
COMP2012H

Generic Programming:
Container Classes

Container Classes

•  Container classes are a typical use for class templates, since we
need container classes for objects of many different types, and the
types are not known when the container class is designed.

•  Let’s design a container that looks like an array, but that is a first-
class type: so that assignment and call-by-value is possible.

•  We want the container to be homogeneous: all the elements must
have the same type.

•  But should a container with 10 int elements be the same type as a
container with 20 int elements?
 Both choices are sensible design decisions.

Remark: The vector type in STL is better than the classes we’ll

write in this lecture, so this is just for understanding. We are doing
this to illustrate how C++’s actual vector, list, etc. can be
implemented.

Example: Container Class – bunch.hpp

template<typename T, int N>
class Bunch {
public:

 Bunch();
 Bunch(const Bunch &B);
 ~Bunch();

 int size() const { return N; }
 T& operator[](int i) { return value_m[i]; }
 T& operator=(const Bunch &B);

private:
 T value_m[N];

};

Example: Use of Class Bunch

Bunch<int, 10> a;
cout << a[3];
a[7] = 13;
++a[2];

Bunch<string, 50> b;
b[49] = ''Hello world'';

Bunch<string, 50> c;
c = b; // Legal
Bunch<int, 20> d;
d = a; // Error: d and a are of different types

A More Flexible Container Class – array.hpp

#ifndef ARRAY_HPP
#define ARRAY_HPP

template<typename T>
class Array {
private:

 T* value_m;
 int size_m;

public:
 Array(int n = 10); // Default/conversion constructor
 Array(const Array& A); // Copy constructor
 ~Array();

 int size() const { return size_m; }
 Array<T>& operator=(const Array<T>& A); // Assignment operator
 T& operator[](int i) { return value_m[i]; }; // Access to an element
 const T& operator[](int i) const { return value_m[i]; }; // Const access to an element

};

#endif

Example: Use of Class Array
#include <iostream>
#include ''array.hpp''
using namespace std;
int main()
{

 Array<int> a;
 cout << a.size() << endl;
 a[9] = 17; // Ok: uses non-const version of operator[]
 ++a[2]; // Ok: uses non-const version of operator[]
 cout << a[2] << endl;

 Array<int> b(5);
 cout << b.size() << endl;

 const Array<int> c(20);
 c[1] = 5; // Error: assignment to read-only location
 cout << c[1] << endl;

 a = c;
 cout << a[2] << endl;

}

Example: Constructors/Destructor of Class Array

template<typename T>
Array<T>::Array(int n) : value_m(new T[n]), size_m(n) { }

template<typename T>
Array<T>::Array(const Array<T>& A)

 : value_m(new T[A.size_m]), _size(A.size_m)
{

 for (int i = 0; i < size_m; ++i) {
 value_m[i] = A.value_m[i];
 }

}

template<typename T>
Array<T>::~Array() { delete[] value_m; }

Shallow Copy and Deep Copy

 Array<int> A(10);
 Array<int> B(A);

•  Shallow Copy:

–  If you don't define your own copy constructor, the copy
constructor provided by the compiler simply does member-wise
copy.

–  Then A and B will share to the same value_m array.
–  If you delete A, and then B, you will have an error as you will

delete the embedded value_m array twice from the heap.
–  Basically, shallow copy is a bad idea if an object owns data.

•  Deep Copy:
–  To take care of the ownership, redefine the copy constructor so

that each object has its own copy of the “owned" data
members.

Assignment Operator

•  Idea: To assign b = a, first throw away the old data
b.value_m, then create a new one and assign the
elements from a.value_m.

template<typename T>
Array<T>& Array<T>::operator=(const Array<T>& A)
{

 delete [] value_m;
 size_m = A. size_m;
 value_m = new T[size_m];
 for (int i = 0; i < size_m; ++i) {
 value_m[i] = A.value_m[i];
 }
 return *this;

}

Assignment Operator (cont’d)

•  There is a serious problem with the previous code. In the
assignment a = a, the data in the container is lost!

•  Solution: When the assignment argument is the same as the object
being assigned to, don't do anything.

template<typename T>
Array<T>& Array<T>::operator=(const Array<T>& A)
{

 if (this != &A) {
 delete [] value_m;
 size_m = A. size_m;
 value_m = new T[size_m];
 for (int i = 0; i < size_m; ++i) {
 value_m[i] = A.value_m[i];
 }
 }
 return *this;

}

Assignment Operator (cont’d)

•  Here is another way of implementing the assignment operator.
Quiz: Why does this elegant trick work??

template<typename T>
Array<T>& Array<T>::operator=(const Array<T>& A)
{

 size_m = A.size_m;
 Array<T> temp(A);
 std::swap(value_m, temp.value_m);
 return *this;

}

// Here’s what std::swap() basically looks like:
template<typename T>
void swap(T& a, T& b)
{

 T temp = a;
 a = b;
 b = temp;

}

Output Operator

•  The following output operator is not a member of the
Array<T> class, but a function template.

•  Function templates and class templates work together
very well: We can use function templates to implement
functions that will work on any class created from a class
template.

template<typename T>
ostream& operator<<(ostream& os, const Array<T>& A)
{

 for (int i = 0; i < A.size(); ++i) {
 os << A[i] << ' ';
 }
 return os;

}

Why 2 Different Subscript Operators?

•  We have 2 subscript operators, and it looks as if we are
violating the overloading rule. Both have the same name
and the same arguments.

Array<int> a(3);
a[2] = 7; // Quiz: which version of operator[] is called?

•  In the above code, we need a subscript operator that
returns an int&, not a const int&.

•  But this subscript operator does not work in this code:

int last_element(const Array<int>& a)
{

 return a[a.size() - 1];
}

Why 2 Different Subscript Operators?

•  The argument a of last_element() is a const
Array<int>&.

•  Therefore it can only call const member functions: in
this example,
–  int size() const
–  const T& operator[](int i) const

•  Note: On the other hand, if bad programmers are not so
strict with const correctness (which is a bad idea), they
could simply define one subscript function as:

T& operator[](int i) const { return value_m[i]; } // This is dangerous! (Why?)

