(t->LeftChild); // left operand
 cout << t->data; // operator
 Infix(t->RightChild); // right operand
 cout << ’)’;
 }
}

 +
/ \ returns ((a)+(b))
a b

Infix to Prefix (Pre-order Expressions)
}  Infix = In-order expression
1.  Infix to postfix
2.  postfix to build an expression tree

1.  Push operands into a stack
2.  If an operator is encountered, create a binary node with the operator

as the root, push once as right child, push the 2nd time as left child, and
push the complete tree into the stack

3.  With the expression tree, traverse in preorder manner
}  Parent-left-right

COMP2012H (BST)

Binary Search Tree

Linear Search on a Sorted Sequence
}  Collection of ordered data items to be searched is organized in

a list

x1, x2, … xn

}  Assume == and < operators defined for the type
}  Linear search begins with item 1

}  continue through the list until target found
}  or reach end of list

COMP2012H (BST)

Linear Search: Vector Based

COMP2012H (BST)

template <typename t>
void LinearSearch (const vector<t> &v, const t &item,
 boolean &found, int &loc)
{

 found = false; loc = 0;
 for (; ;)
 {
 if (found || loc == v.size())
 return;

 if (item == v[loc])
 found = true;

 else
 loc++;
 }

}

Binary Search: Vector Based

COMP2012H (BST)

template <typename t>
void LinearSearch (const vector<t> &v, const t &item,
 boolean &found, int &loc)
{

 found = false;
 int first = 0;

 last = v.size() - 1;
 for (; ;)
 {
 if (found || first > last) return;

 loc = (first + last) / 2;
 if (item < v[loc])
 last = loc - 1;
 else if (item > v[loc])
 first = loc + 1;
 else

 /* item == v[loc] */
 found = true;
 }

}

May be replaced
by recursive codes
with additional
function parameters
first and last

Binary Search

COMP2012H (BST)

}  Outperforms a linear search (infinitely faster asymptotically)
}  Disadvantage:

}  Requires a sequential storage
}  Not appropriate for linked lists (Why?)

}  It is possible to use a linked structure which can be searched in
a binary-like manner
}  Binary tree

Dictionary
}  A dictionary is a collection of elements
}  Each element has a field called key
}  No two elements have the same key value

COMP2012H (BST)

AbstractDataType Dictionary {
instances

 collection of elements with distinct keys
Operations

Create (): create an empty dictionary
Search (k,x): return element with key k in x;

 return false if the operation
 fails, true if it succeeds

Insert (x): insert x into the dictionary
Delete (k,x): delete element with key k and

 return it in x
}

Binary Search Tree (BST)
}  Collection of data elements in a binary tree structure
}  Stores keys in the nodes of the binary tree in a way so that

searching, insertion and deletion can be done efficiently
}  Every element has a key (or value) and no two elements have

the same key (all keys are distinct)
}  The keys (if any) in the left subtree of the root are smaller than

the key in the root
}  The keys (if any) in the right subtree of the root are larger than

the key in the root
}  The left and right subtrees of the root are also binary search

trees

COMP2012H (BST)

Binary Search Tree

COMP2012H (BST)

for any node y in this subtree
key(y) < key(x)

x

for any node z in this subtree
key(z) > key(x)

Examples of BST
}  For each node x,

values in left subtree ≤ value in x ≤ value in right subtree
}  a) is NOT a search tree, b) and c) are search trees

COMP2012H (BST)

15

10

20

42

25

22

(a)

5

30

2

40

60

70

80 65

(b) (c)

Binary Search Tree Property
}  Two binary search trees representing the same set

COMP2012H (BST)

3

4

5

2

7

8

2

3

7

5

4

8

Sorting: Inorder Traversal for a Search Tree
}  Print out the keys in sorted order

}  A simple strategy is to
1.  print out all keys in left subtree in sorted order;
2.  print 15;
3.  print out all keys in right subtree in sorted order;

COMP2012H (BST)

Indexed Binary Search Tree
}  Derived from binary search tree by adding another field LeftSize to each

tree node
}  LeftSize gives the number of elements in the node’s left subtree plus one
}  An example (the number inside a node is the element key, while that outside

is the value of LeftSize)
}  It is the rank of the node for the search tree rooted at that node (rank is the

position in the sorted order)
}  Can be used to figure out the rank of the node in the tree

