
Design and Analysis of Algorithms

Comp 271

Department of Computer Science, HKUST



Information about the Lecturer

• Prof. Dekai WU

• Office: Rm 3539

• Email: dekai@cs.ust.hk

• http://www.cs.ust.hk/˜dekai/271

• Office hours: Just drop by or send email for ap-
pointment.

1



Textbook and Lecture Notes

Textbook: Cormen, Leiserson, Rivest, Stein:
“Introduction to Algorithms”, 2.ed. MIT Press 2001.

Lecture Slides: Available on course webpage

References: Recommendations

1. Dave Mount: Lecture Notes
Available on course web page

2. Jon Bentley: Programming Pearls (2nd ed). Addison-Wesley,
2000.

3. Michael R. Garey & David S. Johnson: Computers and in-
tractability : a guide to the theory of NP-completeness. W.
H. Freeman, 1979.

2



About COMP 271

A continuation of COMP 171, with advanced topics
and techniques. Main topics are:

1. Design paradigms: divide-and-conquer, dynamic
programming, greedy algorithms.

2. Analysis of algorithms (goes hand in hand with
design).

3. Graph Algorithms.

4. Fast Fourier Transform (FFT).

5. String matching.

6. Complexity classes (P, NP, NP-complete).

Prerequisite: Discrete Math. and COMP 171

3



We assume that you know

• Sorting: Quicksort, Insertion Sort, Mergesort, Radix
Sort (with analysis). Lower Bounds on Sorting.

• Big-Oh notation and simple analysis of algorithms.

• Heaps.

• Graphs and Digraphs. Breadth & Depth-first search
and their running times. Topological Sort.

• Balanced Binary Search Trees (dictionaries).

• Hashing.

4



Tentative Syllabus

• Introduction & Review

• Maximum Contiguous Subarray:
case study in algorithm design

• Divide-and-Conquer Algorithms: Polynomial Multiplication,
Randomized quicksort, Randomized Selection and Deter-
ministic Selection

• Graphs:

– Depth-First Search - Applications of DFS (Articulation
Points, and Biconnected Components)

– Minimum Spanning Trees: Kruskal’s and Prim’s algo-
rithms

– Dijkstra’s shortest path algorithm

• Dynamic Programming: 0-1 Knapsack, Chain Matrix Multi-
plication, Longest Common Subsequence, All Pairs Short-
est Path

• Greedy algorithms: Fractional Knapsack, Huffman Coding

• Algorithm Examples: Fast Fourier Transformation (FFT) and
String-Matching Algorithms

• Complexity Classes: The classes P and NP, NP-complete
problems, polynomial reductions

5



Other Information

• Assignments: 4–5, worth a total of 20% of grade.
Midterm: worth 35% of grade.
Final exam (comprehensive): worth 45% of grade.

6



Classroom Etiquette

• No pagers and cell phones – switch off in class-
room.

• Latecomers should enter QUIETLY.

• No loud talking during lectures.

• But please ask questions and provide feedback.

7



Lecture 1: Introduction

Computational Problems and Algorithms

Definition: A computational problem is a specifica-
tion of the desired input-output relationship.

Definition: An instance of a problem is all the inputs
needed to compute a solution to the problem.

Definition: An algorithm is a well defined computa-
tional procedure that transforms inputs into outputs,
achieving the desired input-output relationship.

Definition: A correct algorithm halts with the correct
output for every input instance. We can then say that
the algorithm solves the problem.

8



Example of Problems and Instances

Computational Problem: Sorting

• Input: Sequence of n numbers 〈a1, · · · , an〉.

• Output: Permutation (reordering)

〈a′1, a′2, · · · , a′n〉

such that a′1 ≤ a′2 ≤ · · · ≤ a′n.

Instance of Problem: 〈8,3,6,7,1,2,9〉

9



Example of Algorithm: Insertion Sort

In-Place Sort: uses only a fixed amount of storage
beyond that needed for the data.

Pseudocode: A[1 . . . n] is an array of numbers

for j=2 to n {

key = A[j];

i = j-1;

while (i >= 1 and A[i] > key) {

A[i+1] = A[i];

i--;

}

A[i+1] = key;

}

Pause: How does it work?

10



Insertion Sort: an Incremental Approach

To sort a given array of length n, at the ith step it
sorts the array of the first i items by making use of the
sorted array of the first i − 1 items in the (i − 1)th
step.

Example: Sort A = 〈6,3,2,4〉 with Insertion Sort.

