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Markov Assumption

m The Markov assumption states that
probability of the occurrence of an
observed token o; at time t depends only
on the occurrence of o, 4 at time -1

= Chain rule: .
P(0)=P(0, ;)= P(0ys.-,0, 1) = P(0,)] | P(0, | 055 0,.,)
m Markov assumption:
P(©)=P(0, ;)= P(0g-rs01,)= Pop[ 1 P(0,]0,,)

t=1

The Trellis
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Parameters of an HMM

m States: a set of state nodes n=n,,...,ny_4

m Transition probabilities: a= a; g,aq 1,.--,8N.1 N1
where each a;; represents the probablllty of
transitioning to nj, given that we're coming from
state n;

m Emission probabilities: a set b of functions of
the form b{o;) which is the probability of
observation o; being emitted by n; at time ¢

m Initial state distribution: 7 is the probability that
n;is a start state




The Three Basic HMM Problems

m Problem 1: Decoding. Given the observation
sequence 0=0, 1=0,,...,07.4 and an HMM model

A=(a,b,m), how do we find the state sequence
that best explains the observations?

m Problem 2: Evaluation. Given the observation

sequence 0=0, rand an HMM model A =(a,b, )
how do we compute the probability of o given the

model?

The Three Basic HMM Problems

m Problem 3: Learning. How do we adjust
the model parameters 1 =(a,b,n), so as
to maximize P(o|A)?

Problem 1: Decoding

m For Problem 1, we want to find the path with the
highest probability.
m We want to find the state sequence
d=9y 7=9o---qr.1, Such that q =argmax P(q'|0, 1)
o

m Naive computation is very expensive. Given T
observations and N states, there are N7
possible state sequences.

m Even small HMMs, e.g. =10 and N=10,
contain 10 billion different paths

m Solution: use dynamic programming

Viterbi Algorithm

m Similar to computing the forward
probabilities, but instead of summing over
transitions from incoming states, compute
the maximum

m Forward: at(,-){fa,_l(i)ay}bj(q)

=0

m Viterbi Recursion:

5()=| max3, ()a, |B,(0)




Viterbi Algorithm
m Initialization: g (j)=7,b,(0,) 0<j<N
= Induction:

3()={ s, 0a, b o)

g//t(j):[argmaxé;_l(i)ay} 0<t<T,0<j<N

0<i<N

. . * . * .
m Termination: p =maxd, (i) ¢, =argmaxo,_ (i
O<i<N 0<i<N

= Reconstruction: q,* = l//m(q;l) t=T7-2,...,0

Problem 2: Probability of an Observation
Sequence

m Whatis P(o|1)?

m The probability of a observation sequence is the
sum of the probabilities of all possible state
sequences in the HMM, i.e, the sum over all
paths that generate othrough an HMM
efficiently.

m The solution to Problem 1 (decoding) gives us
the max over all paths that generate o through
an HMM efficiently.

Forward Probabilities

m What is the probability that, given an
HMM /4, at time t the state is j and the
partial observation o, ... 0; has been
generated?

at(i) = P(OO..t+l9 q,=n ‘ /1) = P(OO"' 0,4, =1, | /1)

Forward Probabilities

a,(i)=P(0,...0,,q,=n;| 1)

alphat,1 (1)

q(/){ioe,,l o Jb] ©0)




Forward Algorithm
m Initialization: «,(j)=7b,(0,) 0<j<N

m Induction:
N-1
a,(j)= Za,_l(i)al.j}bj(ol) 0<t<T,0<j<N

i=0

N-1
= Termination: P(o| )= a, (i)

i=0

Forward Algorithm Complexity

m In the naive approach to solving
problem 1 it takes on the order of 2T x NT
computations

m The forward algorithm takes on the order
of N2T computations

Backward Probabilities

m Or, we can instead compute right-to-left,
analogous to the forward probability,
but in the opposite direction

m What is the probability that, given
an HMM A and given the state at time ¢
is /, the partial observation o, 7 is
generated?

ﬂz(l) = P(Oz+1..T | qz = ni’ ﬁ): P(Oz+l"' OT—I | qz = ni’ ﬂ‘)

Backward Probabilities
ﬂt(i)=P(0t+l'“0T |Qt =ni’ﬂ’)

betay, (1)

betay,1(2) by(04,4)

N

betay, 1(N)

ﬂ,m{ia,,b, ©.)8.. (/')J




Backward Algorithm
m Initialization: g (i)=1, 0<i<N

m Induction:
Bi)= fa,_.,b,(om)ﬂm(j)J t=T-2..0,0<i<N

m Termination: .
Plo| A)=2.7, B()

i=0

Problem 3: Learning

= Up to now we’ ve assumed that we know the
underlying model A=(a,b,n)

m Often these parameters are estimated on
annotated training data, which has two
drawbacks:

m Annotation is difficult and/or expensive
m Training data is different from the current data

m We want to maximize the parameters with
respect to the current data, i.e., we’ re looking
for a maximum likelihood model A * such that

A*=argmax P(o| )
A

Problem 3: Learning

m Unfortunately, there is no known way to
analytically find a global maximum, i.e., a
model A' , such thatA'=argmax P(o| 1)

A

m But it is possible to find a local maximum
via the expectation-maximization (EM) approach

m Given an initial model A, we can always find a
model A', such that P(o|A")>P(o|A)

Parameter Re-estimation

m Use the forward-backward algorithm
(a.k.a. the Baum-Welch algorithm), which
is a hill-climbing algorithm

m Using an initial parameter instantiation,
the forward-backward algorithm iteratively
re-estimates the parameters, and
improves the probability that the given
observations are generated by the new
parameters