COMP2012H (BST)

15

18

20

12

25

30

4

2

1 1 1

1 5

30

2

45

3

2

1

1

Tree Search

}  If we are searching for 15, then we are done
}  If we are searching for a key < 15, then we should search for it

in the left subtree
}  If we are searching for a key > 15, then we should search for it

in the right subtree

COMP2012H (BST)

root
15

<15 >15

An Example
Search for 9:
1.  compare 9:15(the root), go to left

subtree;
2.  compare 9:6, go to right subtree;
3.  compare 9:7, go to right subtree;
4.  compare 9:13, go to left subtree;
5.  compare 9:9, found it!

COMP2012H (BST)

6

7

15

3

18

20

4 2

17

13

14 9

<

>

>

<

COMP2012H (BST)

Find Min and Max

15

6 18

3 8 30

26

Minimum element
is always the
left-most node.

Maximum element
is always the
right-most node.

Time Complexity
Worse case?
Height of tree,
which can be the
total number of
nodes if tree is
not balanced!

5

COMP2012H (BST)

Successor

The successor of a node x is

defined as:
}  The node y, whose key(y) is the successor of key(x) in

sorted order
 sorted order of this tree. (2,3,4,6,7,9,13,15,17,18,20)

Successor of 2
Successor of 6

Successor of 13

Some examples:

Which node is the successor of 2?
Which node is the successor of 9?
Which node is the successor of 13?
Which node is the successor of 20? Null

Successor of 9

COMP2012H (BST)

Finding Successor:
Three Scenarios to Determine Successor

Successor(x)

x has right
descendants
=>
minimum(right(x))

x has no right
descendants

x is the left child of
some node
=> parent(x)

x is the right
child of some
node

Scenario I

Scenario II Scenario III

COMP2012H (BST)

Scenario I: Node x Has a Right Subtree

By definition of BST, all items greater than
x are in this right sub-tree.

Successor is the minimum(right(x))

maybe null

COMP2012H (BST)

Scenario II: Node x Has No Right Subtree
and x is the Left Child of Parent (x)

Successor is parent(x)

Why? The successor is the node whose
key would appear in the next sorted order.

Think about traversal in-order. Who would
be the successor of x?

 The parent of x!

COMP2012H (BST)

Scenario III: Node x Has No Right Subtree and Is Not a Left-
Child of an Immediate Parent

Keep moving up the tree until
you find a parent which branches
from the left(). Successor of x

Stated in Pseudo code.
y

x

COMP2012H (BST)

Successor Pseudo-Codes

Scenario I

Scenario III

Verify this code
with this tree.

Find successor of
3 à 4
9 à 13
13 à 15
18 à 20

Scenario II

Note that parent(root) = NULL

COMP2012H (BST)

Problem
}  If we use a “doubly linked” tree, finding parent is easy.

}  But usually, we implement the tree using only pointers to the left and right
node. L So, finding the parent is tricky.

For this implementation we need to use a Stack.

class Node
{

 int data;
 Node *left;
 Node *right;
 Node *parent;

};

class Node
{

 int data;
 Node *left;
 Node *right;

};

COMP2012H (BST)

Use a Stack to Find Successor

PART I
Initialize an empty Stack s.

Start at the root node, and traverse the
tree until we find the node x. Push all
visited nodes onto the stack.

PART II
Once node x is found, find successor
using 3 scenarios mentioned before.

Parent nodes are found by popping
the stack!

COMP2012H (BST)

An Example

15

6

7

Stack s

Successor(root, 13)
Part I
 Traverse tree from root to find 13
 order -> 15, 6, 7, 13

push(15)

push(6)

push(7)

13 found (x = node 13)

COMP2012H (BST)

Example

15

6

7

Stack s

Successor(root, 13)
Part II
 Find Parent (Scenario III)

 y=s.pop()
 while y!=NULL and x=right(y)
 x = y;
 if s.isempty()
 y=NULL
 else
 y=s.pop()
 loop
 return y

y =pop()=15
 ->Stop right(15) != x
 return y as successor!

x = 13

y =pop()=7

y =pop()=6

Another Approach
}  Observe that:

