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Markov Assumption

 The Markov assumption states that 
probability of the occurrence of an 
observed token ot at time t depends only
on the occurrence of ot-1 at time t-1
 Chain rule:

 Markov assumption:
P(o) = P(o0..T ) = P(o0,...,oT-1) » P(o0 ) P(ot | ot-1)

t=1

T-1

Õ

P(o) = P(o0..T ) = P(o0,...,oT-1) = P(o0 ) P(ot | o0,...,ot-1)
t=1

T-1

Õ

The Trellis Parameters of an HMM

 States: a set of state nodes n=n0,…,nN-1

 Transition probabilities:  a= a0,0,a0,1,…,aN-1,N-1
where each ai,j represents the probability of 
transitioning to nj, given that we’re coming from 
state ni

 Emission probabilities: a set b of functions of 
the form bi(ot) which is the probability of 
observation ot being emitted by ni at time t

 Initial state distribution:     is the probability that 
ni is a start state

p i
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The Three Basic HMM Problems

 Problem 1: Decoding.  Given the observation 
sequence o=o0..T=o0,…,oT-1 and an HMM model 

, how do we find the state sequence 
that best explains the observations?

 Problem 2: Evaluation.  Given the observation 
sequence o=o0..T and an HMM model                  , 
how do we compute the probability of o given the 
model?

l = (a,b,π)

l = (a,b,π)

 Problem 3: Learning.  How do we adjust 
the model parameters                  , so as 
to maximize              ?

The Three Basic HMM Problems

l = (a,b,π)
P(o | l)

Problem 1: Decoding 

 For Problem 1, we want to find the path with the 
highest probability.

 We want to find the state sequence
q=q0..T=q0…qT-1, such that

 Naïve computation is very expensive. Given T
observations and N states, there are NT

possible state sequences.
 Even small HMMs, e.g. T=10 and  N=10, 

contain 10 billion different paths
 Solution:  use dynamic programming

q = argmax
q '

P(q ' | o,l)

Viterbi Algorithm

 Similar to computing the forward 
probabilities, but instead of summing over 
transitions from incoming states, compute 
the maximum

 Forward:

 Viterbi Recursion:

at ( j)= at-1(i)aij
i=0

N-1

å
é

ë
ê

ù

û
ú bj (ot )

dt ( j) = max
0£i<N

dt-1(i)aij
é
ë

ù
û bj (ot )
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Viterbi Algorithm

 Initialization:
 Induction: 

 Termination:

 Reconstruction: 

d0( j) = p jbj (o0 ) 0 £ j < N

dt ( j) = max
0£i<N

dt-1(i)aij
é
ë

ù
û bj (ot )

yt ( j) = argmax
0£i<N

dt-1(i)aij

é
ëê

ù
ûú

0 < t <T, 0 £ j < N

p* = max
0£i<N

dT-1(i) qT-1
* = argmax

0£i<N
dT-1(i)

qt
* =yt+1(qt+1

* ) t =T -2,..., 0

Problem 2: Probability of an Observation 
Sequence

 What is             ?
 The probability of a observation sequence is the 

sum of the probabilities of all possible state 
sequences in the HMM, i.e, the sum over all 
paths that generate    through an HMM 
efficiently.

 The solution to Problem 1 (decoding) gives us 
the max over all paths that generate    through 
an HMM efficiently.

P(o | l)

o

o

Forward Probabilities

 What is the probability that, given an 
HMM    , at time t the state is i and the 
partial observation o0 … ot has been 
generated?

at (i) = P(o0..t+1, qt = ni | l) = P(o0... ot, qt = ni |l)

l

Forward Probabilities

at ( j)= at-1(i)aij

i=0

N-1

å
é

ë
ê

ù

û
ú bj (ot )

at (i)= P(o0...ot, qt = ni | l)
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Forward Algorithm

 Initialization:

 Induction: 

