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Markov Assumption

 The Markov assumption states that 
probability of the occurrence of an 
observed token ot at time t depends only
on the occurrence of ot-1 at time t-1
 Chain rule:

 Markov assumption:
P(o) = P(o0..T ) = P(o0,...,oT-1) » P(o0 ) P(ot | ot-1)

t=1

T-1

Õ

P(o) = P(o0..T ) = P(o0,...,oT-1) = P(o0 ) P(ot | o0,...,ot-1)
t=1

T-1

Õ

The Trellis Parameters of an HMM

 States: a set of state nodes n=n0,…,nN-1

 Transition probabilities:  a= a0,0,a0,1,…,aN-1,N-1
where each ai,j represents the probability of 
transitioning to nj, given that we’re coming from 
state ni

 Emission probabilities: a set b of functions of 
the form bi(ot) which is the probability of 
observation ot being emitted by ni at time t

 Initial state distribution:     is the probability that 
ni is a start state

p i
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The Three Basic HMM Problems

 Problem 1: Decoding.  Given the observation 
sequence o=o0..T=o0,…,oT-1 and an HMM model 

, how do we find the state sequence 
that best explains the observations?

 Problem 2: Evaluation.  Given the observation 
sequence o=o0..T and an HMM model                  , 
how do we compute the probability of o given the 
model?

l = (a,b,π)

l = (a,b,π)

 Problem 3: Learning.  How do we adjust 
the model parameters                  , so as 
to maximize              ?

The Three Basic HMM Problems

l = (a,b,π)
P(o | l)

Problem 1: Decoding 

 For Problem 1, we want to find the path with the 
highest probability.

 We want to find the state sequence
q=q0..T=q0…qT-1, such that

 Naïve computation is very expensive. Given T
observations and N states, there are NT

possible state sequences.
 Even small HMMs, e.g. T=10 and  N=10, 

contain 10 billion different paths
 Solution:  use dynamic programming

q = argmax
q '

P(q ' | o,l)

Viterbi Algorithm

 Similar to computing the forward 
probabilities, but instead of summing over 
transitions from incoming states, compute 
the maximum

 Forward:

 Viterbi Recursion:

at ( j)= at-1(i)aij
i=0

N-1

å
é

ë
ê

ù

û
ú bj (ot )

dt ( j) = max
0£i<N

dt-1(i)aij
é
ë

ù
û bj (ot )
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Viterbi Algorithm

 Initialization:
 Induction: 

 Termination:

 Reconstruction: 

d0( j) = p jbj (o0 ) 0 £ j < N

dt ( j) = max
0£i<N

dt-1(i)aij
é
ë

ù
û bj (ot )

yt ( j) = argmax
0£i<N

dt-1(i)aij

é
ëê

ù
ûú

0 < t <T, 0 £ j < N

p* = max
0£i<N

dT-1(i) qT-1
* = argmax

0£i<N
dT-1(i)

qt
* =yt+1(qt+1

* ) t =T -2,..., 0

Problem 2: Probability of an Observation 
Sequence

 What is             ?
 The probability of a observation sequence is the 

sum of the probabilities of all possible state 
sequences in the HMM, i.e, the sum over all 
paths that generate    through an HMM 
efficiently.

 The solution to Problem 1 (decoding) gives us 
the max over all paths that generate    through 
an HMM efficiently.

P(o | l)

o

o

Forward Probabilities

 What is the probability that, given an 
HMM    , at time t the state is i and the 
partial observation o0 … ot has been 
generated?

at (i) = P(o0..t+1, qt = ni | l) = P(o0... ot, qt = ni |l)

l

Forward Probabilities

at ( j)= at-1(i)aij

i=0

N-1

å
é

ë
ê

ù

û
ú bj (ot )

at (i)= P(o0...ot, qt = ni | l)
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Forward Algorithm

 Initialization:

 Induction: 

