Design and Analysis of Algorithms

Comp 271

Department of Computer Science, HKUST
Information about the Lecturer

• Prof. Dekai WU

• Office: Rm 3539

• Email: dekai@cs.ust.hk

• http://www.cs.ust.hk/~dekai/271

• Office hours: Just drop by or send email for appointment.
Textbook and Lecture Notes

Lecture Slides: Available on course webpage

References: Recommendations

1. Dave Mount: Lecture Notes
 Available on course web page

About COMP 271

A continuation of COMP 171, with advanced topics and techniques. Main topics are:

2. Analysis of algorithms (goes hand in hand with design).

3. Graph Algorithms.

5. String matching.

Prerequisite: Discrete Math. and COMP 171
We assume that you know

• Sorting: Quicksort, Insertion Sort, Mergesort, Radix Sort (with analysis). Lower Bounds on Sorting.

• Big-Oh notation and simple analysis of algorithms.

• Heaps.

• Balanced Binary Search Trees (dictionaries).

• Hashing.
Tentative Syllabus

• Introduction & Review

• Maximum Contiguous Subarray: case study in algorithm design

• Divide-and-Conquer Algorithms: Polynomial Multiplication, Randomized quicksort, Randomized Selection and Deterministic Selection

• Graphs:
 – Depth-First Search - Applications of DFS (Articulation Points, and Biconnected Components)
 – Minimum Spanning Trees: Kruskal's and Prim's algorithms
 – Dijkstra's shortest path algorithm

• Dynamic Programming: 0-1 Knapsack, Chain Matrix Multiplication, Longest Common Subsequence, All Pairs Shortest Path

• Greedy algorithms: Fractional Knapsack, Huffman Coding

• Algorithm Examples: Fast Fourier Transformation (FFT) and String-Matching Algorithms

• Complexity Classes: The classes P and NP, NP-complete problems, polynomial reductions
Other Information

- Assignments: 4–5, worth a total of 20% of grade.
- Midterm: worth 35% of grade.
- Final exam (comprehensive): worth 45% of grade.
Classroom Etiquette

- No pagers and cell phones – switch off in classroom.

- Latecomers should enter **QUIETLY**.

- No loud talking during lectures.

- But please ask questions and provide feedback.
Lecture 1: Introduction

Computational Problems and Algorithms

Definition: A computational problem is a specification of the desired input-output relationship.

Definition: An instance of a problem is all the inputs needed to compute a solution to the problem.

Definition: An algorithm is a well defined computational procedure that transforms inputs into outputs, achieving the desired input-output relationship.

Definition: A correct algorithm halts with the correct output for every input instance. We can then say that the algorithm solves the problem.
Example of Problems and Instances

Computational Problem: Sorting

- **Input:** Sequence of \(n \) numbers \(\langle a_1, \cdots, a_n \rangle \).

- **Output:** Permutation (reordering)
 \[
 \langle a'_1, a'_2, \cdots, a'_n \rangle
 \]
 such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \).

Instance of Problem: \(\langle 8, 3, 6, 7, 1, 2, 9 \rangle \)
Example of Algorithm: Insertion Sort

In-Place Sort: uses only a fixed amount of storage beyond that needed for the data.

Pseudocode: \(A[1 \ldots n] \) is an array of numbers

\[
\text{for } j=2 \text{ to } n \{ \\
\text{key} = A[j]; \\
i = j-1; \\
\text{while } (i \geq 1 \text{ and } A[i] > \text{key}) \{ \\
A[i+1] = A[i]; \\
i--; \\
\} \\
A[i+1] = \text{key}; \\
\}
\]

Pause: How does it work?
Insertion Sort: an Incremental Approach

To sort a given array of length \(n \), at the \(i \)th step it sorts the array of the first \(i \) items by making use of the sorted array of the first \(i - 1 \) items in the \((i - 1) \)th step.

Example: Sort \(A = \langle 6, 3, 2, 4 \rangle \) with Insertion Sort.

Step 1: \(\langle 6, 3, 2, 4 \rangle \)

Step 2: \(\langle 3, 6, 2, 4 \rangle \)

Step 3: \(\langle 2, 3, 6, 4 \rangle \)

Step 4: \(\langle 2, 3, 4, 6 \rangle \)
Analyzing Algorithms

Predict resource utilization

1. Memory (space complexity)

2. Running time (time complexity)

Remark: Really depends on the model of computation (sequential or parallel). We usually assume sequential.
Analyzing Algorithms – Continued

Running time: the number of *primitive operations* used to solve the problem.

