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 We saw in the last part that the multinomial distribution was over 
counts of outcomes, given the probability of each outcome and the 
total number of outcomes.

 That’s all smashing, but suppose we wanted to know the reverse, 
i.e. the probability that the distribution underlying our random 
variable has outcome probabilities of p1, ... , pk, given that we 
observed each outcome x1, ... , xk times.

 In other words, we are considering all the possible probability 

distributions (p1, ... , pk) that could have generated these counts, 
rather than all the possible counts given a fixed distribution.

f(x1, ... , xk | n, p1, ... , pk)=  [n! / ∏xi!] ∏pi
xi

The count of 

each outcome.
The probability of 

each outcome.



 Initial attempt at a probability mass function: Just swap the 

domain and the parameters:

 Notational convention is that we define the support as a 

vector x, so let’s relabel p as x, and the counts x as α...

 We can define n just as the sum of the counts:

f(p1, ... , pk | n, x1, ... , xk )=  [n! / ∏xi!] ∏pi
xi

The RHS is 

exactly the same.

f(x1, ... , xk | n, α1, ... , αk )=  [n! / ∏ αi!] ∏xi
αi

f(x1, ... , xk | α1, ... , αk )=  [(∑αi)! / ∏ αi!] ∏xi
αi



 But wait, we’re not quite there yet. We know that 

probabilities have to sum to 1, so we need to restrict the 

domain we can draw from:

 We say that our distribution is defined over the 

simplex. What the rabid monkey does that mean?!

s.t. ∑xi = 1



Simplex

 In the 2D case where we have 2 outcomes, if we plotted 
p1 and p2 on a graph we’d get this:

 i.e. Our choice of p1 and p2 are not unbounded but 
restricted to the line-segment satisfying p1 + p2 = 1, an 
example of a 1-simplex.
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A 1-simplex



Simplex

 In the 3D case, we’d have a 2-simplex space, which is a triangle:

 In general for n probabilities our probability space is on a n-1
simplex (we lose a degree of freedom simply because one 
probability can be determined by deducting all the others from 1).
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Geometrically speaking, an n-simplex is an 

n-dimensional polytope (i.e. a 

polygon/polyhedron generalised to any 

number of dimensions) with n+1 vertices. 

So a 2-simplex is a triangle, a 3-simplex is 

a tetrahedron, etc.



The Gamma Function

 It would be nice to define our counts over real numbers. But 
we have αi! in our equation, and the factorial function is only 
defined over positive integers. 

 The gamma function Γ is the same as the factorial function for 
positive integers (if we deduct 1), but can take any real number, 
including negative ones!





Dirichlet Distribution

 Putting all this together, we get:

 This is the probability density function for the Dirichlet 
Distribution!

 Our αi values are known as pseudocounts or 
concentration parameters (we’ll see what we mean by ‘pseudo’ later).

 It’s actually cleaner to say each event was observed αi

– 1 times, because we need to add 1 to any expression 
within a Γ so that it has the same behaviour as the 
factorial function.

f(x1, ... , xk | α1, ... , αk )=  [Γ(∑αi) / ∏ Γ(αi)] ∏xi
αi – 1

s.t. xi > 0,∑xi = 1 and αi > 0

?



Dirichlet Distribution

 Let’s see an example. Suppose we have a dice with 6 

possible outcomes, and we observed each outcome 

(1,2,3,4,5,6) 9 times. Thus αi = 10  ∀i. 

 Then each draw from the Dirichlet (from a 5-simplex) 

gives us a set of probabilities for each of the outcomes, 

i.e. a distribution for a single throw. 
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1 (Other 3 dimensions not 

visible to the naked eye).

x = (1,0,0,0,0,0). i.e. A stupidly unfair dice. 
Remember the p.d.f. for the Dirichlet gives us the 

probability that the dice actually has this distribution.

x = (1/6,1/6,1/6,1/6,1/6,1/6). i.e. A fair dice. 
We’ve chosen a point from the middle of the simplex.



