
COMP2012H

Inheritance: Introduction

Example: University Admin Info

•  Let's implement a system for maintaining
university administration information.

–  Teacher and Student are two completely separate
classes. Their implementation uses separate code.

–  However, they share many methods and members
that are implemented in the same way: handling
name, address, and department.

–  Why do we implement the same function twice?

–  This is not good software reuse!

Example: U. Admin Info – Student.hpp
#define accounting 0
#define business 1
#define engineering 2
#define mathematics 3
#define unknown 4
typedef int Department;
class Student
{

 private:
 string name;
 string address;
 Department dept;
 Course* enrolled;
 int num_courses;
 public:
 Student(string n, string a, Department d) :
 name(n), address(a), dept(d), enrolled(NULL), num_courses(0) { };
 void set_name(const char* name);
 void set_address(const char* adr);
 void set_department(Department dept);
 string get_name() const;
 string get_address() const;
 Department get_department() const;
 bool enroll_course(const string&);
 bool drop_course(const Course&);

};

Example: U. Admin Info – Student.hpp

enum Department { accounting, business, engineering, mathematics, unknown };
class Student
{

 private:
 string name;
 string address;
 Department dept;
 Course* enrolled;
 int num_courses;
 public:
 Student(string n, string a, Department d) :
 name(n), address(a), dept(d), enrolled(NULL), num_courses(0) { };
 void set_name(const char* name);
 void set_address(const char* adr);
 void set_department(Department dept);
 string get_name() const;
 string get_address() const;
 Department get_department() const;
 bool enroll_course(const string&);
 bool drop_course(const Course&);

};

Example: U. Admin Info – Teacher.hpp

enum Rank { instructor, assistant_prof, associate_prof, professor, dean };
class Teacher
{

 private:
 string name;
 string address;
 Department dept;
 Rank rank;
 public:
 Teacher(string n, string a, Department d, Rank r) :
 name(n), address(a), dept(d), rank(r) { };
 void set_name(const char* name);
 void set_address(const char* adr);
 void set_department(Department dept);
 void set_rank(Rank rank);
 string get_name() const;
 string get_address() const;
 Department get_department() const;
 Rank get_rank() const;

};

Things to Consider

•  We want a way to say that Student and
Teacher both have the same members:
name, address, dept, but yet require them to
keep a separate copy of these members.

•  We want to share the code for set_name, etc.,
between Student and Teacher as well.

•  We want this code to act like member functions
(to permit consistency of state of the objects), so
they cannot be written as global functions.

Solution 1: Re-use by Copying

•  Copy the code from one class to the other class,
and change the class names.

–  This is very error prone.
–  It is also a maintenance nightmare.
–  What if we find a bug in the code in one class?
–  What if we want to improve the code? Perhaps by

introducing a new class Address.

•  “REUSE by COPYING” is a bad idea!

Inheritance

•  Inheritance enables code reuse.
•  Inheritance is the ability to define a new class based on

an existing class with a hierarchy.
•  The derived class inherits the data members and

member methods) of the base class.
•  New members and methods can be added to the derived

class.
•  Since the new class only has to implement the behavior

that is different from the base class, we can reuse the
code for the base class.

•  “Inheritance” is the traditional term, but C++ calls it
“derivation”.

Solution 2: By Inheritance – Person.hpp

class Person
{

 private:
 string name;
 string address;
 Department dept;

 public:
 Person(string n, string a, Department d) :
 name(n), address(a), dept(d) { };
 void set_name(const char* name);
 void set_address(const char* adr);
 void set_department(Department dept);
 string get_name() const;
 string get_address() const;
 Department get_department() const;

};

Solution 2: By Inheritance – Student.hpp

class Student : public Person
{

 private:
 Course* enrolled;
 int num_courses;

 public:
 Student(string n, string a, Department d) :
 Person(n, a, d), enrolled(NULL), num_courses(0) { }

 bool enroll_course(const string&);
 bool drop_course(const Course&);

};

Solution 2: By Inheritance – Teacher.hpp

class Teacher : public Person
{

 private:
 Rank rank;

 public:
 Teacher(string n, string a, Department d, Rank r) :
 Person(n, a, d), rank(r) { }

 void set_rank(Rank rank);
 Rank get_rank() const;

};

Inheritance

•  Person is the base class of Student.

•  Student is a derived class of Person.

•  The effect is that Student inherits all data members and
methods from Person.

•  The data members of Student are the data members of
Person (name, address, dept), plus the extra data
members declared in the definition of Student
(enrolled, num_courses).

Example: Inherited Members

void some_func(Person& person, Student& student)
{

 cout << person.get_name() << endl;
 cout << student.get_name() << endl;

 student.set_department(engineering);
 Department dept = person.get_department();
 student.enroll_course("COMP151");
 person.enroll_course("COMP001"); // Error!

}

“Is-a” Relationship

•  Inheritance implements the is-a relationship.
–  Recall:

membership (composition) implements the has-a relationship.

•  Since Student inherits from Person,
–  every object of type Student can be used like an object of

type Person
–  all methods of Person can be called on a Student object

•  In other words, a Student object definitely is a Person
object under all circumstances.

•  In general: a derived class object can be treated like a
base class object under all circumstances.

Example: Derived Objects as Base Class Object

bool print_mailing_label(const Person& person)
{

 string name = person.get_name();
 string adr = person.get_address();

 // code to print the label

}

•  Since a Student is a Person, we can print a mailing
label for a student like this:

Student student(“Tom”, “Sai Kung”,
mathematics);

print_mailing_label(student);

Direct and Indirect Inheritance

•  Let's add a new class PG_Student:

class PG_Student : public Student
{

 private:
 Topic research_topic;
 public:
 PG_Student(string n, string a, Department d) :
 Student(n, a, d), research_topic(NONE) { }
 void set_topic(const Topic& x) { research_topic = x; }

};

•  PG_Student is directly derived from Student.
•  It is indirectly derived from Person.
•  So a PG_Student object is a Person object.
•  Person is called an indirect base class for PG_Student.

