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The basics...

 Random Variable: The name of an experiment with a 
probabilistic outcome.

 Probability Distribution: For some random variable Y, 
specifies the prob Pr(Y=yi) that Y will take value yi (for all 
yi). 

 For convenience, we can write Pr(Y= yi) as P(yi). (but 

remember this is just a convenience, the input of the probability function is an event, not 
a value)

 The support of a probability distribution can be loosely 
thought of as the closure of the set of possible values of a 
random variable having that distribution. 

By definition the support doesn’t contain values that map to a 

probability of 0, i.e. we don’t give a monkeys about ‘impossible events’.



The basics...

 Just like any old function, probability distributions can be 
discrete (i.e. although not necessarily finite), or continuous 
(e.g. picking a real number in the range [0,100]).

 What distinguishes a probability distribution from a normal 
function is that the probabilities must sum to 1*.

 If we have a distribution D, then x ~ D means to ‘draw’ a value 
from the distribution. For example, if we used Dicen to 
represent an n-sided dice, then x ~ Dicen means we have rolled 
the dice, and got the value x. The drawn value is an 
element of the support, and picked randomly accordingly 
to the associated probabilities.

 A sample is merely a number of draws from the (same) 
distribution. It is useful for estimating the underlying 
parameters of a distribution.

* At least in the discrete case. We’ll see later what the requirement is for a continuous probability distribution.



The basics...

 The expected value E[X] of a random variable X is (to be 
technical) its integral with respect to its underlying probability 
measure. 

 In Layman’s terms, it’s the average value of X. For discrete
distributions we can calculate it by summing over the domain 
of X, each outcome weighted by its probability:

 For a fair 3-sided dice this would be (1/3)*1 + (1/3)*2 + 
(1/3)*3 = 2.

 We’ll revisit the mean for continuous distributions later.

 We express the mean as the symbol µ:



The basics...

 Notice that E[X] is dependent on the underlying 
distribution for X being known. When we have a 
sample, we just use some primary school mathematics 
to determine the sample mean:

 Note that the population mean µ (i.e. the mean of the 
underlying distribution) is not (in general) the same as 
the sample mean x ̄. But we expect µ = x ̄ as n→∞. 

 If the sample reflects the underlying distribution though 
(e.g. a sample of 1,2,3,4,5,6 for a fair die) then the 
formulas are equivalent.



The basics...

 The variance σ2 of a distribution gives a measure of how 

‘spread out’ the data is.

 Remember from school that we could find the variance of 

a sample by finding the differences from the mean, 

squaring them, summing them then dividing by the size of 

our sample. e.g. Imagine we throw one each of 1, 2, 3, 4, 5 

and 6 on a fair dice.

 Sum = 17.5          σ2 = 17.5 / 6 = 2.917. Gravy...

X 1 2 3 4 5 6

X-µ -2.5 -1.5 -0.5 0.5 1.5 2.5

(X-µ)2 6.25 2.25 0.25 0.25 2.25 6.25



The basics...

 The standard deviation σ is just the square root of the 

variance.

 Why did we use the squares of the deviations from the 

mean rather than say the absolutes |xi- µ|? This would 

lead to the absolute deviation. Standard deviation is 

generally more useful because the ‘squared’ is more easily 

differentiable than the absolute value. Additionally it can 

be used as a parameters in distributions like the Gaussian 

Distribution...

 So what about the variance for a known distribution?

 σ2 = E[(X- µ)2]. We’ll see a nice example of this in a sec...



The basics...

 It’s imperative to distinguish between distributions based on a 

sample and the population. 

 Note that the population mean could theoretically be 

computed by taking an infinite number of samples, since in the 

limit we expect each outcome to occur proportional to its 

probability in the underlying distribution (e.g. for a fair dice and 

infinite throws, we expect the counts of each outcome to be the same).

Sample Population

Distribution 

determined 

by...

a finite sequence of 

draws from the 

distribution.

The underlying 

distribution is 

already known.

Mean x µ



 Now let’s move on from the basics....



Bernoulli

 A discrete probability distribution, where we have some event 

with two outcomes, with a probability p of success.

 Who gives a toss? Let’s say a referee. He has a biased coin.

 A Bernoulli Trial is a single experiment in which we draw 

from this distribution, such that the outcome is independent

of previous trials (i.e. The coin has no memory).

 We use k=1 for success (interpret as ‘1 success’) and k=0 

otherwise.

k Pr(K = k)

1 (H/success) p

0 (T/failure) 1-p

Support



Bernoulli

 Note that this is not the same as an arbitrary 2-event 

distribution, the support of the distribution is {0,1}, not 

{T,H}.