Dirichlet Distribution

 So what happens to our probability density function as 

we change the concentration parameters? 
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When our counts are 0 (therefore αi = 1 

∀i), we haven’t made any observations, so 

all possible distributions are equally likely! 

(i.e. our Dirichlet has uniform 

distribution)
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When our counts are the same but >0 (say αi = 

c+1 ∀i), we expect the dice to be fair, but it’s still 

possible for unfair dice to give identical counts on 

multiple throws. Therefore we have a higher 

probability towards the centre of the simplex.

Higher probability towards the 

centre (i.e. of a ‘fairer’ dice).

Prob at corners = 0; if on the dice the 

only non-0 prob is throwing a 4 say, then 

it’s impossible to have non-0 counts for 

1,2,3,5,6; a contradiction.

Remember the x’s here are 

just the probability of each 

outcome, i.e. each component 

of the support vector.



Dirichlet Distribution

 So what happens to our probability density function as 

we change the concentration parameters αi ? 
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When one count is greater than the 

others, then we favour probability 

distributions that give a higher 

probability to this outcome.
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When the αi are less than 1, then conceptually it’s no longer 

helpful to think about actual counts, because they are less 

than 0! But the distribution just happens to have the nice 

property that distributions are favoured where one of the 

outcomes is dominant (but you don’t care which).

Higher probability towards the 

corners



Dirichlet

 The Dirichlet Distribution gives the probability of a particular 

distribution given we have observed some counts of each outcome 

(having done repeated trials).

 i.e. We have a distribution over distributions!

 xi is the probability of each outcome.

 αi – 1 is the count of each outcome (and αi > 0).

 It only makes sense to draw from the Dirichlet over a simplex, 

since this ensures what we draw is a valid distribution.

 It’s possible to define the Dirichlet Distribution for fractional and 

negative counts – that’s why we call them ‘pseudo counts’.

 Conceptually, the Dirichlet Distribution is the reverse of the 

Multinomial.  We’ll see why that’s useful later...



Beta Distribution

 Just a special case of the Dirichlet Distribution, where we 

have just 2 outcomes.

 We can think of it as the reverse of the Binomial 

Distribution – given a number of successes out of n 

trials, what is the probability that our success probability 

p has a particular value?

 e.g. Given we flipped a coin 100 times and got 50 heads, 

what is the probability that p(H) = 0.5?*

* But remember we’re going to have a probability density function here because our support (i.e. the prob of heads) is a 

continuous variable.



Beta Distribution

 If our concentration parameters are α and β, then our 

probability density function is:

This is just a 

simplification from 

our Dirichlet p.d.f. 

before.

B(α,β) is known as 

the beta function.

x is a single parameter for 

the prob of success.*

f(x)

* I hope you’re not too confused by the fact that we have a probability of a probability. It’s better to think of the 

probability of success as ‘just a value’; a value which can vary according to some other distribution.



Beta Distribution

Here we’ve seen 1 Head 

and 1 Tail. It makes sense 

that we’re more likely to 

have a fair coin (when 

x=0.5) than an unfair 

one.

x (i.e. P(Head))

f(
x
) 

(i
.e

. p
(P
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e
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))
)

Don’t be upset that our y axis 

goes above 1. Remember a probability density 

function can give a value >1; we only require 

that the area under the curve is = 1.



Beta Distribution

 E[X] = α / (α + β) *

 We can informally see this from the Binomial Distribution. In 

the BD, α = np (where α = E[#heads]). Since n = α + β, 

E[Pr(Heads)] = p = (α + β) / α.

 There’s one last distribution called the Gamma 

Distribution, which can be conceptually thought of as the 

reverse of the Poisson Distribution, but let’s have a look at 

conjugate priors first...