}  x must be in the left branch of its successor y, because it is smaller in value
}  To get to x from left(y), we have the case that we always traverse right, i.e., the value is

increasing beyond left(y).
}  If we plot the values from y to x against the nodes visited, it is hence of a “V” shape,

starting from y, dropping to some low value, and then increasing gradually to x (a value
below y)

}  Using stack storing the path from the root to x, we hence can detect the right turn
in the reverse path simply as follows:
}  Keep popping the stack until the key is higher than the value x. This must be its successor.

while (!s.empty()){
 y = s.pop();
 if(y > x)
 return y; // the successor
}
return NULL; // empty stack; successor not found

COMP2012H (BST)

Insertion
}  Insert a new key into the binary

search tree
}  The new key is always inserted as a

new leaf
}  Example: Insert 13 ...

COMP2012H (BST)

5

9

12

2

18

19 15

13

<

>

<

17

Insertion: Another Example
}  First add 80 into an existing tree
}  Then add 35 into it

COMP2012H (BST)

2

5

30

40

80 2

5

30

35

40

80

Inserting into a BST (1/2)

COMP2012H (BST)

template<class E, class K>
BSTree<E,K>& BSTree<E,K>::Insert(const E& e)
{

// Insert e if not duplicate.
BinaryTreeNode<E> *p = this->root, // search pointer

 *pp = 0; // parent of p
// find place to insert
while (p) {

 // examine p->data
pp = p;
// move p to a child
if (e < p->data) p = p->LeftChild;
else if (e > p->data) p = p->RightChild;
else throw BadInput(); // duplicate

}

May be replaced
by recursive codes
with an additional
function parameter
of binary tree node
pointer

Inserting into a BST (2/2)

COMP2012H (BST)

// get a node for e and attach to pp
BinaryTreeNode<E> *r = new BinaryTreeNode<E> (e);

if (root) {

// tree not empty
if (e < pp->data) pp->LeftChild = r;
else pp->RightChild = r;
}

else // insertion into empty tree
 root = r;

return *this;
}

COMP2012H (BST)

BST Deletion: Delete Node z from Tree

Three cases for deletion
Case I Case II

Node z is a leaf

Set z parent’s pointer
to z to NULL

Node z has exactly 1 (left or right) child

Modify appropriate parent(z) to
point to z’s child (Parent adoption)

Case III: Node z Has 2 Children

COMP2012H (BST)

Step 1.
 Find successor y of ‘z’ (i.e. y = successor(z))

 Since z has 2 children, successor is y=minimum(right(z))

Successor y of z will have
no children or only a right-child.

Why? Look at the definition of
minimum(..)

Step 2.
 Swap keys of z and y.

 Now delete node y (which now has value z)!
 This deletion is either case I or II.

y y

z z

sw
ap

Delete
this node.

Case I Case II

(deletion of node “z” is
 always going to be Case I or II)

Special Case:
Deleting the Root with 1 Child Descendant
}  Move the root to the child

COMP2012H (BST)

A Deletion Example
Three possible cases to delete a node x from a BST
1. The node x is a leaf

COMP2012H (BST)

A

F

E

G

H

J

O

I M P

K N

L

C

B D x

free storage

A Deletion Example (Cont.)
2. The node x has one child

COMP2012H (BST)

A

F

E

G

H

J

O

I M P

K N

L

C

B D

x

free storage

A Deletion Example (Cont.)
3. x has two children

COMP2012H (BST)

i) Replace contents of x with
inorder successor (smallest
value in the right subtree)

ii) Delete node pointed to by xSucc
as described for cases 1 and 2

A

F

E

G

H

J

O

I M P

K N

L

C

B D

x

xSucc

free storage

A

F

E

G

H

K

O

I M P

K N

L

C

B D

x

xSucc

Another Deletion Example
}  Removing 40 from (a) results in (b) using the smallest element in

the right subtree (i.e., the successor)

COMP2012H (BST)

5

30

2

40

80 35

32

33 31

85 60

5

30

2

60

80 35

32

33 31

85

(a) (b)

Another Deletion Example (Cont.)
}  Removing 40 from (a) results in (c) using the largest element in

the left subtree (i.e., the predecessor)

COMP2012H (BST)

5

30

2

40

80 35

32

33 31

85 60

(a) (c)

5

30

2

35

80 32

33 31 85 60

Another Deletion Example (Cont.)
}  Removing 30 from (c), we may replace the element with either 5

(predecessor) or 31 (successor). If we choose 5, then (d) results.

