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Markov Assumption"
! The Markov assumption states that 

probability of the occurrence of an 
observed token ot at time t depends only 
on the occurrence of ot-1 at time t-1"
!  Chain rule:"
"

!  Markov assumption:"
P(o) = P(o0..T ) = P(o0,...,oT!1) " P(o0 ) P(ot | ot!1)

t=1

T!1

#

P(o) = P(o0..T ) = P(o0,...,oT!1) = P(o0 ) P(ot | o0,...,ot!1)
t=1

T!1

"

The Trellis"
"
"

Parameters of an HMM"
!  States:  a set of state nodes n=n0,…,nN-1"
!  Transition probabilities:  a= a0,0,a0,1,…,aN-1,N-1 

where each ai,j represents the probability of 
transitioning to nj, given that weʼre coming from 
state ni "

!  Emission probabilities:  a set b of functions of 
the form bi(ot) which is the probability of 
observation ot  being emitted by ni at time t!

!  Initial state distribution:      is the probability that 
ni is a start state"

! 

" i



The Three Basic HMM Problems"
!  Problem 1: Decoding.  Given the observation 

sequence o=o0..T=o0,…,oT-1 and an HMM model "
                       , how do we find the state sequence 

that best explains the observations?"
!  Problem 2: Evaluation.  Given the observation 

sequence o=o0..T and an HMM model                  , 
how do we compute the probability of o given the 
model?"

! = (a,b,!)

! = (a,b,!)

! Problem 3: Learning.  How do we adjust 
the model parameters                  , so as 
to maximize              ?"

"

The Three Basic HMM Problems"

! = (a,b,!)
P(o | !)

Problem 1: Decoding "
!  For Problem 1, we want to find the path with the 

highest probability."
!  We want to find the state sequence  

q=q0..T=q0…qT-1, such that 
"

!  Naïve computation is very expensive. Given T 
observations and N states, there are NT 
possible state sequences."

!  Even small HMMs, e.g. T=10 and  N=10, 
contain 10 billion different paths"

!  Solution:  use dynamic programming"

q = argmax
q '

P(q ' | o,!)

Viterbi Algorithm"
! Similar to computing the forward 

probabilities, but instead of summing over 
transitions from incoming states, compute 
the maximum"

! Forward:"

! Viterbi Recursion:"

!t ( j) = !t!1(i)aij
i=0

N!1

"
#

$
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'
( bj (ot )

!t ( j) = max
0!i<N

!t"1(i)aij#
$

%
& bj (ot )



Viterbi Algorithm"
!  Initialization:"
!  Induction: "

!  Termination:"

!  Reconstruction: "
"

!0 ( j) = " jbj (o0 ) 0 ! j < N

!t ( j) = max
0!i<N

!t"1(i)aij#
$

%
& bj (ot )

!t ( j) = argmax
0!i<N

"t"1(i)aij
#
$%

&
'(
0 < t < T, 0 ! j < N

p* =max
0!i<N

!T"1(i) qT!1
* = argmax

0"i<N
!T!1(i)

qt
* =!t+1(qt+1

* ) t = T ! 2,..., 0

Problem 2: Probability of an Observation 
Sequence"
!  What is             ?"
!  The probability of a observation sequence is the 

sum of the probabilities of all possible state 
sequences in the HMM."

!  The solution to Problem 1 (decoding) gives us 
the max of all paths through an HMM efficiently."

P(o | !)

Forward Probabilities"
! What is the probability that, given an 

HMM    , at time t the state is i and the 
partial observation o0 … ot has been 
generated?"

!t (i) = P(o0..t+1, qt = ni | ") = P(o0... ot, qt = ni | ")! 

"

Forward Probabilities"
"

!t ( j) = !t!1(i)aij
i=0

N!1

"
#
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&

'
( bj (ot )

!t (i) = P(o0...ot, qt = ni | ")



Forward Algorithm"
!  Initialization:"

!   Induction: "

"
! Termination:"

!t ( j) = !t!1(i)aij
i=0

N!1

"
#

$
%

&

'
( bj (ot ) 0 < t < T, 0 ) j < N

!0 ( j) = " jbj (o0 ) 0 ! j < N

P(o | !) = "T!1(i)
i=0

N!1

"

Forward Algorithm Complexity"
!  In the naïve approach to solving  

problem 1 it takes on the order of 2T×NT 
computations"

! The forward algorithm takes on the order 
of N2T computations"

Backward Probabilities"
! Or, we can instead compute right-to-left, 

analogous to the forward probability, 
but in the opposite direction"

! What is the probability that, given  
an HMM    and given the state at time t 
is i, the partial observation ot+1..T  is 
generated?"

