
HMM / SFSA / WFSA  
Decoding, Evaluation, and Learning for 

Hidden Markov Models & Stochastic/Weighted Finite State Automata"
COMP4221, Spring 2012  

 
Prof. Dekai Wu  

HKUST Human Language Technology Center 
Department of Computer Science and Engineering  
Hong Kong University of Science and Technology 

dekai@cs.ust.hk"
"

2012.04.15 draft for your personal use only 
© 2012 Dekai Wu. All rights reserved."

"
MANY ERRORS! PLEASE DO NOT DUPLICATE

OR DISTRIBUTE THIS VERSION  
"

"

Markov Assumption"
! The Markov assumption states that

probability of the occurrence of an
observed token ot at time t depends only
on the occurrence of ot-1 at time t-1"
!  Chain rule:"
"

!  Markov assumption:"
P(o) = P(o0..T) = P(o0,...,oT!1) " P(o0) P(ot | ot!1)

t=1

T!1

#

P(o) = P(o0..T) = P(o0,...,oT!1) = P(o0) P(ot | o0,...,ot!1)
t=1

T!1

"

The Trellis"
"
"

Parameters of an HMM"
!  States: a set of state nodes n=n0,…,nN-1"
!  Transition probabilities: a= a0,0,a0,1,…,aN-1,N-1

where each ai,j represents the probability of
transitioning to nj, given that weʼre coming from
state ni "

!  Emission probabilities: a set b of functions of
the form bi(ot) which is the probability of
observation ot being emitted by ni at time t!

!  Initial state distribution: is the probability that
ni is a start state"

!

" i

The Three Basic HMM Problems"
!  Problem 1: Decoding. Given the observation

sequence o=o0..T=o0,…,oT-1 and an HMM model "
 , how do we find the state sequence

that best explains the observations?"
!  Problem 2: Evaluation. Given the observation

sequence o=o0..T and an HMM model ,
how do we compute the probability of o given the
model?"

! = (a,b,!)

! = (a,b,!)

! Problem 3: Learning. How do we adjust
the model parameters , so as
to maximize ?"

"

The Three Basic HMM Problems"

! = (a,b,!)
P(o | !)

Problem 1: Decoding "
!  For Problem 1, we want to find the path with the

highest probability."
!  We want to find the state sequence  

q=q0..T=q0…qT-1, such that 
"

!  Naïve computation is very expensive. Given T
observations and N states, there are NT
possible state sequences."

!  Even small HMMs, e.g. T=10 and N=10,
contain 10 billion different paths"

!  Solution: use dynamic programming"

q = argmax
q '

P(q ' | o,!)

Viterbi Algorithm"
! Similar to computing the forward

probabilities, but instead of summing over
transitions from incoming states, compute
the maximum"

! Forward:"

! Viterbi Recursion:"

!t (j) = !t!1(i)aij
i=0

N!1

"
#

$
%

&

'
(bj (ot)

!t (j) = max
0!i<N

!t"1(i)aij#
$

%
& bj (ot)

Viterbi Algorithm"
!  Initialization:"
!  Induction: "

!  Termination:"

!  Reconstruction: "
"

!0 (j) = " jbj (o0) 0 ! j < N

!t (j) = max
0!i<N

!t"1(i)aij#
$

%
& bj (ot)

!t (j) = argmax
0!i<N

"t"1(i)aij
#
$%

&
'(
0 < t < T, 0 ! j < N

p* =max
0!i<N

!T"1(i) qT!1
* = argmax

0"i<N
!T!1(i)

qt
* =!t+1(qt+1

*) t = T ! 2,..., 0

Problem 2: Probability of an Observation
Sequence"
!  What is ?"
!  The probability of a observation sequence is the

sum of the probabilities of all possible state
sequences in the HMM."

!  The solution to Problem 1 (decoding) gives us
the max of all paths through an HMM efficiently."

P(o | !)

Forward Probabilities"
! What is the probability that, given an

HMM , at time t the state is i and the
partial observation o0 … ot has been
generated?"

!t (i) = P(o0..t+1, qt = ni | ") = P(o0... ot, qt = ni | ")!