Step 1: 〈6,3,2,4〉

Step 2: 〈3,6,2,4〉

Step 3: 〈2,3,6,4〉

Step 4: 〈2,3,4,6〉

11



Analyzing Algorithms

Predict resource utilization

1. Memory (space complexity)

2. Running time (time complexity)

Remark: Really depends on the model of computa-
tion (sequential or parallel). We usually assume se-
quential.

12



Analyzing Algorithms – Continued

Running time: the number of primitive operations
used to solve the problem.

Primitive operations: e.g., addition, multiplication,
comparisons.

Running time: depends on problem instance, often
we find an upper bound: F(input size)

Input size: rigorous definition given later.

1. Sorting: number of items to be sorted

2. Multiplication: number of bits, number of digits.

3. Graphs: number of vertices and edges.

13



Three Cases of Analysis

Best Case: constraints on the input, other than size,
resulting in the fastest possible running time.

Worst Case: constraints on the input, other than size,
resulting in the slowest possible running time.
Example. In the worst case Quicksort runs in Θ(n2)

time on an input of n keys.

Average Case: average running time over every pos-
sible type of input (usually involve probabilities of dif-
ferent types of input).
Example. In the average case Quicksort runs in Θ(n logn)

time on an input of n keys. All n! inputs of n keys are
considered equally likely.

Remark: All cases are relative to the algorithm under
consideration.

14



Three Analyses of Insertion Sorting

Best Case: A[1] ≤ A[2] ≤ A[3] ≤ · · · ≤ A[n].

The number of comparisons needed is equal to

1 + 1 + 1 + · · · + 1
︸ ︷︷ ︸

n−1

= n − 1 = Θ(n).

Worst Case: A[1] ≥ A[2] ≥ A[3] ≥ · · · ≥ A[n].

The number of comparisons needed is equal to

1 + 2 + · · · + (n − 1) =
n(n − 1)

2
= Θ(n2).

Average Case: Θ(n2) assuming that each of the n!

instances are equally likely.

15



Analytical Time Complexity Analysis

• We would like to compare efficiencies of different
algorithms for the same problem, instead of differ-
ent programs or implementations. This removes
dependency on machines and programming skill.

• It becomes meaningless to measure absolute time
since we do not have a particular machine in mind.
Instead, we measure the number of steps. We
call this the time complexity or running time and
denote it by T(n).

• We would like to estimate how T(n) varies with
the input size n.

16



Big-Oh

If A is a much better algorithm than B, then it is not
necessary to calculate TA(n) and TB(n) exactly. As
n increases, since TB(n) will grow much more rapidly,
TA(n) will always be less than TB(n) for large enough
n.

Thus, it suffices to measure the growth rate of time
complexity to get a rough comparison.

f(n) = O(g(n)):

There exists constant c > 0 and n0 such that
f(n) ≤ c · g(n) for n ≥ n0.

17



When estimating the growth rate of T(n) using big-
Oh:

• Ignore the low order terms.

• Ignore the constant coefficient of the most signif-
icant term.

• The remaining term is the estimate.

18



For example,

• n2/2 − 3n = O(n2)

• 1 + 4n = O(n)

• log10 n = log2 n
log2 10 = O(log2 n) = O(logn)

• sinn = O(1), 10 = O(1), 1010 = O(1).

•
∑n

i=1 i2 ≤ n · n2 = O(n3)

•
∑n

i=1 i ≤ n · n = O(n2)

• 210n is not O(2n)

• 7n2 + 10n + 3 = O(n2) = O(n3) = O(n4)

19



Big Omega and Big Theta

f(n) = Ω(g(n)) (big-Omega):

There exists constant c > 0 and n0 such that
f(n) ≥ c · g(n) for n ≥ n0.

f(n) = Θ(g(n)) (big-Theta):

f(n) = O(g(n)) and f(n) = Ω(g(n)).

20



Some thoughts on Algorithm Design

• Algorithm Design, as taught in this class, is mainly
about designing algorithms that have small big-
Oh running times.

• “All other things being equal”, O(n logn) algo-
rithms will run more quickly than O(n2) ones and
O(n) algorithms will beat O(n logn) ones.

• Being able to do good algorithm design lets you
identify the hard parts of your problem and deal
with them effectively.

• Too often, programmers try to solve problems us-
ing brute force techniques and end up with slow
complicated code! A few hours of abstract thought
devoted to algorithm design could have speeded
up the solution substantially and simplified it.

21



Note: After algorithm design one can continue on to
Algorithm tuning which would further concentrate on
improving algorithms by cutting cut down on the con-
stants in the big O() bounds. This needs a good un-
derstanding of both algorithm design principles and
efficient use of data structures. In this course we will
not go further into algorithm tuning. For a good intro-
duction, see chapter 9 in Programming Pearls, 2nd ed
by Jon Bentley.

22