Primitive operations: e.g., addition, multiplication, comparisons.

Running time: depends on problem instance, often we find an upper bound: \(F(\text{input size}) \)

Input size: rigorous definition given later.

1. **Sorting:** number of items to be sorted
2. **Multiplication:** number of bits, number of digits.
3. **Graphs:** number of vertices and edges.
Three Cases of Analysis

Best Case: constraints on the input, other than size, resulting in the fastest possible running time.

Worst Case: constraints on the input, other than size, resulting in the slowest possible running time. Example. In the worst case Quicksort runs in $\Theta(n^2)$ time on an input of n keys.

Average Case: average running time over every possible type of input (usually involve probabilities of different types of input). Example. In the average case Quicksort runs in $\Theta(n \log n)$ time on an input of n keys. All $n!$ inputs of n keys are considered equally likely.

Remark: All cases are relative to the algorithm under consideration.
Three Analyses of Insertion Sorting

The number of comparisons needed is equal to
\[
\underbrace{1 + 1 + 1 + \cdots + 1}_{n-1} = n - 1 = \Theta(n).
\]

The number of comparisons needed is equal to
\[
1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2} = \Theta(n^2).
\]

Average Case: \(\Theta(n^2)\) assuming that each of the \(n!\) instances are equally likely.
Analytical Time Complexity Analysis

- We would like to compare efficiencies of different algorithms for the same problem, instead of different programs or implementations. This removes dependency on machines and programming skill.

- It becomes meaningless to measure absolute time since we do not have a particular machine in mind. Instead, we measure the number of steps. We call this the time complexity or running time and denote it by $T(n)$.

- We would like to estimate how $T(n)$ varies with the input size n.
Big-Oh

If A is a much better algorithm than B, then it is not necessary to calculate $T_A(n)$ and $T_B(n)$ exactly. As n increases, since $T_B(n)$ will grow much more rapidly, $T_A(n)$ will always be less than $T_B(n)$ for large enough n.

Thus, it suffices to measure the *growth rate* of time complexity to get a rough comparison.

$$f(n) = O(g(n))$$:

There exists constant $c > 0$ and n_0 such that $f(n) \leq c \cdot g(n)$ for $n \geq n_0$.
When estimating the growth rate of $T(n)$ using big-Oh:

- Ignore the low order terms.
- Ignore the constant coefficient of the most significant term.
- The remaining term is the estimate.
For example,

- \(n^2/2 - 3n = O(n^2) \)
- \(1 + 4n = O(n) \)
- \(\log_{10} n = \frac{\log_2 n}{\log_2 10} = O(\log_2 n) = O(\log n) \)
- \(\sin n = O(1) \), \(10 = O(1) \), \(10^{10} = O(1) \).
- \(\sum_{i=1}^{n} i^2 \leq n \cdot n^2 = O(n^3) \)
- \(\sum_{i=1}^{n} i \leq n \cdot n = O(n^2) \)
- \(2^{10n} \) is not \(O(2^n) \)
- \(7n^2 + 10n + 3 = O(n^2) = O(n^3) = O(n^4) \)
Big Omega and Big Theta

\[f(n) = \Omega(g(n)) \text{ (big-Omega):} \]

There exists constant \(c > 0 \) and \(n_0 \) such that
\[f(n) \geq c \cdot g(n) \text{ for } n \geq n_0. \]

\[f(n) = \Theta(g(n)) \text{ (big-Theta):} \]

\[f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)). \]
Some thoughts on Algorithm Design

- *Algorithm Design*, as taught in this class, is mainly about designing algorithms that have small big-Oh running times.

- “All other things being equal”, $O(n \log n)$ algorithms will run more quickly than $O(n^2)$ ones and $O(n)$ algorithms will beat $O(n \log n)$ ones.

- Being able to do good algorithm design lets you identify the *hard parts* of your problem and deal with them effectively.

- Too often, programmers try to solve problems using brute force techniques and end up with slow complicated code! A few hours of abstract thought devoted to algorithm design could have speeded up the solution substantially and simplified it.
Note: After algorithm design one can continue on to *Algorithm tuning* which would further concentrate on improving algorithms by cutting cut down on the *constants* in the big $O()$ bounds. This needs a good understanding of both algorithm design principles and efficient use of data structures. In this course we will not go further into algorithm tuning. For a good introduction, see chapter 9 in *Programming Pearls, 2nd ed* by Jon Bentley.