
COMP2012H

Inheritance:
Initialization & Substitution Principle

•  If class C is derived from class B which is in turn derived from class
A, then C will contain data members of both B and A.

•  Class C's constructor can only call class B's constructor; and, class
B's constructor can only call class A's constructor, i.e., it is the
responsibility of each derived class to initialize its direct base class
correctly.

Initializing Base Class Objects

grandparent class

parent class

child class

C
B

A

(A)

(B)

(C)

Example: Initializing Base Class Objects

•  Before a Student object can come into existence, we have to
create its Person part. This has to be done using one of the
constructors of Person. We use the same “colon syntax” as for
initializing data members:

Student::Student(string n, string a, Department d) :

Person(n, a, d), enrolled(NULL), num_courses(0) {}

•  Similarly, PG_Student has to create its Student part before it can
be created; but, it does not need to create its Person part by calling
Person's constructor. In fact, its Person part should have been
created by Student.

PG_Student(string n, string a, Department d) :
Student(n, a, d), research_topic(NONE) {}

Order of Construction / Destruction

#include <iostream>
using namespace std;

class Address {

 public:
 Address() { cout << "Address's constructor" << endl; }
 ~Address() { cout << "Address's destructor" << endl; }

};

class Person {

 public:
 Person() { cout << "Person's constructor" << endl; }
 ~Person() { cout << "Person's destructor" << endl; }

};

class Student : public Person {

 private: Address address;
 public:
 Student() { cout << "Student's constructor" << endl; }
 ~Student() { cout << "Student's destructor" << endl; }

};

int main() { Student x; }

Order of Construction / Destruction

•  Person's constructor
•  Address's constructor
•  Student's constructor
•  Student's destructor
•  Address's destructor
•  Person's destructor

Calling Constructors of Derived Classes
// This works fine
include <iostream>
using namespace std;

class B {

 private: int x;
 public:
 B(): x(10) { };
 void displayB() { cout << "x = " << x << endl; }

};

class D: public B {

 private: int y;
 public:
 D(): y(20) { }; // Default Constructor used for B
 void displayD() { cout << "y = " << y << endl; }

};

void main() {

 D derived;
 derived.displayB(); derived.displayD();

}

Calling Constructors of Derived Classes

// This works fine
include <iostream>
using namespace std;

class B {

 private: int x;
 public:
 B(int x_val): x(x_val) { };
 void displayB() { cout << "x = " << x << endl; }

};

class D: public B {

 private: int y;
 public:
 D(int x_val, int y_val): B(x_val), y(y_val) { }; // Type Conversion Constructor used for B
 void displayD() { cout << "y = " << y << endl; }

};

void main() {

 D derived(10, 20);
 derived.displayB(); derived.displayD();

}

Calling Constructors of Derived Classes

// This does not compile. WHY?
include <iostream>
using namespace std;

class B {

 private: int x;
 public:
 B(int x_val): x(x_val) { };
 void displayB() { cout << "x = " << x << endl; }

};

class D: public B {

 private: int y;
 public:
 D() { };
 void displayD() { cout << "y = " << y << endl; }

};

void main() { D derived; }

Polymorphic Substitution Principle

•  The single most important rule in OOP with C++ is:

 Inheritance means “is a”.

•  If class D (the derived class) inherits from class B (the
base class):
–  Every object of type D is also an object of type B, but not vice-

versa.
–  B is a more general concept, D is a more special concept.
–  Where an object of type B is needed, an object of type D can be

used instead.

base class

derived class

“is-a relationship”

Polymorphic Substitution Principle

•  In C++, using our university administration example, where
Student is derived from Person, this means:

•  This is also known as “Liskov Substitution Principle”.

Any function that expects an argument of type… … will also accept:

Person Student

pointer to Person pointer to Student

Person reference Student reference

Example: Substitution in Arguments

void dance(const Person& p); // Anyone can dance
void study(const Student& s); // Only students study

void dance(Person* p); // Anyone can dance
void study(Student* s); // Only students study

int main()
{

 Person p; Student s;

 dance(p); dance(s);

 study(s); study(p);

 dance(&p); dance(&s);

 study(&s); study(&p);
}

Extending Class Hierarchies

•  We can easily add classes to our existing class hierarchy
of Person, Student, and Teacher.

–  New classes can immediately benefit from all functions that are
available for their base classes.

–  e.g. bool print_mailing_label(const Person& person)
will work immediately for a new class type Research_Scholar,
even though this type of object was unknown when
print_mailing_label() was designed and written!

–  In fact, it is not even necessary to recompile the existing code: It is
enough just to link the new class with the object code for Person
and print_mailing_label().

Slicing

•  An assignment from derived class to base class does
“slicing”. This is rarely desirable. Once slicing has
happened, there is no trace of the fact that we started
with a student.

Student student("Snoopy", "HKUST", math);
Person* pp = &student;
Person* pp2 = new Student("Mickey", "HKUST", math);

Person person;
person = student; // What does "person" have?

Example: Name Conflicts?
// two different display() functions
include <iostream>
using namespace std;

class B {

 private: int x;
 public:
 B(): x(10) { };
 void display() { cout << "x = " << x << endl; }

};

class D: public B {

 private: int y;
 public:
 D(): y(20) { };
 void display() { cout << "y = " << y << endl; }

};

void main() {

 D derived;
 derived.display(); // Which display() gets called?

