Lecture 11: Dynamic Programming
CLRS Chapter 15

Outline of this section

- Introduction to Dynamic programming; a method for solving optimization problems.
- Dynamic programming vs. Divide and Conquer
- A few examples of Dynamic programming
 - the 0-1 Knapsack Problem
 - Chain Matrix Multiplication
 - All Pairs Shortest Path
 - The Floyd Warshall Algorithm: Improved All Pairs Shortest Path
Recalling Divide-and-Conquer

1. **Partition** the problem into particular subproblems.

2. **Solve** the subproblems.

3. **Combine** the solutions to solve the original one.

Remark: In the examples we saw the subproblems were usually **independent**, i.e. they did not call the same subsubproblems. If the subsubproblems were **not** independent, then D&C could be resolving many of the same problems many times. Thus, it does **more work than necessary**!

Dynamic programming (DP) solves every subsubproblem exactly once, and is therefore more efficient in those cases where the subsubproblems are not independent.
The Intuition behind Dynamic Programming

Dynamic programming is a method for solving optimization problems.

The idea: Compute the solutions to the subsub-problems once and store the solutions in a table, so that they can be reused (repeatedly) later.

Remark: We trade space for time.
0-1 Knapsack Problem

Informal Description: We have n items. Let v_i denote the value of the i-th item, and let w_i denote the weight of the i-th item. Suppose you are given a knapsack capable of holding total weight W.

Our goal is to use the knapsack to carry items, such that the total values are maximum; we want to find a subset of items to carry such that

- The total weight is at most W.
- The total value of the items is as large as possible.

We cannot take parts of items, it is the whole item or nothing. (This is why it is called 0-1.)

How should we select the items?
0-1 Knapsack Problem

Formal description:
Given $W > 0$, and two n-tuples of positive numbers
\[\langle v_1, v_2, \ldots, v_n \rangle \quad \text{and} \quad \langle w_1, w_2 \ldots, w_n \rangle, \]
we wish to determine the subset
\[T \subseteq \{1, 2, \ldots, n\} \] (of items to carry) that

maximizes \[\sum_{i \in T} v_i, \]
subject to \[\sum_{i \in T} w_i \leq W. \]

Remark: This is an optimization problem. The Brute Force solution is to try all 2^n possible subsets T.

Question: Is there a better way?
Yes. Dynamic Programming!
General Schema of a DP Solution

Step 1: **Structure:** Characterize the structure of an optimal solution by showing that it can be decomposed into *optimal* subproblems.

Step 2: **Recursively** define the value of an optimal solution by expressing it in terms of optimal solutions for smaller problems (usually using min and/or max).

Step 3: **Bottom-up computation:** Compute the value of an optimal solution in a bottom-up fashion by using a table structure.

Step 4: **Construction of optimal solution:** Construct an optimal solution from computed information.
Remarks on the Dynamic Programming Approach

- Steps 1-3 form the basis of a dynamic-programming solution to a problem.

- Step 4 can be omitted if only the value of an optimal solution is required.
Developing a DP Algorithm for Knapsack

Step 1: Decompose the problem into smaller problems.

We construct an array $V[0..n, 0..W]$. For $1 \leq i \leq n$, and $0 \leq w \leq W$, the entry $V[i, w]$ will store the maximum (combined) value of any subset of items $\{1, 2, \ldots, i\}$ of (combined) weight at most w.

That is

$$V[i, w] = \max \left\{ \sum_{j \in T} v_j : T \subseteq \{1, 2, \ldots, i\}, \sum_{j \in T} w_j \leq w \right\}.$$

If we can compute all the entries of this array, then the array entry $V[n, W]$ will contain the solution to our problem.

Note: In what follows we will say that T is a solution for $[i, w]$ if $T \subseteq \{1, 2, \ldots, i\}$ and $\sum_{j \in T} w_j \leq w$ and that T is an optimal solution for $[i, w]$ if T is a solution and $\sum_{j \in T} v_j = V[i, w]$.

Developing a DP Algorithm for Knapsack

Step 2: Recursively define the value of an optimal solution in terms of solutions to smaller problems.

