
COMP2012H

Order of
Construction & Destruction

“Has” relationship

•  When an object A has an object B as a data member, we
say that “A has-a B”.

class B { … };

class A
{

 B my_b;
public:

 … // some public members or functions
};

•  It is easy to see which objects have other objects. All you
need to do is to look at the class definition.

Example: Order of Constructions
#include <iostream>
using namespace std;

class Clock {
public:
 Clock() { cout << ''Constructor Clock'' << endl; }
 ~Clock() { cout << ''Destructor Clock'' << endl; }
};

class Postoffice {
 Clock clock;
public:
 Postoffice() { cout << ''Constructor Postoffice'' << endl; }
 ~Postoffice() { cout << ''Destructor Postoffice'' << endl; }
};

int main()
{
 cout << ''Beginning of main'' << endl;
 Postoffice x;
 cout << ''End of main'' << endl;
 return 0;
}

Here’s the output:

Beginning of main
Constructor Clock
Constructor Postoffice
End of main
Destructor Postoffice
Destructor Clock

Order of Constructions: Remarks
•  When an object is constructed, all its data members are constructed

first.

•  The order of destruction is the exact opposite of the order of
construction: the Clock constructor is called before the
Postoffice constructor; but the Clock destructor is called after
the Postoffice destructor.

•  As always, construction of data member objects is done by calling
the appropriate constructors.
–  If you do not do this explicitly, then the compiler will assume the default

constructors should be used. Make sure they exist! That is,
 Postoffice::Postoffice() {}
is equivalent to
 Postoffice::Postoffice() : clock() {}

–  Or, you may control construction of data member objects by calling their
appropriate constructors using the member initialization list syntax.

Order of Constructions with Owned Objects
class Clock {
public:

 Clock() { cout << ''Constructor Clock'' << endl; }
 ~Clock() { cout << ''Destructor Clock'' << endl; }

};

class Postoffice {

 Clock* clock;
public:

 Postoffice() {
 clock = new Clock;
 cout << ''Constructor Postoffice'' << endl;
 }
 ~Postoffice() {
 cout << ''Destructor Postoffice'' << endl;
 }

};

Here is the output:

Beginning of main
Constructor Clock
Constructor Postoffice
End of main
Destructor Postoffice

Order of Construction with Owned Objects: Remarks

What happened…?

•  Now the Postoffice owns the Clock (since it creates it

dynamically)

•  The Clock object is constructed in the Postoffice constructor,
but it is never destructed, since we have not explicitly called
delete.

•  Remember that objects on the heap are never destructed
automatically, so we have just created a memory leak!

•  The lesson: When object A owns object B, A must be responsible
for B's destruction.

Order of Constructions with Owned Objects: Fix
class Clock {
public:

 Clock() { cout << ''Constructor Clock'' << endl; }
 ~Clock() { cout << ''Destructor Clock'' << endl; }

};

class Postoffice {

 Clock* clock;
public:

 Postoffice() {
 clock = new Clock;
 cout << ''Constructor Postoffice'' << endl;
 }
 ~Postoffice() {
 cout << ''Destructor Postoffice'' << endl;
 delete clock;
 }

};

Here is the new output:

Beginning of main
Constructor Clock
Constructor Postoffice
End of main
Destructor Postoffice
Destructor Clock

Order of Constructions w/ Multiple Objects
class Clock {
 int HHMM;
public:
 Clock() : HHMM(0) { cout << ''Constructor Clock'' << endl; }
 Clock(int hhmm) : HHMM(hhmm) {
 cout<<''Constructor Clock at ''<< HHMM << endl;
 }
 ~Clock() { cout << ''Destructor Clock at '' << HHMM << endl; }
};

class Room {
public:
 Room() { cout << ''Constructor Room'' << endl; }
 ~Room() { cout << ''Destructor Room'' << endl; }
};

class Postoffice {
 Clock clock;
 Room room;
public:
 Postoffice() { cout << ''Constructor Postoffice'' << endl; }
 ~Postoffice() { cout << ''Destructor Postoffice'' << endl; }
};

Here is the output:

Beginning of main
Constructor Clock
Constructor Room
Constructor Postoffice
End of main
Destructor Postoffice
Destructor Room
Destructor Clock at 0

•  Note that the 2 data
members, Clock and Room,
are constructed first, in the
order in which they appear in
the Postoffice class.

Order of Construction w/ Nested Objects
•  Let's move the clock to the room.

class Clock {
public:
 Clock() { cout << ''Constructor Clock'' << endl; }
 ~Clock() { cout << ''Destructor Clock'' << endl; }
};

class Room {
 Clock clock;
public:
 Room() { cout << ''Constructor Room'' << endl; }
 ~Room() { cout << ''Destructor Room'' << endl; }
};

class Postoffice {
 Room room;
public:
 Postoffice() {cout << ''Constructor Postoffice'' << endl; }
 ~Postoffice() {cout << ''Destructor Postoffice'' << endl; }
};

Here is the output:

Beginning of main
Constructor Clock
Constructor Room
Constructor Postoffice
End of main
Destructor Postoffice
Destructor Room
Destructor Clock

Order of Constructions with Temporary Objects
#include <iostream>
using namespace std;

class Clock {
 int HHMM;
public:
 Clock() : HHMM(0) { cout << ''Constructor Clock'' << endl; }
 Clock(int hhmm) : HHMM(hhmm) {
 cout << ''Constructor Clock at'' << HHMM << endl;
 }
 ~Clock() { cout << ''Destructor Clock'' << endl; }
};

class Postoffice {
 Clock clock;
public:
 Postoffice() {
 clock = Clock(1800); // creates and destroys a temporary object
 cout << ''Constructor Postoffice'' << endl;
 }
 ~Postoffice() { cout << ''Destructor Postoffice'' << endl; }
};

Here’s the output:

Beginning of main
Constructor Clock
Constructor Clock at 1800
Destructor Clock
Constructor Postoffice
End of main
Destructor Postoffice
Destructor Clock

•  Here a temporary clock object is created by Clock(1800).
•  Like a ghost, it is created and destroyed behind the scenes.

Summary

•  When an object is constructed, its data members are
constructed first.

•  When the object is destructed, the data members are
destructed after the destructor for the object has been
executed.

•  When object A owns other objects (via pointers),
remember to explicitly destruct them in A's destructor.

•  By default, the default constructor is used for the data
members.

