
COMP2012H

Generic Programming:
Overloading Operator Functions

From Math Notation to Operators
in Programming Languages

•  Depending on what programming language you’re
using, to program the mathematical equation

c = 2(a – 3) + 5b
 you might have to write out each function calls, as in

c = add(mult(2, sub(a, 3)), mult(5, b))

•  But most programming languages have operators which
allow us to mimic the mathematical notation by writing:

c = 2*(a-3) + 5*b;

•  However, most languages (like C) only have operators
defined for the built-in types.

•  C++ is an exception: it allows you to redefine most of its
operators for user-defined types. e.g. you may redefine
+, -, etc. for types Complex, Matrix, Array, String,
etc.

Example: Additions of Vectors

class Vector
{

 double _x, _y;
public:

 Vector(double x, double y) : _x(x), _y(y) { }
 double x() const { return _x; }
 double y() const { return _y; }

};

•  To add 2 vectors, traditionally we would do it like this:

Vector add (const Vector& a, const Vector& b)
{

 return Vector(a.x() + b.x(), a.y() + b.y());
}

Vector a(1, 3), b(-5, 7), c(22, 2), d;
d = add(a, add(b, c));

Non-Member Operator Function

•  It would be nicer if we could write the last expression
d = add(a, add(b, c));

 instead as d = a + b + c.
•  We can achieve that in C++ by simply replacing the

name of the function add() by operator+().

Vector operator+ (const Vector& a, const Vector& b)
{

 return Vector(a.x() + b.x(), a.y() + b.y());
}

Vector a(1, 3), b(-5, 7), c(22, 2), d;
d = a + b + c;

Operator Syntax

•  operator+ is a formal function name that can be used like any
other function name.
–  (It’s just like add in the example from the first slide.)

•  Here we have used the “nickname”-syntax to call operator+.
Technically, we could instead have used the “formal address”
operator+ as follows:

d = operator+(operator+(a, b), c);

 (But nobody would really write code like this.)
•  Operators in C++ are just like ordinary functions, except that they

also have a nicer syntax for calling them similar to the usual
mathematical notations.

•  The operator + has a formal name, namely operator+ (consisting
of 2 keywords), and a “nickname" namely +.

Operator Syntax

•  The nickname can only be used when calling the function.
•  The formal name can be used in any context, when declaring the

function, defining it, calling it, or taking its address.
•  There is nothing that you can do with operators that cannot be done

with ordinary functions. In other words, operators are just syntactic
sugar.

•  Be careful when defining operators. There is nothing that inhibits
you from defining + to denote subtraction. There is nothing that
inhibits you from defining a = a + b and a += b to have two
different meanings. However, this would be extremely bad style –
your code will become unreadable.
 Don't shock the user!

C++ Operators

•  Almost all operators in C++ can be overloaded except:
. :: ?: sizeof

•  The C++ parser is fixed. That means that you can only
redefine existing operators, but you CANNOT define new
operators.

•  Nor can you change the following properties of an
operator:
–  Arity: the number of arguments an operator takes.

 e.g. !x x+y a%b s[j]
 (So you are not allowed to re-define the plus operator to take 3
arguments instead of 2.)

–  Associativity: e.g. a+b+c is always identical to (a+b)+c.
–  Precedence: which operator is done first?

 e.g. a+b*c is treated as a+(b*c).

C++ Operators

•  All C++ operators already have predefined meaning for
the built-in types. It is impossible to change this meaning;
you can only overload the operator to have a meaning
for your own (user-defined) classes (such as Vector in
the example above).

•  Therefore, every operator you define must have at least
one argument of a user-defined class type.

•  As a global function, operator+ has two arguments.
When it is called in an expression such as a + b, this is
equivalent to writing operator+(a, b).

Member Operator Function

•  Member functions are called using the “dot syntax" by
specifying an object of, for example, type Vector.
–  The expression a + b is equivalent to a.operator+(b).
–  Thus, when we define operator+ as a member function of

Vector, it has only one argument – the first argument is implicitly
the object on which the member function is invoked.

class Vector {

 double _x, _y;
public:

 Vector(double x, double y) : _x(x), _y(y) { }
 double x() const { return _x; }
 double y() const { return _y; }
 Vector operator+ (const Vector& b) const
 { return Vector(_x + b._x, _y + b._y); }

};

Member and Non-Member Operator Function

•  Whenever the compiler sees an expression of the form a
+b, it converts this to the two possible representations

operator+(a, b)

a.operator+(b)

 and verifies whether one of those two operator functions
are defined.

•  Note: It is an error to define both.

Example: Member or Non-Member Function?

•  Let's define a multiplication operator to multiply a vector
with a scalar. This should all work:

Vector a(1,0), b(2, 3);
Vector c = 2 * a; // c == (2, 0)
a = c + b * 3; // a == (8, 9)

•  Can we define the multiplication operator as a member
function of Vector?

•  Remember that the compiler converts the expression
a*b to a.operator*(b). So the expression 2*a is
converted to 2.operator*(a)!

Example: Member or Non-Member Function?

•  This doesn't work! 2 is an object of type int, and we
cannot define a new member function for this type.

•  So our only choice is to define the multiplication operator
as a global non-member function:

Vector operator* (double s, const Vector& a)
{

 return Vector(s * a.x(), s * a.y());
}

Example: Operator Function for Printing

•  Very often you would like to provide a printing service for your user-
defined classes, and the most natural way of doing that is to define
the << operator for your class.

ostream& operator<<(ostream& os, const Vector& a)
{

 os << ')' << a.x() << ',' << a.y() << ')';
 return os;

}

•  ostream is the base class for all possible output streams.
•  In particular, the standard output stream cout and the error output

stream cerr are objects of classes derived from ostream.

Example: Operator Function for Printing

•  Why does the operator return an output stream?
•  Because we like to write expressions such as:

Vector a(1, 0);
cout << " a = " << a << "\n";

•  The second line is equivalent to:
operator<<(operator<<(operator<<(cout, " a = "), a), "\n");

•  This can only work if operator<< returns the output
stream itself.

•  Quiz: Could we have defined operator<< as a member
function?

Operator: Member or Non-Member Functions?

•  The operators: “=" (assignment), “[]" (indexing), “()" (call) are
required by C++ to be defined as class member functions.

•  A member operator function has an implicit first argument of the
class. => if the left operand of an operator must be an object of the
class, it can be a member function.

•  If the left operand of an operator must be an object of other classes,
it must be a non-member function. e.g. operator<<

•  To allow automatic conversion of types using the conversion
constructor, for commutative operators like “+", “-", “*", it is
usually preferred to be defined as non-member functions. e.g.

String x("dot"), y("com"), z;
z = x + y;
z = x + "com";
z = "dog" + y;

How to Differentiate Prefix and Postfix Operators?

class Vector {
 // …

public:
 Vector() : _x(0.0), _y(0.0) { }
 Vector(double x, double y) : _x(x), _y(y) { }
 Vector operator++() { ++ _x; ++ _y; return *this; }
 Vector operator++(int)
 { Vector temp(_x, _y); _x++; _y++; return temp; }

};

int main() {

 Vector a(1.2, 3.4), c, d;
 c = ++a; // a = (2.2, 4.4) and c = (2.2, 4.4)
 d = a++; // a = (3.2, 5.4) and d = (2.2, 4.4)

}