"

Forward Probabilities"
"

!t (j) = !t!1(i)aij
i=0

N!1

"
#

$
%

&

'
(bj (ot)

!t (i) = P(o0...ot, qt = ni | ")

Forward Algorithm"
!  Initialization:"

!  Induction: "

"
! Termination:"

!t (j) = !t!1(i)aij
i=0

N!1

"
#

$
%

&

'
(bj (ot) 0 < t < T, 0) j < N

!0 (j) = " jbj (o0) 0 ! j < N

P(o | !) = "T!1(i)
i=0

N!1

"

Forward Algorithm Complexity"
!  In the naïve approach to solving  

problem 1 it takes on the order of 2T×NT
computations"

! The forward algorithm takes on the order
of N2T computations"

Backward Probabilities"
! Or, we can instead compute right-to-left,

analogous to the forward probability, 
but in the opposite direction"

! What is the probability that, given  
an HMM and given the state at time t 
is i, the partial observation ot+1..T is
generated?"

!t (i) = P(ot+1..T | qt = ni,")= P(ot+1...oT!1 | qt = ni,")!

"

Backward Probabilities"
 "

!t (i) = aijbj (ot+1)!t+1(j)
j=0

N!1

"
#

$
%
%

&

'
(
(

!t (i) = P(ot+1...oT | qt = ni,")

Backward Algorithm"
!  Initialization:"

!  Induction:"

! Termination: "

!T!1(i) =1, 0 " i < N

!t (i) = aijbj (ot+1)!t+1(j)
j=0

N!1

"
#

$
%
%

&

'
(
(
t = T ! 2...0, 0) i < N

P(o | !) = " i #0 (i)
i=0

N!1

"

Problem 3: Learning"
!  Up to now we’ve assumed that we know the

underlying model "
!  Often these parameters are estimated on

annotated training data, which has two
drawbacks:"
!  Annotation is difficult and/or expensive"
!  Training data is different from the current data"

!  We want to maximize the parameters with
respect to the current data, i.e., we’re looking
for a maximum likelihood model , such that"

! = (a,b,!)

!

"'
! ' = argmax

!
P(o | !)

Problem 3: Learning"
!  Unfortunately, there is no known way to

analytically find a global maximum, i.e., a
model , such that"

!  But it is possible to find a local maximum 
via the expectation-maximization (EM) approach"

!  Given an initial model , we can always find a
model , such that "

"

!

"' ! ' = argmax
!

P(o | !)

!

"

!

"' P(o | ! ') ! P(o | !)

Parameter Re-estimation"
! Use the forward-backward algorithm

(a.k.a. the Baum-Welch algorithm), which
is a hill-climbing algorithm"

! Using an initial parameter instantiation,
the forward-backward algorithm iteratively
re-estimates the parameters, and
improves the probability that given
observation are generated by the new
parameters"

Parameter Re-estimation"
! Three parameters need to be re-estimated:"

!  Initial state distribution: "
!  Transition probabilities: ai,j!
!  Emission probabilities: bi (ot)"

!

" i

Re-estimating Transition Probabilities"

! The key intuition is that we want to
compute our expected fractional counts
on the number of times each transition is
traversed, and then normalize:"

âi, j =
expected number of transitions from state ni to state n j

expected number of transitions from state ni

Re-estimating Transition Probabilities"
! Expected number of transitions: 
 
what’s the probability of being in state ni
at time t and going to state nj, given the
current model and parameters?"

!t (i, j) = P(qt = ni, qt+1 = nj | o,")

Re-estimating Transition Probabilities"

 "

!t (i, j) =
P(qt = ni, qt+1 = nj,o | ")

P(o | ")
=
#t (i) ai, j bj (ot+1) $t+1(j)

P(o0..T | ")
=

#t (i) ai, j bj (ot+1) $t+1(j)

#t (i) ai, j bj (ot+1) $t+1(j)
j=0

N!1

"
i=0

N!1

"

!t (i, j) = P(qt = ni, qt+1 = nj | o,")

Re-estimating Transition Probabilities"

! Remember, the intuition behind the  
re-estimation equation for transition
probabilities is"

! Formally:"

âi, j =
expected number of transitions from state ni to state n j

expected number of transitions from state ni

âi, j =
!t (i, j)

t=0

T!2

"

!t (i, j ')
t=0

T!2

"
j '=0

N!1

"

Re-estimating Transition Probabilities"

! We can rewrite this more neatly as 
 
 
 
 
where we define  
 
to be the probability of being in state ni at
time t, given the complete observation o!