 The mean is just p (using our equation for E[X] we get 0*(1-p) + 1*p 

= p).

 The variance is p(1-p). Remember that σ2 = E[(X- µ)2]? 

E[(X- µ)2] = ∑i (xi-µ)2 p(xi)  

= (0-p)2 *(1-p) + (1-p)2 *p 

= p(1-p)  



Binomial

 But suppose more generally we have n Bernoulli Trials. The 
Binomial Distribution gives us a distribution over the number 
of ‘successes’. Suppose we have 4 fair coin tosses:

 How do we work out Pr(K = k)? Suppose again n=4, and that 
k=2. Let’s take one possible sequence, HHTT.  Clearly the 
probability is p * p * (1-p) * (1-p) since the 4 trials were 
independent.

k Pr(K = k)

0 (i.e. TTTT) 1/16

1 4/16

2 6/16

3 4/16

4 (i.e. HHHH) 1/16



Binomial

 But there’s multiple ways we could have generated 2 heads and 
2 tails: HHTT, HTHT, HTTH, THHT, THTH, TTHH.

 In general, for n trials and k ‘successes’, there are nCk = n! / (n-
k)!k! possible outcomes. (Intuition: If we had n different objects, there would be n! 

ways of organising them. But they’re not all different, so we need to divide by the number of ways the 
k successes can be arranged = k!, and the number of ways the failures can be arranged = (n-k)! )

 Unsurprisingly, the mean is np. If we have n=10 tosses of a 
biased coin where p=0.1 and do this repeatedly, it seems 
sensible that on average we’ll see a head just the once.

 The variance is np(1-p).

 Notice that when n = 1, we have the Bernoulli Distribution!

Therefore Pr(K=k) = nCk pk (1-p)n-k



Binomial



Multinomial

 But suppose we wanted to generalise from 
‘success/failure’ to any number of outcomes, e.g. a 
dice.

 Instead of the distribution being defined over the number 
of successes (e.g. #heads), we now have counts over 
multiple variables (i.e. for our dice, #1s, #2s, etc.). Let xi

be the count of each.

 Instead of a single parameter p, for k outcomes we have a 
vector (p1, ... , pk), i.e. the prob for each outcome.



Multinomial

 We pretty much have the probability for a certain set of counts (x1, .... xk) 

already from our Binomial distribution...

 The probability of a given sequence (e.g. 1,2,4,3,4,2) is again the product of 

the probabilities of each, i.e. ∏pi
xi (Note: The (1-p) term before was just a 

convenience that allowed us to specify the prob of a 2-outcome experiment as 1 

parameter instead of 2.)

 As for the number of sequences that are possible with the given counts, 

instead of dividing n! by the ways of arranging successes and failures, we 

generalise it to the ways of arranging each of the outcomes in the 

sequence.

 So (cue fanfare):

Pr(X1 = x1 and ...  and Xk = xk) 

=  [n! / ∏xi!] ∏pi
xi



A quick digression...

 Note the difference between the underlying parameters of the 
distribution and the support. The parameters are fixed 
whereas the support is the domain of the probability function.

 Some notational notes: The support when a single parameter 
was k, and x when a vector (i.e. a multivariate distribution).

 We often express the probability function as f(a; b1, b2,...), 
which just means Pr(a | b1, b2, ...), i.e. with parameters bi.

f Support Parameters

Bernoulli k ∊ {0, 1} p

Binomial k ∊ { 0 , ... , n } n, p

Multinomial xi ∊ { 0 , ... , n } ∀i n, <p1, ..., pn>



Geometric

 The distribution is over the number of Bernoulli Trials 

needed to get ONE success*.

 Consider a game where with probability p we stop the 

game (interpret as ‘succeed’), otherwise we take a 

random letter and add it to some word (initially blank).

 Then in this case the geometric distribution is over the 

length of the words we can generate.

 The probability of having k trials ending with a success is 

trivial:

Pr(K = k) = (1-p)k-1 p

*A common variant is the number of failures before one success. The difference there is that k 

starts from 0 rather than 1.



Geometric

 Where you might find it: Probabilistic models for generating tree 
structures (where the geometric distribution is over the height of 
the tree) and words (as we just saw).

 Mean = 1/p.  A simple expression, but not a trivial proof:

 Variance = (1 – p)/p2

 Note that the ‘geometric’ is the same meaning as in ‘geometric series’, 
where you might want to find 1 + (1/2) + (1/4) + ...  after a certain number 
of additions. Each number we add becomes smaller by some factor.