 Termination:

at ( j) = at-1(i)aij

i=0

N-1

å
é

ë
ê

ù

û
ú bj (ot ) 0 < t < T, 0 £ j < N

a0 ( j)= p jbj (o0 ) 0 £ j < N

P(o | l) = aT-1(i)
i=0

N-1

å

Forward Algorithm Complexity

 In the naïve approach to solving
problem 1 it takes on the order of 2T×NT

computations

 The forward algorithm takes on the order 
of N2T computations

Backward Probabilities

 Or, we can instead compute right-to-left, 
analogous to the forward probability,
but in the opposite direction

 What is the probability that, given
an HMM    and given the state at time t
is i, the partial observation ot+1..T is 
generated?

bt (i) = P(ot+1..T | qt = ni,l)= P(ot+1...oT-1 | qt = ni,l)

l

Backward Probabilities

bt (i) = aijbj (ot+1)bt+1( j)
j=0

N-1

å
é

ë
ê
ê

ù

û
ú
ú

bt (i) = P(ot+1...oT | qt = ni,l)
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Backward Algorithm

 Initialization:

 Induction:

 Termination:  

bT-1(i)=1, 0 £ i < N

bt (i) = aijbj (ot+1)bt+1( j)
j=0

N-1

å
é

ë
ê
ê

ù

û
ú
ú
t = T - 2...0, 0 £ i < N

P(o | l) = p i b0 (i)
i=0

N-1

å

Problem 3: Learning

 Up to now we’ve assumed that we know the 
underlying model 

 Often these parameters are estimated on 
annotated training data, which has two 
drawbacks:
 Annotation is difficult and/or expensive
 Training data is different from the current data

 We want to maximize the parameters with 
respect to the current data, i.e., we’re looking 
for a maximum likelihood model     , such that

l = (a,b,π)

l *
l*= argmax

l
P(o | l)

Problem 3: Learning

 Unfortunately, there is no known way to 
analytically find a global maximum, i.e., a
model       , such that

 But it is possible to find a local maximum
via the expectation-maximization (EM) approach

 Given an initial model    , we can always find a 
model    , such that 

l' l ' = argmax
l

P(o | l)

l
l' P(o | l ') ³ P(o | l)

Parameter Re-estimation

 Use the forward-backward algorithm
(a.k.a. the Baum-Welch algorithm), which 
is a hill-climbing algorithm

 Using an initial parameter instantiation, 
the forward-backward algorithm iteratively 
re-estimates the parameters, and 
improves the probability that the given 
observations are generated by the new 
parameters
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Parameter Re-estimation

 Three parameters need to be re-estimated:
 Initial state distribution: 

 Transition probabilities: ai,j

 Emission probabilities: bi (ot)

p i

Re-estimating Transition Probabilities

 The key intuition is that we want to 
compute our expected fractional counts 
on the number of times each transition is 
traversed, and then normalize:

âi, j =
expected number of transitions from state ni  to state n j

expected number of transitions from state ni

Re-estimating Transition Probabilities

 Expected number of transitions:

what’s the probability of being in state ni

at time t and going to state nj, given the 
current model and parameters?

xt (i, j) = P(qt = ni, qt+1 = nj | o,l)

Re-estimating Transition Probabilities

xt (i, j)=
P(qt = ni, qt+1 = nj,o | l)

P(o | l)
=
at (i) ai, j bj (ot+1) bt+1( j)

P(o0..T | l)
=

at (i) ai, j bj (ot+1) bt+1( j)

at (i) ai, j bj (ot+1) bt+1( j)
j=0

N-1

å
i=0

N-1

å

xt (i, j) = P(qt = ni, qt+1 = nj | o,l)
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Re-estimating Transition Probabilities

 Remember, the intuition behind the
re-estimation equation for transition 
probabilities is

 Formally:

âi, j =
expected number of transitions from state ni  to state n j

expected number of transitions from state ni

âi, j =
xt (i, j)

t=0

T-2

å

xt (i, j ')
t=0

T-2

å
j '=0

N-1

å

Re-estimating Transition Probabilities

 We can rewrite this more neatly as

where we define

to be the probability of being in state ni at 
time t, given the complete observation o

âi, j =
xt (i, j)

t=0

T-2

å

g t (i)
t=0

T-2

å
g t (i) = xt (i, j)

j=0

N-1

å

Review of Probabilities
 Forward probability: 