COMP2012H (BST)

(c)

5

30

2

35

80 32

33 31 85 60

(d)

2

5

35

80 32

33 31 85 60

Deletion Code (1/4)
}  First Element Search, and then Convert Case III, if any, to Case I

or II

COMP2012H (BST)

template<class E, class K>
BSTree<E,K>& BSTree<E,K>::Delete(const K& k, E& e)
{

// Delete element with key k and put it in e.
// set p to point to node with key k (to be deleted)
BinaryTreeNode<E> *p = root, // search pointer

 *pp = 0; // parent of p
while (p && p->data != k){

 // move to a child of p
pp = p;
if (k < p->data) p = p->LeftChild;
else p = p->RightChild;

}

Deletion Code (2/4)

COMP2012H (BST)

if (!p) throw BadInput(); // no element with key k

e = p->data; // save element to delete

// restructure tree
// handle case when p has two children
if (p->LeftChild && p->RightChild) {

// two children convert to zero or one child case
// find predecessor, i.e., the largest element
in // left subtree of p
BinaryTreeNode<E> *s = p->LeftChild,
*ps = p; // parent of s
while (s->RightChild) {

// move to larger element
ps = s;
s = s->RightChild;
}

Deletion Code (3/4)

COMP2012H (BST)

 // move from s to p
 p->data = s->data;
 p = s; // move/reposition pointers for deletion
 pp = ps;

}

// p now has at most one child
// save child pointer to c for adoption
BinaryTreeNode<E> *c;
if (p->LeftChild) c = p->LeftChild;
else c = p->RightChild; // may be NULL

// deleting p
if (p == root) root = c; // a special case: delete root
else {

// is p left or right child of pp?
if (p == pp->LeftChild) pp->LeftChild = c;//adoption
else pp->RightChild = c;
}

Deletion Code (4/4)

COMP2012H (BST)

delete p;

return *this;
}

Implementation: ADT of Binary Search Tree (BST)
}  Construct an empty BST
}  Determine if BST is empty
}  Search BST for given item
}  Insert a new item in the BST

}  Need to maintain the BST property

}  Delete an item from the BST
}  Need to maintain the BST property

}  Traverse the BST
}  Visit each node exactly once
}  The inorder traversal visits the nodes in ascending order

COMP2012H (BST)

ADT of a BST

COMP2012H (BST)

AbstractDataType BSTree {
instances

 binary trees, each node has an element with a
 key field; all keys are distinct; keys in the left
 subtree of any node are smaller than the key in
 the node; those in the right subtree are larger.

operations
 Create(): create an empty binary search tree
 Search(k, e): return in e the element/record with key k
 return false if the operation fails,
 return true if it succeeds
 Insert(e): insert element e into the search tree
 Delete(k, e): delete the element with key k and
 return it in e
 Ascend(): output all elements in ascending order of
 key

}

A Simple Implementation without Inheritance
}  tree_codes (BST.h and treetester.cpp)

template <typename DataType>
class BST
{
 public:
 // … member functions supporting BST operations
 private:
 /***** Binary node class *****/
 class BinNode
 {
 public:
 DataType data;
 BinNode * left;
 BinNode * right;

 // … BinNode constructors

 };// end of class BinNode declaration

 typedef BinNode *BinNodePointer;

 // … Auxiliary/Utility functions supporting member functions

 /***** Data Members *****/
 BinNodePointer myRoot; // the root of the binary search tree

}; // end of class template declaration COMP2012H (BST)

Another Implementation with Inheritance, function
pointers, and exception handling
}  tree2_codes

}  Binary search tree is derived from binary tree
}  E is the record, and K is the key
}  bst.h:

COMP2012H (BST)

template<class E, class K>
class BSTree : public BinaryTree<E> {
public:

bool Search(const K& k, E& e) const;
BSTree<E,K>& Insert(const E& e);
BSTree<E,K>& InsertVisit