•You might be wondering why it’s not α-1 / (α-1 + β-1). That actually gives the mode, i.e. The outcome with the highest 

probability (or equivalently in a sample, the outcome with the highest count). If we had say 70 heads and 30 tails, then we 

expect the most likely (but NOT the ‘mean’ average) value of p(Heads) to be 70/100 = 0.7.

•This is quite interesting. If we have 1 head and 0 tails for example, the ‘most likely’ p(Heads) is obviously 1, but the (mean) 

average is actually 0.66. The graph in this case is linear, because trivially the probability density function of getting a head in a 

single throw (i.e. our stated counts) is proportional to our p(Head) value in the support.



Conjugate Priors

 Consider that we have some parameter θ that governs 

some model, and we make some observation x. From 

Baye’s theorem, we have:
Likelihood Prior

Posterior

This is just the 

reverse of 

marginalisation*.

* Marginalisation just says we can get p(x) from p(x,θ) by summing over possible θ. Oh, and remember that 

p(x, θ) = p(x| θ)p(θ).

(Beware: Engineers 

typically use z for the 

observation and x for 

the parameter.)



Conjugate Priors

 Calculating that integral might well be as hard as 
getting a hamster to do stand-up comedy...

 Suppose that we already know our distribution for the 
likelihood p(x | θ).

 It’s possible to make a sensible choice for the prior such 
that our integral eventually disappears, plus the 
posterior distribution takes the same form as the 
prior. Now that’s magic...

So a rabbit, an Irish gerbil 

and a Rabbi mouse walk 

into a hutch...



Conjugate Priors

 Let’s take an example. Suppose we have some single 

parameter θ which is the probability of heads.

 Suppose our observation is the number of heads k in n 

flips. Then our likelihood function is just the Binomial 

Distribution.

 But ‘n’ was really something that was observed (i.e. we 

want it on the LHS of the | ), so let’s use s = k (successes) 

and f = n-k (failures):

Remember, it’s a likelihood function because its the probability of some observation (i.e. number of heads) given some 

underlying parameter (our θ value).



Conjugate Priors

 So we have our given likelihood model. What can we choose 
for the prior, p(θ)?

 Let’s try using the beta function. Recall our p.d.f:

 Remember that α-1 and β-1 were counts of heads and tails. 
We can choose them to reflect prior belief of what generated 
θ*. If we haven’t the foggiest, we can just choose α = 1 and β = 
1, which gives a uniform distribution (since with no counts, it’s 
impossible to tell what the prob of heads is).

 α and β are called hyperparameters, to distinguish them 
from the underlying parameters of the model (i.e. θ). 

f(x = θ)

*Important point:  By counts α-1 and β-1 we don’t mean the counts from the observation, we mean a prior belief of what 

counts generated θ. Otherwise it would be the posterior and not the prior!

(Recall the Beta function 

B(α, β) is the inverse of 

this thing on the front).



Conjugate Priors

 Now here’s the clever bit... What happens when we 

combine our likelihood and prior to get the posterior?



Conjugate Priors

Add the powers.

Take the constants out of 

the integral + introduce 

B(s+α,f+β) term (such 

that it cancels itself out)



Conjugate Priors

The integral just becomes 1, we 

had the p.d.f. of a beta 

distribution –

summing/integrating the p.d.f

over all values of the support 

(for any valid distribution) 

obviously gives 1* 

*If that doesn’t seem obvious, then remember that for a discrete distribution, if we add up all the probabilities of each of the

outcomes, they add up to 1. It’s the same thing here, except that with continuous distributions we integrate to get 1.



Conjugate Priors

 Is it surprising that we ended up with Beta(s+α-1,f+β-1) 

as the distribution for the posterior?

 Not really... For the prior we had some ‘prior’ 

evidence/belief of the counts. 

HTHTTTH
Throws (i.e. 

Evidence):



Conjugate Priors

 If we introduce some new evidence (the probability of which is 

defined by the likelihood), then our updated probability of θ
(i.e. the posterior) is based on the combined prior belief and 

actual observed evidence – where the combined count is 

obviously just the counts of the two sets of trials.