 Termination:

at ( j) = at-1(i)aij

i=0

N-1

å
é

ë
ê

ù

û
ú bj (ot ) 0 < t < T, 0 £ j < N

a0 ( j)= p jbj (o0 ) 0 £ j < N

P(o | l) = aT-1(i)
i=0

N-1

å

Forward Algorithm Complexity

 In the naïve approach to solving
problem 1 it takes on the order of 2T×NT

computations

 The forward algorithm takes on the order 
of N2T computations

Backward Probabilities

 Or, we can instead compute right-to-left, 
analogous to the forward probability,
but in the opposite direction

 What is the probability that, given
an HMM    and given the state at time t
is i, the partial observation ot+1..T is 
generated?

bt (i) = P(ot+1..T | qt = ni,l)= P(ot+1...oT-1 | qt = ni,l)

l

Backward Probabilities

bt (i) = aijbj (ot+1)bt+1( j)
j=0

N-1

å
é

ë
ê
ê

ù

û
ú
ú

bt (i) = P(ot+1...oT | qt = ni,l)
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Backward Algorithm

 Initialization:

 Induction:

 Termination:  

bT-1(i)=1, 0 £ i < N

bt (i) = aijbj (ot+1)bt+1( j)
j=0

N-1

å
é

ë
ê
ê

ù

û
ú
ú
t = T - 2...0, 0 £ i < N

P(o | l) = p i b0 (i)
i=0

N-1

å

Problem 3: Learning

 Up to now we’ve assumed that we know the 
underlying model 

 Often these parameters are estimated on 
annotated training data, which has two 
drawbacks:
 Annotation is difficult and/or expensive
 Training data is different from the current data

 We want to maximize the parameters with 
respect to the current data, i.e., we’re looking 
for a maximum likelihood model     , such that

l = (a,b,π)

l *
l*= argmax

l
P(o | l)

Problem 3: Learning

 Unfortunately, there is no known way to 
analytically find a global maximum, i.e., a
model       , such that

 But it is possible to find a local maximum
via the expectation-maximization (EM) approach

 Given an initial model    , we can always find a 
model    , such that 

l' l ' = argmax
l

P(o | l)

l
l' P(o | l ') ³ P(o | l)

Parameter Re-estimation

 Use the forward-backward algorithm
(a.k.a. the Baum-Welch algorithm), which 
is a hill-climbing algorithm

 Using an initial parameter instantiation, 
the forward-backward algorithm iteratively 
re-estimates the parameters, and 
improves the probability that the given 
observations are generated by the new 
parameters
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Parameter Re-estimation

 Three parameters need to be re-estimated:
 Initial state distribution: 

 Transition probabilities: ai,j

 Emission probabilities: bi (ot)

p i

Re-estimating Transition Probabilities

 The key intuition is that we want to 
compute our expected fractional counts 
on the number of times each transition is 
traversed, and then normalize:

âi, j =
expected number of transitions from state ni  to state n j

expected number of transitions from state ni

Re-estimating Transition Probabilities

 Expected number of transitions:

what’s the probability of being in state ni

at time t and going to state nj, given the 
current model and parameters?

xt (i, j) = P(qt = ni, qt+1 = nj | o,l)

Re-estimating Transition Probabilities

xt (i, j)=
P(qt = ni, qt+1 = nj,o | l)

P(o | l)
=
at (i) ai, j bj (ot+1) bt+1( j)

P(o0..T | l)
=

at (i) ai, j bj (ot+1) bt+1( j)

at (i) ai, j bj (ot+1) bt+1( j)
j=0

N-1

å
i=0

N-1

å

xt (i, j) = P(qt = ni, qt+1 = nj | o,l)
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Re-estimating Transition Probabilities

 Remember, the intuition behind the
re-estimation equation for transition 
probabilities is

 Formally:

âi, j =
expected number of transitions from state ni  to state n j

expected number of transitions from state ni

âi, j =
xt (i, j)

t=0

T-2

å

xt (i, j ')
t=0

T-2

å
j '=0

N-1

å

Re-estimating Transition Probabilities

 We can rewrite this more neatly as

where we define

to be the probability of being in state ni at 
time t, given the complete observation o

âi, j =
xt (i, j)

t=0

T-2

å

g t (i)
t=0

T-2

å
g t (i) = xt (i, j)

j=0

N-1

å

Review of Probabilities
 Forward probability: 