!t (i) = P(ot+1..T | qt = ni,")= P(ot+1...oT!1 | qt = ni,")! 

"

Backward Probabilities"
 "

!t (i) = aijbj (ot+1)!t+1( j)
j=0

N!1

"
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&
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(
(

!t (i) = P(ot+1...oT | qt = ni,")



Backward Algorithm"
!  Initialization:"

!  Induction:"

! Termination:  "

!T!1(i) =1, 0 " i < N

!t (i) = aijbj (ot+1)!t+1( j)
j=0

N!1

"
#

$
%
%

&

'
(
(
t = T ! 2...0, 0 ) i < N

P(o | !) = " i #0 (i)
i=0

N!1

"

Problem 3: Learning"
!  Up to now we’ve assumed that we know the 

underlying model "
!  Often these parameters are estimated on 

annotated training data, which has two 
drawbacks:"
!  Annotation is difficult and/or expensive"
!  Training data is different from the current data"

!  We want to maximize the parameters with 
respect to the current data, i.e., we’re looking 
for a maximum likelihood model     , such that"

! = (a,b,!)

! 

"'
! ' = argmax

!
P(o | !)

Problem 3: Learning"
!  Unfortunately, there is no known way to 

analytically find a global maximum, i.e., a 
model     , such that"

!  But it is possible to find a local maximum 
via the expectation-maximization (EM) approach"

!  Given an initial model    , we can always find a 
model    , such that "

"

! 

"' ! ' = argmax
!

P(o | !)

! 

"

! 

"' P(o | ! ') ! P(o | !)

Parameter Re-estimation"
! Use the forward-backward algorithm 

(a.k.a. the Baum-Welch algorithm), which 
is a hill-climbing algorithm"

! Using an initial parameter instantiation, 
the forward-backward algorithm iteratively 
re-estimates the parameters, and 
improves the probability that given 
observation are generated by the new 
parameters"



Parameter Re-estimation"
! Three parameters need to be re-estimated:"

!  Initial state distribution: "
!  Transition probabilities:  ai,j!
!  Emission probabilities:  bi (ot)"

! 

" i

Re-estimating Transition Probabilities"

! The key intuition is that we want to 
compute our expected fractional counts 
on the number of times each transition is 
traversed, and then normalize:"

âi, j =
expected number of transitions from state ni  to state n j

expected number of transitions from state ni

Re-estimating Transition Probabilities"
! Expected number of transitions: 
 
what’s the probability of being in state ni 
at time t and going to state nj, given the 
current model and parameters?"

!t (i, j) = P(qt = ni, qt+1 = nj | o,")

Re-estimating Transition Probabilities"

   "

!t (i, j) =
P(qt = ni, qt+1 = nj,o | ")

P(o | ")
=
#t (i) ai, j bj (ot+1) $t+1( j)

P(o0..T | ")
=

#t (i) ai, j bj (ot+1) $t+1( j)

#t (i) ai, j bj (ot+1) $t+1( j)
j=0

N!1

"
i=0

N!1

"

!t (i, j) = P(qt = ni, qt+1 = nj | o,")



Re-estimating Transition Probabilities"

! Remember, the intuition behind the  
re-estimation equation for transition 
probabilities is"

! Formally:"

âi, j =
expected number of transitions from state ni  to state n j

expected number of transitions from state ni

âi, j =
!t (i, j)

t=0

T!2

"

!t (i, j ')
t=0

T!2

"
j '=0

N!1

"

Re-estimating Transition Probabilities"

! We can rewrite this more neatly as 
 
 
 
 
where we define  
 
to be the probability of being in state ni  at 
time t, given the complete observation o!

âi, j =
!t (i, j)

t=0

T!2

"

" t (i)
t=0

T!2

"
! t (i) = "t (i, j)

j=0

N!1

"

Review of Probabilities"
!  Forward probability: "
"The probability of being in state ni, given the partial 
observation o0,…,ot!