Parameter Re-estimation

m Three parameters need to be re-estimated:

= Initial state distribution: 77,
= Transition probabilities: a;;
m Emission probabilities: b, (o;)

Re-estimating Transition Probabilities

m The key intuition is that we want to
compute our expected fractional counts
on the number of times each transition is
traversed, and then normalize:

. expected number of transitions from state n; to state n;

" expected number of transitions from state n,

Re-estimating Transition Probabilities

m Expected number of transitions:

what’ s the probability of being in state n;
at time f and going to state n;, given the
current model and parameters?

s(,j)=P(q,=n,q,,=n1021)

Re-estimating Transition Probabilities

ft(la]) :P(qt =N, 4, =0 | o, ﬂ“)

o 0O

betay, 1)

alphay(i)

O O i)

Ot_1 Ot Ot+: Oty2
o P(g =g, =np010) @@ a, b0,)BaG) @), b0.) Aul)
§)‘ (l’]) - P ﬂ. - P ﬁ, T N-IN-1
©14) ©.714) Y a)a, b0, f.0)

i=0_j=0




Re-estimating Transition Probabilities

m Remember, the intuition behind the
re-estimation equation for transition
probabilities is

. expected number of transitions from state n; to state n,
a. .=
L]

expected number of transitions from state n,

= Formally: S e )

A = =0
4;; = N1

D> EGS

=0 1=0

Re-estimating Transition Probabilities

m We can rewrite this more neatly as

S EG.)
Y10
where we define 7.()=.&G.))

J=0

to be the probability of being in state n; at
time t, given the complete observation o

Review of Probabilities

m Forward probability: O!t(l')
The probability of being in state n,, given the partial
observation oy,...,0;

= Backward probability: /3, (7)

The probability of being in state n;, given the partial
observation o,,4,...,074

= Transition probability: & (i, j)
The probability of going from state nj, to state nj, given
the complete observation oy,...,07.4

= State probability: ¥, (7)

The probability of being in state n,, given the complete
observation oy,...,07

Re-estimating Initial State Probabilities

m [nitial state distribution: 7 is the
probability that n;, is a start state

m Re-estimation is easy:
7, = expected number of times in state n, at time 0

m Formally: 7, =y,()




Re-estimation of Emission Probabilities

m Emission probabilities are re-estimated as

expected number of times in state n; and observe symbol w,

by(k)=
(&) expected number of times in state n,
= Formally: I
Y DI CRIAAG
bky=20
27.0)
t=0

Where (o, w,)=1, if o,=w,, and 0 otherwise

Note that ¢ here is the Kronecker delta function and is not
related to the ¢ in the discussion of the Viterbi algorithm!!

To iteratively update the model

m Coming from A =(a,b,n) we get to
A'=(a,b,n) by the following update rules:

-2 .
2EGH  Tomon)
G, =+ b= 7,=7,())
>7,0) 270
o =0

Expectation-Maximization

m The forward-backward algorithm is an
instance of the more general EM
algorithm

m The E Step: Compute the forward and
backward probabilities for a given model

= The M Step: Re-estimate the model
parameters




Hidden Markov Models
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Hidden Markov Model (HMM)

m HMMs allow you to estimate probabilities
of unobserved events

m Given plain text, which underlying
parameters generated the surface
m E.g., in speech recognition, the observed

data is the acoustic signal and the words
are the hidden parameters

HMMs and their Usage

m HMMs are very common in Computational
Linguistics:
m Speech recognition (observed: acoustic signal,
hidden: words)

= Handwriting recognition (observed: image, hidden:

words)

m Part-of-speech tagging (observed: words, hidden:
part-of-speech tags)

= Machine translation (observed: foreign words,
hidden: words in target language)

Noisy Channel Model

m [n speech recognition you observe an
acoustic signal (A=a,,...,a,) and you want
to determine the most likely sequence of
words (W=wy,...,w,): P(W | A)

m Problem: A and W are too specific for
reliable counts on observed data, and are
very unlikely to occur in unseen data




Noisy Channel Model

m Assume that the acoustic signal (A) is already
segmented wrt word boundaries

m P(W | A) could be computed as
P | 4) =] [max P(w, |a,)

m Problem: Finding the most likely word
corresponding to a acoustic representation
depends on the context

m E.g., /'pre-z&ns / could mean “presents” or
“presence” depending on the context

Noisy Channel Model

m Given a candidate sequence W we need
to compute P(W) and combine it with P(W
| A)

= Applying Bayes’ rule:

P(A|W)PW)

P(A)

m The denominator P(A) can be dropped,

because it is constant for all W

argmax P(W | A) = argmax
w w

Noisy Channel in a Picture

source noisy guess at
sentence sentence DECODER original

sentence
IF music be h

be the
food of love . =

be the
food of love...

7 music be the food of love,
?If music be the oot of dove.

39

Decoding

The decoder combines evidence from
= The likelihood: P(A | W)
This can be approximated as:

P =T Pla|w,)

= The prior: P(W)
This can be approximated as:

POy =P T Pow, [w,)

AN



Search Space

m Given a word-segmented acoustic sequence list
all candidates

'botx ik-'spen-siv 'pre-z&ns

boatBP('bm\bam excessive A presidents
ba;;ilm welsas) | EXPENSIVE presence
bold expressive o presents

bought “linactive press

m Compute the most likely path

AA



