Lecture 3: The Polynomial Multiplication Problem

A More General Divide-and-Conquer Approach

Divide: Divide a given problem into subproblems (ideally of approximately equal size).

No longer only TWO subproblems

Conquer: Solve each subproblem (directly or recursively), and

Combine: Combine the solutions of the subproblems into a global solution.
The Polynomial Multiplication Problem
another divide-and-conquer algorithm

Problem:
Given two polynomials of degree \(n \)

\[
A(x) = a_0 + a_1 x + \cdots + a_n x^n
\]
\[
B(x) = b_0 + b_1 x + \cdots + b_n x^n,
\]
compute the product \(A(x)B(x) \).

Example:

\[
A(x) = 1 + 2x + 3x^2
\]
\[
B(x) = 3 + 2x + 2x^2
\]
\[
A(x)B(x) = 3 + 8x + 15x^2 + 10x^3 + 6x^4
\]

Question: How can we efficiently calculate the coefficients of \(A(x)B(x) \)?
Assume that the coefficients \(a_i \) and \(b_i \) are stored in arrays \(A[0 \ldots n] \) and \(B[0 \ldots n] \).
Cost of any algorithm is number of scalar multiplications and additions performed.
Convolutions

Let $A(x) = \sum_{i=0}^{n} a_i x^i$ and $B(x) = \sum_{i=0}^{m} b_i x^i$.

Set $C(x) = \sum_{k=0}^{n+m} c_k x^i = A(x)B(x)$.

Then

$$c_k = \sum_{i=0}^{k} a_i b_{k-i}$$

for all $0 \leq k \leq m + n$.

Definition: The vector $(c_0, c_1, \ldots, c_{m+n})$

is the **convolution** of the vectors

(a_0, a_1, \ldots, a_n) and (b_0, b_1, \ldots, b_m).

Calculating convolutions (and thus polynomial multiplication) is a major problem in digital signal processing.
The Direct (Brute Force) Approach

Let $A(x) = \sum_{i=0}^{n} a_i x^i$ and $B(x) = \sum_{i=0}^{n} b_i x^i$.

Set $C(x) = \sum_{k=0}^{2n} c_i x^i = A(x)B(x)$ with

$$c_k = \sum_{i=0}^{k} a_i b_{k-i}$$

for all $0 \leq k \leq 2n$.

The direct approach is to compute all c_k using the formula above. The total number of multiplications and additions needed are $\Theta(n^2)$ and $\Theta(n^2)$ respectively. Hence the complexity is $\Theta(n^2)$.

Questions: Can we do better? Can we apply the divide-and-conquer approach to develop an algorithm?
The Divide-and-Conquer Approach

The Divide Step: Define

\[A_0(x) = a_0 + a_1 x + \cdots + a_{\lfloor n/2 \rfloor -1} x^{\lfloor n/2 \rfloor -1}, \]
\[A_1(x) = a_{\lfloor n/2 \rfloor} + a_{\lfloor n/2 \rfloor +1} x + \cdots + a_n x^{n-\lfloor n/2 \rfloor}. \]

Then \(A(x) = A_0(x) + A_1(x) x^{\lfloor n/2 \rfloor}. \)

Similarly we define \(B_0(x) \) and \(B_1(x) \) such that

\[B(x) = B_0(x) + B_1(x) x^{\lfloor n/2 \rfloor}. \]

Then

\[A(x) B(x) = A_0(x) B_0(x) + A_0(x) B_1(x) x^{\lfloor n/2 \rfloor} + A_1(x) B_0(x) x^{\lfloor n/2 \rfloor} + A_1(x) B_1(x) x^{2 \lfloor n/2 \rfloor}. \]

Remark: The original problem of size \(n \) is divided into 4 problems of input size \(\frac{n}{2} \).
Example:

\[
\begin{align*}
A(x) & = 2 + 5x + 3x^2 + x^3 - x^4 \\
B(x) & = 1 + 2x + 2x^2 + 3x^3 + 6x^4 \\
A(x)B(x) & = 2 + 9x + 17x^2 + 23x^3 + 34x^4 + 39x^5 \\
& \quad + 19x^6 + 3x^7 - 6x^8
\end{align*}
\]

\[
\begin{align*}
A_0(x) & = 2 + 5x, & A_1(x) & = 3 + x - x^2, \\
A(x) & = A_0(x) + A_1(x)x^2 \\
B_0(x) & = 1 + 2x, & B_1(x) & = 2 + 3x + 6x^2, \\
B(x) & = B_0(x) + B_1(x)x^2
\end{align*}
\]

\[
\begin{align*}
A_0(x)B_0(x) & = 2 + 9x + 10x^2 \\
A_1(x)B_1(x) & = 6 + 11x + 19x^2 + 3x^3 - 6x^4 \\
A_0(x)B_1(x) & = 4 + 16x + 27x^2 + 30x^3 \\
A_1(x)B_0(x) & = 3 + 7x + x^2 - 2x^3 \\
A_0(x)B_1(x) + A_1(x)B_0(x) & = 7 + 23x + 28x^2 + 28x^3
\end{align*}
\]

\[
\begin{align*}
A_0(x)B_0(x) + (A_0(x)B_1(x) + A_1(x)B_0(x))x^2 + A_1(x)B_1(x)x^4 & = 2 + 9x + 17x^2 + 23x^3 + 34x^4 + 39x^5 + 19x^6 + 3x^7 - 6x^8
\end{align*}
\]
The Divide-and-Conquer Approach