Remember that the 

mean E(X) = ∑f(k).k 



Gaussian

 Describes data distributed about a mean, with a smooth 

‘bell-curve’ shape.

 It is parameterised by a mean µ and a variance σ2.



Gaussian

 Also known as the Normal Distribution.

 When µ = 0 and σ2 = 1, known as Standard N.D.

 Unlike previous distributions which were discrete, this 
distribution is defined over continuous variables. Let 
support be x∊ (-∞, ∞), i.e. a single unbounded variable.

 It is useful because the distribution has maximal 
entropy; that is, it makes as little assumption about the 
distribution of data as possible. Therefore useful for 
modelling noise.





Probability Density Functions

 Previously we used probability mass functions, i.e. The 

probability at an exact point. For continuous distributions 

this doesn’t make sense, since we have an infinitely small 

point.

 With a probability density function, consider getting 

the probability mass (i.e. the area) between the point x0

under consideration and x0 + ε. The width of this area is 

ε, so we divide by ε to get the height. We get the 

probability density as ε approaches 0.

p(x0) = lim[ε→0] (1/ ε) P(x0 ≤ x ≤ x0 + ε)



PDFs

 And given we now have a continuous support, using the ∑ 

in calculating the mean/variance no longer makes sense.

 Just replace the ∑ with a ∫ and we’re done! (recall that ∫ finds 

the area under a function, i.e. a sum of infinitely small vertical strips)

x0 x0 + ε

p(x0) = lim[ε→0] (1/ ε) P(x0 ≤ x ≤ x0 + ε)

Area of the blue rectangle.

Divide by width of rectangle.

Height at x0

p(x)



PDFs

 For a probability mass function the probabilities needed 

to sum to 1...

 Now the integral of the probabilities (i.e. the area under 

the graph) must be 1. i.e. ∫p(x) dx = 1

 Note also the probability density function can give a 

value greater than 1.

p(x)

x (measured distance)

Imagine for example we were 

sensing a wall, and our reading gave 

a distance of 50 metres. We could 

use a Gaussian to represent the 

actual distance. Imagine our 

sensor was really really accurate: as 

the variance tends towards 0, we 

get a ‘spike’ of infinitely small width, 

but p(x=50) approaches ∞!

!!



Gaussian

 The Central Limit Theorem states that the mean of a 

sufficiently large number of identically distributed random 

variables, each with mean µ and variance σ2, will be 

approximately normally distributed.

 This is rather awesome, because even if we don’t know 

the underlying distribution, we know the 

distribution of the mean.



Gaussian

 The sum of identical random variables also gives a 

Gaussian Distribution (the mean for a sample just 

involved taking the sum, plus a division by a constant). 

Let’s see an example!

 We have a simple uniform distribution for X like so:

X Pr(X = x)

1 1/3

2 1/3

3 1/3 0.00

0.10

0.20

0.30

0.40

1 2 3



Gaussian

 Now let’s take the probability mass function for the sum 

of 2 terms:

X Pr(X = x)

2 (1+1) 1/9

3 (1+2, 2+1) 2/9

4 (1+3, 2+2, 3+1) 3/9

5 (2+3, 3+2) 2/9

6 (3+3) 1/9

0.00

0.10

0.20

0.30

2 3 4 5 6



Gaussian

 3 terms:

X Pr(X = x)

3 1/27

4 3/27

5 6/27

6 7/27

7 6/27

8 3/27

9 1/27

0.00

0.10

0.20

0.30

3 4 5 6 7 8 9

This is looking promising!



Gaussian

 Another example, let’s hop to it...

 Suppose we have a rabbit that picks up what he thinks are n 
carrots. However, k of these are not actually carrots, but 
cucumbers.

 We can think of this as n separate Bernoulli Trials, where 
‘success’ in this case actually means our rab has made a grave 
carrot-related mishap.



Gaussian

 For these n samples of our Bernoulli Distribution, we 

can easily estimate the carrot misclassification probability 

(or c.m.p. for short) as k/n (using our sample mean eq).

 We know the mean of a Bernoulli Distribution is p, so 

our mean is the same as p = k/n.

 But we can’t be sure about our choice of p*. If the rabbit 

chose 24 objects and 12 were carrots, it might actually be 

the case that p = 0.6 for example.

 If we were to randomly sample from our Bernoulli 

Distribution a number of times, how can we describe the 

uncertainty over the mean, i.e. p?
*p is known as an estimator, as it used to estimate (via use of a sample) an unknown 

population parameter, i.e. a parameter for the underlying distribution.



