
Quick Sort 1

Quick Sort
As the name implies, it is quick, and it is the
algorithm generally preferred for sorting.

Quick Sort 2

Basic Ideas
(Another divide-and-conquer algorithm)

Pick an element, say P (the pivot)
Re-arrange the elements into 3 sub-blocks,

1. those less than or equal to (≤) P (the left-block S1)
2. P (the only element in the middle-block)
3. those greater than or equal to (≥) P (the right-

block S2)
Repeat the process recursively for the left- and
right- sub-blocks. Return {quicksort(S1), P,
quicksort(S2)}. (That is the results of quicksort(S1), followed by
P, followed by the results of quicksort(S2))

Quick Sort 3

Basic Ideas

Pick a “Pivot” value, P
Create 2 new sets without P

0 31
13 43

26 57
75

92 8165

0 13 26 31 43 57 65 75 81 92

quicksort(S1) quciksort(S2)

0 13 26 31 43 57 65 75 81 92

≤ ≤

≤ ≤

Items smaller than or equal to P Items greater than or equal to P

Quick Sort 4

Basic Ideas
S is a set of numbers

S1 = {x ∈ S – {P} | x ≤ P} S2 = { x∈ S – {P} | P ≤ x}P

Quick Sort 5

Basic Ideas
Note:

The main idea is to find the “right” position for the
pivot element P.
After each “pass”, the pivot element, P, should
be “in place”.
Eventually, the elements are sorted since each
pass puts at least one element (i.e., P) into its
final position.

Issues:
How to choose the pivot P ?
How to partition the block into sub-blocks?

Quick Sort 6

Implementation
Algorithm I:
int partition(int A[], int left, int right);
// sort A[left..right]
void quicksort(int A[], int left, int right)
{ int q ;

if (right > left)
{
q = partition(A, left, right);
// after ‘partition’
// A[left..q-1] ≤ A[q] ≤ A[q+1..right]
quicksort(A, left, q-1);
quicksort(A, q+1, right);
}

}

Quick Sort 7

Implementation
// select A[left] be the pivot element)int partition(int A[], int left, int right);{ P = A[left];

i = left;
j = right + 1;for(;;) //infinite for-loop, break to exit{ while (A[++i] < P) if (i >= right) break;// Now, A[i] ≥ Pwhile (A[--j] > P) if (j <= left) break;// Now, A[j] ≤ Pif (i >= j) break; // break the for-loopelse swap(A[i], A[j]); }if (j == left) return j ;
swap(A[left], A[j]);return j;}

Quick Sort 8

Example
Input: 65 70 75 80 85 60 55 50 45
P: 65 i
Pass 1: 65 70 75 80 85 60 55 50 45
(i) i j swap (A[i], A[j])

65 45 75 80 85 60 55 50 70
(ii) i j swap (A[i], A[j])

65 45 50 80 85 60 55 75 70
(iii) i j swap (A[i], A[j])

65 45 50 55 85 60 80 75 70
(iv) i j swap (A[i], A[j])

65 45 50 55 60 85 80 75 70
(v) j i if (i>=j) break

60 45 50 55 65 85 80 75 70 swap (A[left], A[j])
Items smaller than or equal to 65 Items greater than or equal to 65

Quick Sort 9

Example
Result of Pass 1: 3 sub-blocks:

60 45 50 55 65 85 80 75 70
Pass 2a (left sub-block): 60 45 50 55 (P = 60)

i j
60 45 50 55

j i if (i>=j) break
55 45 50 60 swap (A[left], A[j])

Pass 2b (right sub-block): 85 80 75 70 (P = 85)
i j

85 80 75 70
j i if (i>=j) break

70 80 75 85 swap (A[left], A[j])

Quick Sort 10

Running time analysis
The advantage of this quicksort is that we can sort “in-place”,
i.e., without the need for a temporary buffer depending on the
size of the inputs. (cf. mergesort)

Partitioning Step: Time Complexity is θ(n).
Recall that quicksort involves partitioning, and 2 recursive calls.

Thus, giving the basic quicksort relation:
T(n) = θ(n) + T(i) + T(n-i-1) = cn+ T(i) + T(n-i-1)

where i is the size of the first sub-block after partitioning.
We shall take T(0) = T(1) = 1 as the initial conditions.
To find the solution for this relation, we’ll consider three cases:

1. The Worst-case (?)
2. The Best-case (?)
3. The Average-case (?)

All depends on the value of the pivot!!