 (const E& e, void(*visit)(E& u));
BSTree<E,K>& Delete(const K& k, E& e);
void Ascend() {InOutput();}

};

Skeleton of tree2_codes
}  btnode.h: the node structure to be used in a binary tree

}  binary.h: binary tree

COMP2012H (BST)

template<class T>
class BinaryTree {
 //… some friend functions
 public:
 //… member functions and note the use of
 // function pointers
 private:
 BinaryTreeNode<T> *root; // pointer to root
 //helper/utility functions and static functions
};

template <class T>
class BinaryTreeNode {
 //… friend functions
 public:
 // … constructors
 private:
 T data; // data is a record
 BinaryTreeNode<T> *LeftChild, // left subtree
 *RightChild; // right subtree
};

Code Implementation (tree2_codes)
}  bst.h

}  datatype.h: DataType is to be used in the binary node with field data
#ifndef DataType_
#define DataType_

class DataType {
 friend ostream& operator<<(ostream&, DataType);
 public:
 operator int() const {return key;} // implicit cast to obtain key
 int key; // element key, maybe hashed from ID
 char ID; // element identifier
};

ostream& operator<<(ostream& out, DataType x)
 {out << x.key << ' ' << x.ID << ' '; return out;}
#endif

template<class E, class K>
bool BSTree<E,K>::Search(const K& k, E &e) const
{// Search for element that matches k.
 // pointer p starts at the root and moves through
 // the tree looking for an element with key k
 BinaryTreeNode<E> *p = this->root;
 while (p) // examine p->data
 if (k < p->data) p = p->LeftChild; //implicit cast
 else if (k > p->data) p = p->RightChild;
 else {// found element
 e = p->data; // copy the record to e
 return true;}
 return false;
}

May be replaced
by recursive codes

COMP2012H (BST)

COMP2012H (BST)

Time Complexity of Binary Search Trees

}  Find(x) O(height of tree)
}  Min(x) O(height of tree)
}  Max(x) O(height of tree)
}  Insert(x) O(height of tree)
}  Delete(x) O(height of tree)
}  Traverse O(N)

COMP2012H (BST)

Binary Search Trees
}  Problem

}  How can we predict the height of the tree?

}  Many trees of different shapes can be composed of the same
data

}  How to control the tree shape?

Problem of Lopsidedness
}  Trees can be unbalanced
}  Not all nodes have exactly 2 child nodes

COMP2012H (BST)

C

O

M P

E U

T

Problem of Lopsidedness
}  Trees can be totally lopsided
}  Suppose each node has a right child only
}  Degenerates into a linked list

COMP2012H (BST)

Processing time affected
by "shape" of tree

C

E

T

M

U

O

P

COMP2012H (BST)

Binary Search Tree

4

2 6

1 3 5 7

4

2

6

1 3

5

7

Tree 1
Same data as Tree 2

Tree 2
Same data as Tree 1

Which tree would you prefer to use?

(we say this tree is “balanced”)

(this tree is “unbalanced”)

COMP2012H (BST)

Tree Examples

(Tree resulting from randomly generated input)

COMP2012H (BST)

Tree Examples

(Unbalanced tree)

How Fast is Sorting Using BST?
}  n numbers (n large) are to be sorted by first constructing a binary tree and

then read them in inorder manner
}  Bad case: the input is more or less sorted

}  A rather “linear” tree is constructed
}  Total steps in constructing a binary tree: 1 + 2 + … + n = n(n+1)/2 ~ n2

}  Total steps in traversing the tree: n
}  Total ~ n2

}  Best case: the binary tree is constructed in a balanced manner
}  Depth after adding i numbers: log(i)
}  Total steps in constructing a binary tree: log1 + log2 + log3 + log4 + … + log n <

log n + log n + … + log n = n log n
}  Total steps in traversing the tree: n
}  Total ~ n log n , much faster

}  It turns out that one cannot sort n numbers faster than nlog n
}  For any arbitrary input, one can indeed construct a rather balanced binary

tree with some extra steps in insertion and deletion
}  E.g., An AVL tree

COMP2012H (BST)

COMP2012H (BST)

An AVL Tree à A Rather Balanced Tree for
Efficient BST Operations (See Animation)

(Balanced Tree . . This is actually a very good tree called AVL tree)