Initial Settings: Set

\[
V[0, w] = 0 \quad \text{for } 0 \leq w \leq W, \quad \text{no item}
\]

\[
V[i, w] = -\infty \quad \text{for } w < 0, \quad \text{illegal}
\]

Recursive Step: Use

\[
V[i, w] = \max(V[i-1, w], v_i + V[i-1, w-w_i])
\]

for \(1 \leq i \leq n, 0 \leq w \leq W\).

Intuitively, an optimal solution would either choose item \(i\) or not choose item \(i\).
Step 3: Bottom-up computation of $V[i, w]$
(using iteration, not recursion).

Bottom: $V[0, w] = 0$ for all $0 \leq w \leq W$.

Bottom-up computation: Computing the table using
$V[i, w] = \max(V[i - 1, w], v_i + V[i - 1, w - w_i])$
row by row.
Example of the Bottom-up computation

Let $W = 10$ and

\[
\begin{array}{c|cccc}
 i & 1 & 2 & 3 & 4 \\
 v_i & 10 & 40 & 30 & 50 \\
 w_i & 5 & 4 & 6 & 3 \\
\end{array}
\]

<table>
<thead>
<tr>
<th>$V[i, w]$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 0$</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

Remarks:

- The final output is $V[4, 10] = 90$.

- The method described does not tell which subset gives the optimal solution. (It is $\{2, 4\}$ in this example).
The Dynamic Programming Algorithm

KnapSack(v, w, n, W)
{
 for (w = 0 to W) V[0, w] = 0;
 for (i = 1 to n)
 for (w = 0 to W)
 if (w[i] ≤ w)
 V[i, w] = max{V[i - 1, w], v[i] + V[i - 1, w - w[i]]};
 else
 V[i, w] = V[i - 1, w];
 return V[n, W];
}

Time complexity: Clearly, $O(nW)$.
Constructing the Optimal Solution

- The algorithm for computing \(V[i, w] \) described in the previous slide does not record which subset of items gives the optimal solution.

- To compute the actual subset, we can add an auxiliary boolean array \(\text{keep}[i, w] \) which is 1 if we decide to take the \(i \)-th file in \(V[i, w] \) and 0 otherwise.

Question: How do we use all the values \(\text{keep}[i, w] \) to determine the subset \(T \) of files having the maximum computing time?
Constructing the Optimal Solution

Question: How do we use the values \(\text{keep}[i, w] \) to determine the subset \(T \) of items having the maximum computing time?

If \(\text{keep}[n, W] \) is 1, then \(n \in T \). We can now repeat this argument for \(\text{keep}[n - 1, W - w_n] \).

If \(\text{keep}[n, W] \) is 0, then \(n \notin T \) and we repeat the argument for \(\text{keep}[n - 1, W] \).

Therefore, the following partial program will output the elements of \(T \):

\[
K = W; \\
\text{for } (i = n \text{ downto } 1) \\
\quad \text{if } (\text{keep}[i, K] == 1) \\
\quad \quad \{ \\
\quad \quad \quad \text{output } i; \\
\quad \quad \quad K = K - w[i]; \\
\quad \quad \} \\
\]
The Complete Algorithm for the Knapsack Problem

KnapSack(v, w, n, W)
{
 for (w = 0 to W) V[0, w] = 0;
 for (i = 1 to n)
 for (w = 0 to W)
 if ((w[i] ≤ w) and (v[i] + V[i - 1, w - w[i]] > V[i - 1, w]))
 {V[i, w] = v[i] + V[i - 1, w - w[i]]; keep[i, w] = 1;}
 else
 {V[i, w] = V[i - 1, w]; keep[i, w] = 0;}
 K = W;
 for (i = n downto 1)
 if (keep[i, K] == 1)
 {output i;
 K = K - w[i];
 }
 return V[n, W];
}
Dynamic Programming vs. Divide-and-Conquer

The Dynamic Programming algorithm developed runs in $O(nW)$ time.
We started by deriving a recurrence relation for solving the problem

$$V[0, w] = 0$$
$$V[i, w] = \max(V[i - 1, w], v_i + V[i - 1, w - w_i])$$

Question: why can’t we simply write a top-down divide-and-conquer algorithm based on this recurrence?
Answer: we could, but it could run in time $\Theta(2^n)$ since it might have to recompute the same values many times.

Dynamic programming saves us from having to recompute previously calculated subsolutions!
Final Comment

Divide-and-Conquer works Top-Down.

Dynamic programming works Bottom-Up.