!  Backward probability:"
"The probability of being in state ni, given the partial 
observation ot+1,…,oT-1"

!  Transition probability:"
"The probability of going from state ni, to state nj, given 
the complete observation o0,…,oT-1"

!  State probability:"
"The probability of being in state ni, given the complete 
observation o0,…,oT-1"

! 

" t (i)

! 

"t (i)

! 

" t (i, j)

! 

" t (i)

Re-estimating Initial State Probabilities"
!  Initial state distribution:     is the 

probability that ni is a start state"
! Re-estimation is easy:"

! Formally:"
! 

" i

!̂ i = expected number of times in state ni  at time 0

!̂ i = "0 (i)



Re-estimation of Emission Probabilities"
!  Emission probabilities are re-estimated as"

!  Formally:"

""
"Where"
"Note that     here is the Kronecker delta function and is not 
related to the     in the discussion of the Viterbi algorithm!!"

b̂i (k) = expected number of times in state ni  and observe symbol wk

expected number of times in state ni

b̂i (k) =
!(ot,wk )" t (i)

t=0

T!1

"

" t (i)
t=0

T!1

"

!(ot,wk ) =1,  if ot = wk,  and 0 otherwise

! 

"

! 

"

To iteratively update the model"
! Coming from                   we get to               "
                       by the following update rules:"! ' = (â, b̂, !̂)

âi, j =
!t (i, j)

t=0

T!2

"

" t (i)
t=0

T!2

"
b̂i (k) =

!(ot,wk )" t (i)
t=0

T!1

"

" t (i)
t=0

T!1

"
!̂ i = "0 (i)

! = (a,b,!)

Expectation-Maximization"
! The forward-backward algorithm is an 

instance of the more general EM 
algorithm"
!  The E Step:  Compute the forward and 

backward probabilities for a given model"
!  The M Step:  Re-estimate the model 

parameters "



Hidden Markov Models"
"
              Bonnie Dorr     Christof Monz!
"
  CMSC 723: Introduction to Computational Linguistics"
"
                                     Lecture 5"
"
                                October 6, 2004"
"
"

Hidden Markov Model (HMM)"
! HMMs allow you to estimate probabilities 

of unobserved events"
! Given plain text, which underlying 

parameters generated the surface"
! E.g., in speech recognition, the observed 

data is the acoustic signal and the words 
are the hidden parameters"

HMMs and their Usage"
!  HMMs are very common in Computational 

Linguistics:"
!  Speech recognition (observed: acoustic signal, 

hidden: words)"
!  Handwriting recognition (observed: image, hidden: 

words)"
!  Part-of-speech tagging (observed: words, hidden: 

part-of-speech tags)"
!  Machine translation (observed: foreign words, 

hidden: words in target language)"

Noisy Channel Model"
!  In speech recognition you observe an 

acoustic signal (A=a1,…,an) and you want 
to determine the most likely sequence of 
words (W=w1,…,wn): P(W | A)"

! Problem: A and W are too specific for 
reliable counts on observed data, and are 
very unlikely to occur in unseen data"



Noisy Channel Model"
!  Assume that the acoustic signal (A) is already 

segmented wrt word boundaries"
!  P(W | A) could be computed as"

!  Problem: Finding the most likely word 
corresponding to a acoustic representation 
depends on the context"

!  E.g., /'pre-z&ns / could mean “presents” or 
“presence” depending on the context"
! 

P(W | A) = max
wiai

" P(wi | ai)

Noisy Channel Model"
! Given a candidate sequence W we need 

to compute P(W) and combine it with P(W 
| A)"

! Applying Bayes’ rule:"

! The denominator P(A) can be dropped, 
because it is constant for all W"

! 

argmax
W

P(W | A) = argmax
W

P(A |W )P(W )
P(A)

39"

Noisy Channel in a Picture"

 
 
 
 
 

Decoding"
The decoder combines evidence from "

!  The likelihood: P(A | W)"
   This can be approximated as:"
"
"
!  The prior: P(W)"
   This can be approximated as:"

"

! 

P(W ) " P(w1 ) P(wii= 2

n
# |wi$1)

! 

P(A |W ) " P(aii=1

n
# |wi )



Search Space"
!  Given a word-segmented acoustic sequence list 

all candidates"

!  Compute the most likely path"

'bot" ik-'spen-siv" 'pre-z&ns"
boat" excessive" presidents"
bald" expensive" presence"
bold" expressive" presents"
bought" inactive" press"! 

P(inactive |bald)
! 

P('bot |bald)