The Conquer Step: Solve the four subproblems, i.e., computing

\[A_0(x)B_0(x), \ A_0(x)B_1(x), \ A_1(x)B_0(x), \ A_1(x)B_1(x) \]

by recursively calling the algorithm 4 times.
The Divide-and-Conquer Approach

The Combining Step: Adding the following four polynomials

\[A_0(x)B_0(x) \]
\[+ A_0(x)B_1(x)x^\left\lfloor \frac{n}{2} \right\rfloor \]
\[+ A_1(x)B_0(x)x^\left\lfloor \frac{n}{2} \right\rfloor \]
\[+ A_1(x)B_1(x)x^2\left\lfloor \frac{n}{2} \right\rfloor. \]

takes \(\Theta(n) \) operations. Why?
The First Divide-and-Conquer Algorithm

PolyMulti1\((A(x), B(x))\)
\[
\begin{align*}
A_0(x) &= a_0 + a_1x + \cdots + a_{\lfloor n/2 \rfloor-1}x^{\lfloor n/2 \rfloor-1}; \\
A_1(x) &= a_{\lfloor n/2 \rfloor} + a_{\lfloor n/2 \rfloor+1}x + \cdots + a_nx^{n-\lfloor n/2 \rfloor}; \\
B_0(x) &= b_0 + b_1x + \cdots + b_{\lfloor n/2 \rfloor-1}x^{\lfloor n/2 \rfloor-1}; \\
B_1(x) &= b_{\lfloor n/2 \rfloor} + b_{\lfloor n/2 \rfloor+1}x + \cdots + b_nx^{n-\lfloor n/2 \rfloor}; \\
U(x) &= PolyMulti1(A_0(x), B_0(x)); \\
V(x) &= PolyMulti1(A_0(x), B_1(x)); \\
W(x) &= PolyMulti1(A_1(x), B_0(x)); \\
Z(x) &= PolyMulti1(A_1(x), B_1(x)); \\
\text{return} &\left(U(x) + [V(x) + W(x)]x^{\lfloor n/2 \rfloor} + Z(x)x^{2\lfloor n/2 \rfloor}\right)
\end{align*}
\]
Running Time of the Algorithm

Assume \(n \) is a power of 2, \(n = 2^h \). By substitution (expansion),

\[
T(n) = 4T\left(\frac{n}{2}\right) + cn
\]
\[
= 4 \left[4T\left(\frac{n}{2^2}\right) + c\frac{n}{2} \right] + cn
\]
\[
= 4^2 T\left(\frac{n}{2^2}\right) + (1 + 2)cn
\]
\[
= 4^2 \left[4T\left(\frac{n}{2^3}\right) + c\frac{n}{2^2} \right] + (1 + 2)cn
\]
\[
= 4^3 T\left(\frac{n}{2^3}\right) + (1 + 2 + 2^2)cn
\]
\[
\vdots
\]
\[
= 4^i T\left(\frac{n}{2^i}\right) + \sum_{j=0}^{i-1} 2^j cn \quad \text{(induction)}
\]
\[
\vdots
\]
\[
= 4^h T\left(\frac{n}{2^h}\right) + \sum_{j=0}^{h-1} 2^j cn
\]
\[
= n^2 T(1) + cn(n - 1)
\]
\[
\text{(since } n = 2^h \text{ and } \sum_{j=0}^{h-1} 2^j = 2^h - 1 = n - 1)\]
\[
= \Theta(n^2).
\]

The same order as the brute force approach!
Comments on the Divide-and-Conquer Algorithm

Comments: The divide-and-conquer approach makes no essential improvement over the brute force approach!

Question: Why does this happen.

