COMP2012H

Exception Handling



Terminology

Exceptions are run-time anomalies that a program may
detect

— division by 0,
— access to an array outside of its bounds,
— exhaustion of the heap memory.

An exception is an unusual event, and may require
special processing

The special processing required after detection of an
exception is called exception handling

The exception handling code unit is called an exception
handler



Introduction to Exception Handling

e Traditional approaches in case of exception:
— Terminate the program: exit () , abort ()
— Return special values to indicate errors in a function
— Set global error bits and return normally (leaving the
system in an illegal state)
e Error detection and handling code is tedious to write; it
clutters the program and is error-prone
e The C++ language provides built-in features to raise and
handle exceptions:
— Separate error-handling code from ordinary code
— Exception propagation allows a high level of reuse of
exception handling code
— Release local resources automatically




An Example

#include <iostream>
using namespace std;

int main () {
try {
throw 20; // throw an exception
} catch (int e) {
cout << "Exception No. " << e << endl;
}

return 0;



General Form

try {
-—- code that is expected to raise an

exception

}

// Each catches one type of exception

catch (typel varl) ({ // var is optional
-— handler code

}

catch (type2 wvar2) {
—-— handler code

}



try

Put statements and function calls that may generate
exceptions in a try block

Each try block is associated with a sequence of handlers
that follow immediately

try blocks can be nested

try {
try {
£(); //f() may throw an exception

} catch (int e) {
cout << "Exception No. " << e << endl;

}
} catch(double) { cout << "Caught double." <<
endl; }



throw

e An exception is raised using a throw expression,
composed of throw followed by an object whose type is
that of the exception thrown

e Any object (built-in or user-defined) can be thrown

class to _be thrown {};

throw to be thrown; //error, not anobject
throw to be thrown(); // correct
throw 2.5; // correct, double



catch: The Handler

- catch is the name of all handlers
— must immediately follow the try block
— the formal parameter of each handler must be unigue
— no automatic type conversion

e The formal parameter does not have to be a
variable

— Can be simply a type name to distinguish its handler
from others

— A variable transfers information to the handler



catch: The Handler

e The formal parameter can be an ellipsis, in which case it
handles all exceptions not yet handled

catch (...) { // catches everything

-— handler code

}

o After a handler completes, control f
statement after the last handler in t

e When no exception occurs, all hand
(no performance loss)

ows to the first
he sequence

ers are neglected



Propagation/Stack Unwinding

Exceptions CANNOT be ignored

If not caught by handlers right after try block, exception moves to
next-higher level and may be caught there:

— The next level of try block (if nested)
— Try block surrounding the function call in which exception occurs

— If no handler at any level catches the exception, terminate () will be
called and program will terminate

Passing an exception while searching for a handler can cause abnormal
exit from a function while in middle of executing it (i.e., without any
return value)

— The stack frame corresponding to the exited function’s scope is
popped — this is called stack unwinding

— So the lifetime of local objects in the exited functions ends
— C++ still guarantees correct destructors are called




An Example

void £ () {
Person p;
throw 20;

}
void g() {Person g; £();}

void main () {
try ({ call
g()’ function

} catch(int) ({
cout<<"error'"<<endl;

}
}

A

Unwind

Local var of f() M

Local var of g()

Local var of main()

Static data

Snapshot of
Memory Stack



Release Your Own Resource

e Stack unwinding does not automatically delete pointers
or close file handles. These should be handled locally.

void func() {
resource res; res.lock();
try {
// use resource
// some action throws an exception
} catch (...) {
res.release() ;
throw; // re-throw the exception
}

res.release(); // skipped if exception thrown

}



Standard Exceptions

All standard exception classes derive ultimately from the
class exception, defined in the header <exception>.

logic error and runtime error are derived from
exception and are defined in <stdexcept>

A handler for base class objects can also catch derived
class objects

Define your own error from standard exception classes

class DivideByZeroError : public runtime error ({
public:
DivideByZeroError (const string& msg = "")
: runtime error (msg) {}

};



An Example

#include <stdexcept>
#include <iostream>
#include "myerror.hpp"
using namespace std;

int divide int(int numer, int denom) {
if (denom == 0) throw DivideByZeroError ("divide int");
return numer/denom;
}
int main() {
try {
cout << divide int(l, 0) << endl;
} catch (runtime error &e) { // pass by ref
cout << "Error caught in “ << e.what() << endl;

}

return 0O;



Catch bad alloc

#include <stdexcept>
#include <iostream>
using namespace std;

int main() {
int* p[9999];
try {
for (int i = 0; 1 < 9999; i++) {
pl[i] = new int[99999999];
}
} catch(bad alloc) { // don't bother with the thrown object
cout << "Problem in getting memory" << endl;
}

return 0O;



Exception Specification

When declaring functions...

* void some function() throw ()
— Promises that the function will not throw any exception

* void some function() throw(DivideByZero,
OtherException) ;

— Promises that the function may only throw the exceptions
DivideByZero and OtherException

* void some function();

— No promises — any type of exception might be thrown from this
function