HTHTTTH
Throws (i.e. 

Evidence):
TTHHHTTHTHTTH



Conjugate Priors

 So what do we mean by conjugate prior?

 If the prior distribution is the same ‘kind’ as that of the 

posterior distribution, then these are conjugate 

distributions, and the prior is called the conjugate 

prior of the likelihood.
Likelihood

(e.g. binomial)
Prior

(e.g. beta)

Posterior 

(e.g. beta)

Conjugate 

distributions

conjugate prior 

of...



Conjugate Priors

 So what have we done...?

 We have some existing probability model for the likelihood 

p(x| θ), but we want to work out the the posterior p(θ |x).

 This would often involve some difficult integration...

 We choose the conjugate prior as the distribution for the 

prior, with suitable hyperparameters.

 We then know the distribution of the posterior is the same 

form as the prior (i.e. conjugates), and we can avoid nasty 

integration.

 The fact the posterior and prior have the same form is useful 

because we can repeatedly add new evidence (where each 

time the prior evidence is the evidence we previously saw).



Conjugate Priors
 We previously said that a Dirichlet distribution was the ‘reverse’ of 

the multinomial, and the Beta the ‘reverse’ of the Binomial, in the 
sense that we just swapped round the parameters and the 
support.*

 Because we swapped things round between the two distributions 
and because we also swapped things round from likelihood p(x|θ) to 
prior p(θ) (except we have some prior evidence rather than actual 
evidence), we end up multiplying 2 equations of the same form –
which allows our simplification tricks (e.g. adding powers) in 
calculating the posterior.

P(x| θ)
swap!

P(θ | hyperparams)

*There is a MAJOR disclaimer with this. While it is true that we are ‘flipping’ the support and parameters, we do not 

necessarily need the same conceptual thing. The Beta distribution is also the conjugate prior of the Geometric 

Distribution for example. While the later is conceptually quite different from the Binomial, the p.m.f. has a similar form, so 

in this case we can still apply the same tricks.



Conjugate Priors

Likelihood Conjugate Prior 

Distribution

Bernoulli Beta

Binomial Beta

Multinomial Dirichlet

Geometric Beta

Poisson Gamma

Gaussian Gaussian

This last one is damn handy in something 

called a Kalman Filter.



Gamma Distribution

 All that’s left is to describe the Gamma Distribution. It can be 
thought of as the reverse (almost!) of the Poisson 
Distribution.

 Recall that the Poisson Distribution was the number of events 
in a fixed time given some rate at which events occurs.*

 The Gamma Distribution gives us the total time to perform k 
events, given the average time of each is θ (i.e. the inverse of 
the rate).

 So before, we fixed the total time and wanted to know how 
many events occurred – now we’re fixing the number of 
events and want to know the total time.

 The rate is still a parameter, except with the Gamma 
Distribution we specify the (average) period θ between events 
instead.

* A Poisson Process describes what’s going on. We have a fixed average rate/period in which our events occur, each event 

happens independently of each other, and the Poisson Distribution describes the number of events. 



Gamma Distribution

 Example: A rabid monkey has 100 bananas. He lobs a 

banana at his target on average every 1 minute. What is 

the distribution that governs the time it takes before the 

monkey is banana-less?



Gamma Distribution

I just typed in Gamma(100,1) into Wolfram Alpha to get this graph. It will initially think you mean the ‘gamma function’ 

rather than the gamma distribution, so click on the ‘Use as a probability distribution’ link.

Rather unremarkably, we expect the average amount of time to be 100 minutes. Obviously:

The probability density function is:

E[X] = k θ (But curiously, the most likely amount of time 

is (k-1) θ = 99 minutes!)



Summary (of everything!)

Bernoulli

Binomial

Multinomial

Gaussian

Poisson

Geometric

Beta

Dirichlet

Gamma



Fini

That’s all folks...


