Lecture 5: The Linear Time Selection in the worst case

In the last lecture, we discussed a randomized selection algorithm that runs in $O(n)$ in average. In this class, we discuss a deterministic algorithm that runs in $O(n)$ in the worst case.
Observation and Intuition

If we follow the Partition idea to solve the selection problem, which step(s) make the worst case running time becomes $O(n^2)$?

We make a ‘bad’ split in each iteration. So the trick here is in each iteration, we ‘pick’ a good element such that it ‘guarantees’ a good split.

How to get such a ‘good’ element in each iteration?
1. Divide the $n = p - r + 1$ items into $\lceil n/5 \rceil$ sets in which each, except possibly the last, contains 5 items. $O(n)$

2. Find median of each of the $\lceil n/5 \rceil$ sets. $O(n)$

3. Take these $\lceil n/5 \rceil$ medians and put them in another array. Use DSelection() to recursively calculate the median of these medians. Call this x. $T(n/5)$

4. Partition the original array using x as the pivot. Let q be index of x, i.e., x is the $k = q - p + 1$’st smallest element in original array. $O(n)$

5. If $i = k$ return x
 If $i < k$ return DSelection(A,p,q-1,i)
 If $i > k$ return DSelection(A,q+1,r,i-k)
 $T(\max(q - p, r - q))$
Termination condition:
If \(n \leq 5 \) sort the items and return the \(i \)th largest.

The algorithm returns the correct answer because lines 4 and 5 will always return correct solution, no matter which \(x \) is used as pivot.

The reason for lines 1, 2, and 3 is to guarantee that \(x \) is “near” the center of the array \(\Rightarrow \) a ’good’ split.

How many elements in \(A \) are greater (less) than \(x \)?. Answer (proven next page): At least

\[
\frac{3n}{10} - 6.
\]

Assuming that \(T(n) \) is non-decreasing this implies that time used by step 5 is at most

\[
T\left(\frac{7n}{10}\right) + 6.
\]
Lemma: At least \[\frac{3n}{10} - 6\] elements are greater (less) than \(x\).

Proof: We assume that all elements are distinct (not needed but makes the analysis a bit cleaner).

At least 1/2 of the \(\left\lfloor \frac{n}{5} \right\rfloor\) medians in step 2 are greater than \(x\).

Ignoring the group to which \(x\) belongs and the (possibly small) final group this leaves \(\frac{1}{2} \left\lfloor \frac{n}{5} \right\rfloor - 2\) groups whose medians are greater than \(x\).

Each such group has at least 3 items greater than \(x\). Then, number of items greater than \(x\) is at least

\[3 \left(\frac{1}{2} \left\lfloor \frac{n}{5} \right\rfloor - 2 \right) \geq \frac{3n}{10} - 6\]

Analysis of number less than \(x\) is exactly the same!
Running Time of Algorithm

Assume any input with \(n \leq 140 \) uses \(O(1) \) time.

Let \(a \) be such that Steps 1, 3, 4 need at most \(an \) time.

Assume that \(T(n) \) is non-decreasing. Then

\[
T(n) \leq \begin{cases}
\Theta(1) & \text{if } n \leq 140 \\
T\left(\lfloor n/5 \rfloor \right) + T\left(7n/10 + 6\right) + an & \text{if } n > 140
\end{cases}
\]

We will show, by induction that \(T(n) \leq cn, \forall n > 0 \).
Choose \(c \) large enough that
\(\forall n \leq 140, T(n) \leq cn \).
By induction hypothesis

\[
T(n) \leq T\left(\lfloor n/5 \rfloor \right) + T\left(7n/10 + 6\right) + an
\leq c \lfloor n/5 \rfloor + c(7n/10 + 6) + an
\leq cn/5 + c + 7cn/10 + 6c + an
= 9cn/10 + 7c + an
= cn + (-cn/10 + 7c + an)
\]
Have already seen that

\[T(n) \leq cn + (-cn/10 + 7c + an). \]

We want to show that \(T(n) \leq cn \) so we would be finished if, \(\forall n \geq 140 \)

\[
0 \geq -cn + 70c + 10an \\
= -c(n - 70) + 10an
\]

or

\[c \geq 10a(n/(n - 70)). \]

Since \(n \geq 140 \) we have \(n/(n - 70) < 2 \) so this will be true for any \(c \geq 20a \) and we have shown that \(T(n) \leq cn \) for all \(n \geq 140 \) and

\[T(n) = O(n). \]