COMP2012H

Access Control:
public, protected, private



Example: print
Let's add a print () method to our U. Admin. classes.

class Person { public: void print() const; ... };
class Student : public Person { public: void print() const; ... };

void Person::print() const {
cout << "--- Person details ---" << endl;
cout << "Name: " << name << endl << "Addr: " << address << end|
<< "Dept: " << dept << endl,

}

void Student::print() const {
cout << "--- Student details ---" << end|
<< "Name: " << name << endl << "Addr: " << address << endlI
<< "Dept: " << dept << endl << "Enrolled in:" << endl;
for (inti = 0; i < num_courses; ++i) {
enrolled[i].print(); // Assume a print function in the Course class

}



Example: Doesn't Compile!

 The implementation of Student: :print () given
before doesn't work. It will cause a compilation error.

e Student: :print cannot access Student: :name,
Student: :address, Or Student: :dept.

— Since name is a private data member of the base class, the
derived class cannot access it.

— Public inheritance does not change the access control of the
data members of the base class: private members are still only
available to its own methods, and not to any other classes
including derived classes (except friends).




One Solution: Protected Data Members

class Person

{

protected:
string name;
string address;
Department dept;
public:
void print() const;

%
By making name, address, dept protected, they are accessible to
methods in the base class as well as methods in the derived

classes.
They should not be public though!




Member Access Control: public, protected, private

* There are 3 levels of member (data or methods) access
control:

— public: members can be used by itself and the whole world; any
function can access them.

— protected: methods (and friends) of itself and any derived class
can use it.

— private: members can only be used by its own methods (and its
friends).
« Without inheritance, private and protected have exactly
same meaning.

« The only difference is that methods of a derived class
can access protected members of a base class, but
cannot access private members of a base class.




protected vs. private

« So why not always use protected instead of private?

— Because protected means that we have less encapsulation:
Remember that all derived classes can access protected data
members of the base class.

— Assume that later you decided to change the implementation of
the base class having the protected data members.

— For example, we might want to represent address by a new
class called Address instead of string. If the address data
member is private, we can easily make this change. The class
documentation does not need to be changed.

— If it is protected, we have to go through all derived classes and
change them. We also need to update the class documentation.




protected vs. private

* In general, it is preferable to have private members
instead of protected members.

» Use protected only where it is really necessary. private is
the only category ensuring full encapsulation.

* |n our example, there is no reason at all to make name,
address, dept protected, as we can access the name
and address through the public member functions:



Example: print Using Public Functions Only

void Student::print() const

{

cout << "--- Student details ---" << end|
<< "Name: " << get _name() << endl
<< "Addr: " << get_address() << end|
<< "Department: " << get_dept() << end|
<< "Enrolled in:" << endl;

for (inti=0;i < num_courses; ++i) {
enrolled[i].print();
}
}



Example Again

» Let's use the print method now:

Person mouse("Mickey", "Disney World", arts);

Teacher einstein("Albert Einstein", "USA", physics, professor);
Student plato("Plato”, "Greece", philosophy);
plato.enroll_course("COMP151");

mouse.print();
einstein.print();
plato.print();



Example Again: Output
(assume: enum Department { arts, physics, philosophy, ... })

-—-— Person details —---
Name: Mickey

Addr: Disney World
Dept: O

-—-—- Teacher details ---
Name: Albert Einstein
Addr: USA

Dept: 1

Rank: Full Professor
-—— Student details ---
Name: Plato

Addr: Greece

Dept: 2

Enrolled in:

COMP151