The probability of being in state ni, given the partial 
observation o0,…,ot

 Backward probability:
The probability of being in state ni, given the partial 
observation ot+1,…,oT-1

 Transition probability:
The probability of going from state ni, to state nj, given 
the complete observation o0,…,oT-1

 State probability:
The probability of being in state ni, given the complete 
observation o0,…,oT-1

a t (i)

bt (i)

x t (i, j)

g t (i)

Re-estimating Initial State Probabilities

 Initial state distribution:     is the 
probability that ni is a start state

 Re-estimation is easy:

 Formally:

p i

p̂ i = expected number of times in state ni  at time 0

p̂ i =g0 (i)
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Re-estimation of Emission Probabilities

 Emission probabilities are re-estimated as

 Formally:

Where
Note that     here is the Kronecker delta function and is not 
related to the     in the discussion of the Viterbi algorithm!!

b̂i (k) = expected number of times in state ni  and observe symbol wk

expected number of times in state ni

b̂i (k) =
d(ot,wk )g t (i)

t=0

T-1

å

g t (i)
t=0

T-1

å

d(ot,wk ) =1,  if ot = wk,  and 0 otherwise

d
d

To iteratively update the model

 Coming from                   we get to               

by the following update rules:l ' = (â, b̂, π̂)

âi, j =
xt (i, j)

t=0

T-2

å

g t (i)
t=0

T-2

å
b̂i (k) =

d(ot,wk )g t (i)
t=0

T-1

å

g t (i)
t=0

T-1

å
p̂ i =g 0(i)

l = (a,b,π)

Expectation-Maximization

 The forward-backward algorithm is an 
instance of the more general EM 
algorithm
 The E Step: Compute the forward and 

backward probabilities for a given model

 The M Step: Re-estimate the model 
parameters 
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Hidden Markov Model (HMM)

 HMMs allow you to estimate probabilities 
of unobserved events

 Given plain text, which underlying 
parameters generated the surface

 E.g., in speech recognition, the observed 
data is the acoustic signal and the words 
are the hidden parameters

HMMs and their Usage

 HMMs are very common in Computational 
Linguistics:
 Speech recognition (observed: acoustic signal, 

hidden: words)

 Handwriting recognition (observed: image, hidden: 
words)

 Part-of-speech tagging (observed: words, hidden: 
part-of-speech tags)

 Machine translation (observed: foreign words, 
hidden: words in target language)

Noisy Channel Model

 In speech recognition you observe an 
acoustic signal (A=a1,…,an) and you want 
to determine the most likely sequence of 
words (W=w1,…,wn): P(W | A)

 Problem: A and W are too specific for 
reliable counts on observed data, and are 
very unlikely to occur in unseen data
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Noisy Channel Model

 Assume that the acoustic signal (A) is already 
segmented wrt word boundaries

 P(W | A) could be computed as

 Problem: Finding the most likely word 
corresponding to a acoustic representation 
depends on the context

 E.g., /'pre-z&ns / could mean “presents” or 
“presence” depending on the context

P(W | A) = max
wiai

Õ P(wi | ai)

Noisy Channel Model

 Given a candidate sequence W we need 
to compute P(W) and combine it with P(W 
| A)

 Applying Bayes’ rule:

 The denominator P(A) can be dropped, 
because it is constant for all W

argmax
W

P(W | A) = argmax
W

P(A |W )P(W )

P(A)

39

Noisy Channel in a Picture Decoding

The decoder combines evidence from 
 The likelihood: P(A | W)

This can be approximated as:

 The prior: P(W)
This can be approximated as:

P(W ) » P(w1 ) P(wii= 2

nÕ |wi-1)

P(A |W ) » P(aii=1

nÕ |wi )
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Search Space

 Given a word-segmented acoustic sequence list 
all candidates

 Compute the most likely path

'bot ik-'spen-siv 'pre-z&ns

boat excessive presidents

bald expensive presence

bold expressive presents

bought inactive press

P(inactive |bald)

P('bot |bald)