Quick Sort 11

Running time analysis
Worst-Case (Data is sorted already)

When the pivot is the smallest (or largest) element at
partitioning on a block of size n, the result

yields one empty sub-block, one element (pivot) in the
“correct” place and one sub-block of size (n-1)
takes θ(n) times.

Recurrence Equation:
T(1) = 1
T(n) = T(n-1) + cn

Solution: θ(n2)
Worse than Mergesort!!!

Quick Sort 12

Running time analysis
Best case:

The pivot is in the middle (median) (at each partition
step), i.e. after each partitioning, on a block of size n, the
result

yields two sub-blocks of approximately equal size and
the pivot element in the “middle” position
takes n data comparisons.

Recurrence Equation becomes
T(1) = 1
T(n) = 2T(n/2) + cn

Solution: θ(n logn)
Comparable to Mergesort!!

Quick Sort 13

Running time analysis
Average case:
It turns out the average case running time also is θ(n logn).
We will wait until COMP 271 to discuss the analysis.

Quick Sort 14

So the trick is to select a good pivot
Different ways to select a good pivot.

First element
Last element
Median-of-three elements

Pick three elements, and find the median x of
these elements. Use that median as the pivot.

Random element
Randomly pick a element as a pivot.

Quick Sort 15

Different sorting algorithms

Θ(1)Θ (n log n)Θ (n2)Quick Sort

Θ(n)Θ (n log n)Θ (n log n)Merge Sort

Θ(1)Θ (n2)Θ (n2)Insertion
Sort

Θ(1)Θ (n2)Θ (n2)Bubble Sort

Space
overhead

Average-
case time

Worst-case
time

Sorting
Algorithm

Quick Sort 16

Something extra : Selection problem.
Problem statement.

You are given a unsorted array A[1..n] of (distinct)
numbers, find a element from the array such that
its rank is i, i.e., there are exactly (i-1) numbers
less than or equal to that element.

Example :
A={5, 1, 2, 3, 12, 20, 30, 6, 14, -1, 0}, i=8.

Output = 12, since “6, 1, -1, 0, 2, 3, 5” (8-1=7 numbers) are all
less than or equal to 12.

Quick Sort 17

Selection problem : a easy answer.
A Easy algorithm.

Sort A, and return A[i].
Obviously it works, but it is slow !!! Θ (n log n) in
average.
We want something faster.

Quick Sort 18

Selection problem : a ‘faster’ answer.
We can borrow the idea from the partition algorithm.
Suppose we want to find a element of rank i in A[1..n].
After the 1st partition call (use a random element as pivot):
1. If the return index ‘q’ = i, then A[q] is the element we want.

(Since there is exactly i-1 elements smaller than or equal to
A[q]).

2. If the return index ‘q’ > i, then the target element can NOT be in
A[q .. right]. The target element is rank i in A[1.. q-1].
Recursive call with parameters (A, 1, q-1, i).

3. If the return index ‘q’ < i, then the target element can NOT be in
A[1 .. q]. The target element is rank i-q in A[q+1 ..n].
Recursive call with parameters (A, q+1,n, i-q).

Quick Sort 19

Quick Sort 20

A ‘faster’ selection algorithm : Codes

A[p..q-1] ≤ A[q] ≤ A[q+1..r]

size of A[p..q]= k

return a element of rank i in A[p..r]

Quick Sort 21

Analysis the ‘faster’ answer.
Though we claim it is a ‘fast’ algorithm, the worst-case
running time is O(n2) (see if you can prove it).
But the average-case running time is only O(n). (Again,
we will see the analysis in COMP 271).
There is an algorithm that runs in O(n) in the worst case,
again, we will talk about that in COMP 271.

	Quick Sort
	Basic Ideas
	Basic Ideas
	Basic Ideas
	Basic Ideas
	Implementation
	Implementation
	Example
	Example
	Running time analysis
	Running time analysis
	Running time analysis
	Running time analysis
	So the trick is to select a good pivot
	Different sorting algorithms
	Something extra : Selection problem.
	Selection problem : a easy answer.
	Selection problem : a ‘faster’ answer.
	A ‘faster’ selection algorithm : Codes
	Analysis the ‘faster’ answer.