Question: Can you improve this divide-and-conquer algorithm?
Problem: Given 4 numbers

\[A_0, A_1, B_0, B_1 \]

how many multiplications are needed to calculate the three values

\[A_0B_0, A_0B_1 + A_1B_0, A_1B_1? \]

This can obviously be done using 4 multiplications but there is a way of doing this using only the following 3:

\[
\begin{align*}
Y &= (A_0 + A_1)(B_0 + B_1) \\
U &= A_0B_0 \\
Z &= A_1B_1
\end{align*}
\]

\(U\) and \(Z\) are what we originally wanted and

\[A_0B_1 + A_1B_0 = Y - U - Z. \]
Improving the Divide-and-Conquer Algorithm

Define

\[Y(x) = (A_0(x) + A_1(x)) \times (B_0(x) + B_1(x)) \]
\[U(x) = A_0(x)B_0(x) \]
\[Z(x) = A_1(x)B_1(x) \]

Then

\[Y(x) - U(x) - Z(x) = A_0(x)B_1(x) + A_1(x)B_0(x). \]

Hence \(A(x)B(x) \) is equal to

\[U(x) + [Y(x) - U(x) - Z(x)]x^{\left\lceil \frac{n}{2} \right\rceil} + Z(x) \times x^{2\left\lceil \frac{n}{2} \right\rceil} \]

Conclusion: You need to call the multiplication procedure 3, rather than 4 times.
The Second Divide-and-Conquer Algorithm

\[
\text{PolyMulti2}(A(x), B(x)) \\
\{ \\
 A_0(x) = a_0 + a_1 x + \cdots + a_{\lfloor \frac{n}{2} \rfloor - 1} x^{\lfloor \frac{n}{2} \rfloor - 1}; \\
 A_1(x) = a_{\lfloor \frac{n}{2} \rfloor} + a_{\lfloor \frac{n}{2} \rfloor + 1} x + \cdots + a_n x^{n - \lfloor \frac{n}{2} \rfloor}; \\
 B_0(x) = b_0 + b_1 x + \cdots + b_{\lfloor \frac{n}{2} \rfloor - 1} x^{\lfloor \frac{n}{2} \rfloor - 1}; \\
 B_1(x) = b_{\lfloor \frac{n}{2} \rfloor} + b_{\lfloor \frac{n}{2} \rfloor + 1} x + \cdots + b_n x^{n - \lfloor \frac{n}{2} \rfloor}; \\
\}
\]

\[
Y(x) = \text{PolyMulti2}(A_0(x) + A_1(x), B_0(x) + B_1(x)) \\
U(x) = \text{PolyMulti2}(A_0(x), B_0(x)); \\
Z(x) = \text{PolyMulti2}(A_1(x), B_1(x)); \\
\]

\[
\text{return } \left(U(x) + [Y(x) - U(x) - Z(x)]x^{\lfloor \frac{n}{2} \rfloor} + Z(x)x^{2\lfloor \frac{n}{2} \rfloor} \right); \\
\]
Running Time of the Modified Algorithm

Assume $n = 2^h$. Let $\lg x$ denote $\log_2 x$.

By the substitution method,

$$T(n) = 3 T\left(\frac{n}{2}\right) + cn$$

$$= 3 \left[3 T\left(\frac{n}{2^2}\right) + c \frac{n}{2} \right] + cn$$

$$= 3^2 T\left(\frac{n}{2^2}\right) + \left(1 + \frac{3}{2}\right) cn$$

$$= 3^2 \left[3 T\left(\frac{n}{2^3}\right) + c \frac{n}{2^2} \right] + \left(1 + \frac{3}{2}\right) cn$$

$$= 3^3 T\left(\frac{n}{2^3}\right) + \left(1 + \frac{3}{2} + \left\lfloor \frac{3}{2} \right\rfloor^2 \right) cn$$

$$\vdots$$

$$= 3^h T\left(\frac{n}{2^h}\right) + \sum_{j=0}^{h-1} \left\lfloor \frac{3}{2} \right\rfloor^j c n.$$

We have

$$3^h = \left(2^{\lg 3}\right)^h = 2^h \cdot \lg 3 = (2^h)^{\lg 3} = n^{\lg 3} \approx n^{1.585},$$

and

$$\sum_{j=0}^{h-1} \left\lfloor \frac{3}{2} \right\rfloor^j = \frac{(3/2)^h - 1}{3/2 - 1} = 2 \cdot \frac{3^h}{2^h} - 2 = 2 n^{\lg 3 - 1} - 2.$$

Hence

$$T(n) = \Theta\left(n^{\lg 3} T(1) + 2 c n^{\lg 3}\right) = \Theta(n^{\lg 3}).$$
The divide-and-conquer approach doesn’t always give you the best solution. Our original D-A-C algorithm was just as bad as brute force.

There is actually an $O(n \log n)$ solution to the polynomial multiplication problem. It involves using the *Fast Fourier Transform* algorithm as a subroutine. The FFT is another classic D-A-C algorithm (Chapt 30 in CLRS gives details).

The idea of using 3 multiplications instead of 4 is used in large-integer multiplications. A similar idea is the basis of the classic *Strassen matrix multiplication algorithm* (CLRS, Chapter 28).