}

Example: Name Conflicts?
// two different display() functions
include <iostream>
using namespace std;

class B {

 private: int x;
 public:
 B(): x(10) { };
 void display() { cout << "x = " << x << endl; }

};

class D: public B {

 private: int y;
 public:
 D(): y(20) { };
 void display() { cout << "y = " << y << endl; }

};

void main() {

 D derived;
 derived.display(); // By default, D’s display() gets called.
 derived.B::display(); // You can distinguish using B::

}

Example: Name Conflicts?

// two different x
include <iostream>
using namespace std;

class B {

 public:
 int x;
 B(): x(10) { };
 void display() { cout << "x = " << x << endl; }

};
class D: public B {

 public:
 int x;
 D(): x(20) { };
 void display() { cout << "x = " << x << endl; }

};

void main() {

 D derived;
 derived.display(); // What gets printed?
 derived.B::display(); // What gets printed?

}

Example: Name Conflicts?

// two different x
include <iostream>
using namespace std;

class B {

 public:
 int x;
 B(): x(10) { };
 void display() { cout << "B::x = " << x << endl; }

};
class D: public B {

 public:
 int x;
 D(): x(20) { };
 void display() { cout << "D::x = " << x << endl; }

};

void main() {

 D derived;
 derived.display(); // Prints D::x = 20
 derived.B::display(); // Prints B::x = 10

}

Example: Resolving Name Conflicts

•  Derived classes can have new, uninherited, members (data and
functions) with the same name as those in the base class. These
members are totally distinct from the ones inherited from the base
class.

•  In cases in which this occurs, i.e., in which both base class and
derived class have identically named members, the compiler
defaults to choosing the derived class member. In order to override
the defaults and access the base class member the member's type
must be specified as well.

•  Example: If B is the base class, D the derived class and they both
have an int x data member, then inside D we must specify B::x
to specify the x that is a base class member (or d.B::x if outside
the class D).
–  That is, B::x is used inside member function definitions, whereas

d.B::x is used when object D d is being used to access the member.

Example: Name Conflicts?
// two different x
include <iostream>
using namespace std;

class B {

 public:
 int x;
 B(): x(10) { };
 void display() { cout << "B::x = " << x << endl; }

};
class D: public B {

 public:
 int x;
 D(): x(20) { };
 void display() { cout << "D::x = " << x << endl; }
 void displayB() { cout << “B::x = " << B::x << endl; }

};

void main() {

 D derived;
 derived.display(); // Prints D::x = 20
 derived.B::display(); // Prints B::x = 10
 derived.displayB(); // Prints B::x = 10

}

Example: More on Name Conflicts
class B {

 int x, y;
 public:
 B() : x(1), y(2) { cout << "Base class constructor" << endl; }
 void f() { cout << "Base class: " << x << " , " << y << endl; }

};

class D : public B {

 float x, y;
 public:
 D() : x(10.0), y(20.0) { cout << "Derived class constructor" << endl; }
 void f() { cout << "Derived class: " << x << " , " << y << "\t"; B::f(); }

};

void smart(B* z) { cout << "Inside smart(): "; z->f(); }

int main()
{

 B base; B* b = &base;
 D derived; D* d = &derived;

 base.f(); derived.f();
 b = &derived; b->f();
 smart(b); smart(d);

}

Example Output

Base class constructor
Base class constructor

Derived class constructor
Base class: 1 , 2

Derived class: 10 , 20 Base class: 1 , 2

Base class: 1 , 2
Inside smart(): Base class: 1 , 2

Inside smart(): Base class: 1 , 2

Example: Design of Bird Class

class Bird
{
 ...
 public:
 ...
 void hatch_eggs(); // Birds lay eggs
 void lay_eggs(int n);
 void spread_wings(); // Birds have wings
 void fly(); // Birds can fly
 int altitude() const; // return current altitude
};

•  We can reuse Bird to implement some special cases:

class Swallow : public Bird { ... };
class Eagle : public Bird { public: void hunt_prey(Bird *prey); };

Example: Design of Penguin Class (1)

•  Now we need a penguin object, and we would like to
reuse all the code we have for hatching and laying eggs,
spreading wings, etc.

class Penguin : public Bird
{

 ...
 public:
 ...
 void swim();
 void catch_fish();

};

Oops! Penguins cannot fly!
What can we do?

Example: Design of Penguin Class (2)

•  Some people try to solve the problem like this:

void Penguin::fly()
{
 cerr << "Penguins cannot fly!" << endl;
 exit(999);
}

•  But this doesn't really say “Penguins cannot
fly”.

•  It says: “Penguins can fly, but they are
forbidden to do so!”

Example: Design of Penguin Class (3)

•  Some people try to solve the problem like this:

–  Penguins can fly, but the altitude is zero:

class Penguin : public Bird
{

 ...
 public:
 ...
 void swim();
 void catch_fish();
 void fly() { }
 int altitude() const { return 0; }

};

Penguin Example: What's Wrong?

•  Declaring Penguin as a derived class of Bird violates
the substitution principle.

•  It is not possible to use a Penguin in some functions
that work for Bird objects:
void find_food(Bird* b)
{
 b->fly(); // visibility decreases with altitude

 double visibility = 10.0 / b->altitude();
 ...
}

•  The only solution is: REDESIGN!

Summary

•  Behavior and structure of the base class is inherited by the derived
class.

•  However, constructors and destructor are an exception. They are
never inherited.

•  There is a kind of contract between base class and derived class:

–  The base class provides functionality and structure (methods and data
members).

–  The derived class guarantees that the base class is initialized in a
consistent state by calling an appropriate constructor.

•  A base class is constructed before the derived class.

•  A base class is destructed after the derived class.