The probability of being in state ni, given the partial 
observation o0,…,ot

 Backward probability:
The probability of being in state ni, given the partial 
observation ot+1,…,oT-1

 Transition probability:
The probability of going from state ni, to state nj, given 
the complete observation o0,…,oT-1

 State probability:
The probability of being in state ni, given the complete 
observation o0,…,oT-1

a t (i)

bt (i)

x t (i, j)

g t (i)

Re-estimating Initial State Probabilities

 Initial state distribution:     is the 
probability that ni is a start state

 Re-estimation is easy:

 Formally:

p i

p̂ i = expected number of times in state ni  at time 0

p̂ i =g0 (i)
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Re-estimation of Emission Probabilities

 Emission probabilities are re-estimated as

 Formally:

Where
Note that     here is the Kronecker delta function and is not 
related to the     in the discussion of the Viterbi algorithm!!

b̂i (k) = expected number of times in state ni  and observe symbol wk

expected number of times in state ni

b̂i (k) =
d(ot,wk )g t (i)

t=0

T-1

å

g t (i)
t=0

T-1

å

d(ot,wk ) =1,  if ot = wk,  and 0 otherwise

d
d

To iteratively update the model

 Coming from                   we get to               

by the following update rules:l ' = (â, b̂, π̂)

âi, j =
xt (i, j)

t=0

T-2

å

g t (i)
t=0

T-2

å
b̂i (k) =

d(ot,wk )g t (i)
t=0

T-1

å

g t (i)
t=0

T-1

å
p̂ i =g 0(i)

l = (a,b,π)

Expectation-Maximization

 The forward-backward algorithm is an 
instance of the more general EM 
algorithm
 The E Step: Compute the forward and 

backward probabilities for a given model

 The M Step: Re-estimate the model 
parameters 
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Hidden Markov Model (HMM)

 HMMs allow you to estimate probabilities 
of unobserved events

 Given plain text, which underlying 
parameters generated the surface

 E.g., in speech recognition, the observed 
data is the acoustic signal and the words 
are the hidden parameters

HMMs and their Usage

 HMMs are very common in Computational 
Linguistics:
 Speech recognition (observed: acoustic signal, 

hidden: words)

 Handwriting recognition (observed: image, hidden: 
words)

 Part-of-speech tagging (observed: words, hidden: 
part-of-speech tags)

 Machine translation (observed: foreign words, 
hidden: words in target language)

Noisy Channel Model

 In speech recognition you observe an 
acoustic signal (A=a1,…,an) and you want 
to determine the most likely sequence of 
words (W=w1,…,wn): P(W | A)

 Problem: A and W are too specific for 
reliable counts on observed data, and are 
very unlikely to occur in unseen data
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Noisy Channel Model

 Assume that the acoustic signal (A) is already 
segmented wrt word boundaries

 P(W | A) could be computed as

 Problem: Finding the most likely word 
corresponding to a acoustic representation 
depends on the context

 E.g., /'pre-z&ns / could mean “presents” or 
“presence” depending on the context

P(W | A) = max
wiai

Õ P(wi | ai)

Noisy Channel Model

 Given a candidate sequence W we need 
to compute P(W) and combine it with P(W 
| A)

 Applying Bayes’ rule:

 The denominator P(A) can be dropped, 
because it is constant for all W

argmax
W

P(W | A) = argmax
W

P(A |W )P(W )

P(A)

39

Noisy Channel in a Picture Decoding

The decoder combines evidence from 
 The likelihood: P(A | W)

This can be approximated as:

 The prior: P(W)
This can be approximated as:

P(W ) » P(w1 ) P(wii= 2

nÕ |wi-1)

P(A |W ) » P(aii=1

nÕ |wi )
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Search Space

 Given a word-segmented acoustic sequence list 
all candidates

 Compute the most likely path

'bot ik-'spen-siv 'pre-z&ns

boat excessive presidents

bald expensive presence

bold expressive presents

bought inactive press

P(inactive |bald)

P('bot |bald)