Gaussian

 Because of the Central Limit Theorem, since we have 

identically distributed random variables (each random 

variable was the same Bernoulli Trial), the distribution 

over the mean/p can be described using the 

Gaussian Distribution as n→∞ (i.e. the case where 

the rabbit gets incredibly fat).

 If we had a finite number of trials N, where N > n, we 

could use the Binomial Distribution to define the 

uncertainty over p. We could initially plot it for k so we 

have the probability for each number of misclassifications, 

then replace each k in the support vector with k/N so 

our uncertainty is over p instead.



Gaussian

 Therefore the Gaussian Distribution is simply the 

Binomial Distribution when n→∞. This makes me a happy 

bunny...

 It’s bunnies all the way down...* But let’s not rabbit on...

* Note: CLG in-joke.



Gaussian

 One more quick common example usage... Gaussian 
Mixture Models allow us to cluster data, but instead of a 
point being a member of one cluster or another (‘hard’ 
assignment), we can associate a probability with the point 
being a member of each cluster (i.e. ‘soft’ assignment).

 How do we define a Gaussian in more than 1 dimension?



Gaussian

 Covariance gives a measure of how two random 

variables change together.  For 2 variables X and Y:

 Notice that variance is just a special case of this, when 

the 2 variables are the same.

 If two variables are independent, their covariance is 0.

 If we have have D random variables X1, ... XD, (for 

example, x and y in 2D space) then a covariance 

matrix ∑ is a symmetric matrix where each element (i,j) 

is just Cov(Xi,Xj).



Gaussian



Gaussian

 Then a multivariate Gaussian is:



Gaussian

 If we use the identity matrix I for the covariance matrix 

(i.e. The variables don’t ‘change’ with any other variable), 

then if we plot a contour* map over say 2D space for the 

distribution, we get perfect circles.

*Just like on geographical maps, a contour is a 

line where the value of the function is invariant.



Gaussian

 A multivariate Gaussian distribution 

centred at (1,3) with a standard 

deviation of 3 in roughly the (0.878, 

0.478) direction and of 1 in the 

orthogonal direction. 

 The directions of the arrows show 

the ‘axis’ of the distribution. We can 

determine these by finding the 

eigenvectors of this covariance 

matrix (feel free to ask me what these are!). Because the x and y components co-

vary, the x and y components of 

variance do not fully describe the 

distribution.  A 2×2 covariance matrix is 

needed.



Poisson

 Oh my cod, not another discrete non-finite distribution!

 Expresses the probability of a given number of events 

happening in a fixed amount of time, when there is a 

known average rate λ at which the events occur.

(Note: This is a discrete 

distribution, so the 

connecting lines are 

merely a guide.)



Poisson

 Examples: num times a web server is accessed per minute, 

number of slides I get through in one hour...

 Surprisingly a specific case of the Binomial Distribution. 

Recall that for a BD, np gives us the mean number of 

successes.

 If n→∞ and p is small, then we have a Poisson 

Distribution if we set the rate λ = np. Known as the law 

of rare events. But the proof has no ‘plaice’ here.

f(k; λ) = (λk * e-λ)   /   k!    

What is the prob of k events occurring within our time period, given an average rate of λ



Poisson

 Sometimes it is appropriate to choose a 

distribution simply because of its shape, rather than 

conceptually what it means... (it’s not as fishy as it sounds)

 The Poisson Distribution is useful if we wish to randomly 

generate a value that has some mean > 0, must be > 0, 

and the probability tails towards 0 as the value drifts 

above the mean. Example: generating a random number of 

children for a tree. 



Summary

Distribution Support Parameters p.m.f. / p.d.f.

Bernoulli k ∊ {0, 1} p pk(1-p)1-k

Binomial k ∊ { 0 , ... , n } n, p nCk pk (1-p)n-k

Multinomial xi ∊ { 0 , ... , n } ∀i n, <p1, ..., pn> [n! / ∏xi!] ∏pi
xi

Gaussian xi ∊ [-∞, ∞] µ, σ2

Geometric k ∊ {1, 2, ... } p (1-p)k-1 p

Poisson k ∊ {0, 1, 2, ... } λ (λk * e-λ) / k!    

This is generally the notation we use for the 

distribution – particularly when we are drawing 

from it, e.g. X ~ Pois(λ) or X ~ N(µ, σ2). 



Summary

Bernoulli

Single event, just two outcomes 

(success or failure)

Binomial

Multinomial

Gaussian

PoissonGeometric



Fini

End of Part 1