âi, j =
!t (i, j)

t=0

T!2

"

" t (i)
t=0

T!2

"
! t (i) = "t (i, j)

j=0

N!1

"

Review of Probabilities"
!  Forward probability: "
"The probability of being in state ni, given the partial
observation o0,…,ot!

!  Backward probability:"
"The probability of being in state ni, given the partial
observation ot+1,…,oT-1"

!  Transition probability:"
"The probability of going from state ni, to state nj, given
the complete observation o0,…,oT-1"

!  State probability:"
"The probability of being in state ni, given the complete
observation o0,…,oT-1"

!

" t (i)

!

"t (i)

!

" t (i, j)

!

" t (i)

Re-estimating Initial State Probabilities"
!  Initial state distribution: is the

probability that ni is a start state"
! Re-estimation is easy:"

! Formally:"
!

" i

!̂ i = expected number of times in state ni at time 0

!̂ i = "0 (i)

Re-estimation of Emission Probabilities"
!  Emission probabilities are re-estimated as"

!  Formally:"

""
"Where"
"Note that here is the Kronecker delta function and is not
related to the in the discussion of the Viterbi algorithm!!"

b̂i (k) = expected number of times in state ni and observe symbol wk

expected number of times in state ni

b̂i (k) =
!(ot,wk)" t (i)

t=0

T!1

"

" t (i)
t=0

T!1

"

!(ot,wk) =1, if ot = wk, and 0 otherwise

!

"

!

"

To iteratively update the model"
! Coming from we get to "
 by the following update rules:"! ' = (â, b̂, !̂)

âi, j =
!t (i, j)

t=0

T!2

"

" t (i)
t=0

T!2

"
b̂i (k) =

!(ot,wk)" t (i)
t=0

T!1

"

" t (i)
t=0

T!1

"
!̂ i = "0 (i)

! = (a,b,!)

Expectation-Maximization"
! The forward-backward algorithm is an

instance of the more general EM
algorithm"
!  The E Step: Compute the forward and

backward probabilities for a given model"
!  The M Step: Re-estimate the model

parameters "

Hidden Markov Models"
"
 Bonnie Dorr Christof Monz!
"
 CMSC 723: Introduction to Computational Linguistics"
"
 Lecture 5"
"
 October 6, 2004"
"
"

Hidden Markov Model (HMM)"
! HMMs allow you to estimate probabilities

of unobserved events"
! Given plain text, which underlying

parameters generated the surface"
! E.g., in speech recognition, the observed

data is the acoustic signal and the words
are the hidden parameters"

HMMs and their Usage"
!  HMMs are very common in Computational

Linguistics:"
!  Speech recognition (observed: acoustic signal,

hidden: words)"
!  Handwriting recognition (observed: image, hidden:

words)"
!  Part-of-speech tagging (observed: words, hidden:

part-of-speech tags)"
!  Machine translation (observed: foreign words,

hidden: words in target language)"

Noisy Channel Model"
!  In speech recognition you observe an

acoustic signal (A=a1,…,an) and you want
to determine the most likely sequence of
words (W=w1,…,wn): P(W | A)"

! Problem: A and W are too specific for
reliable counts on observed data, and are
very unlikely to occur in unseen data"

Noisy Channel Model"
!  Assume that the acoustic signal (A) is already

segmented wrt word boundaries"
!  P(W | A) could be computed as"

!  Problem: Finding the most likely word
corresponding to a acoustic representation
depends on the context"

!  E.g., /'pre-z&ns / could mean “presents” or
“presence” depending on the context"
!

P(W | A) = max
wiai

" P(wi | ai)

Noisy Channel Model"
! Given a candidate sequence W we need

to compute P(W) and combine it with P(W
| A)"

! Applying Bayes’ rule:"

! The denominator P(A) can be dropped,
because it is constant for all W"

!

argmax
W

P(W | A) = argmax
W

P(A |W)P(W)
P(A)

39"

Noisy Channel in a Picture"

Decoding"
The decoder combines evidence from "

!  The likelihood: P(A | W)"
 This can be approximated as:"
"
"
!  The prior: P(W)"
 This can be approximated as:"

"

!

P(W) " P(w1) P(wii= 2

n
|wi$1)

!

P(A |W) " P(aii=1

n
|wi)

Search Space"
!  Given a word-segmented acoustic sequence list

all candidates"

!  Compute the most likely path"

'bot" ik-'spen-siv" 'pre-z&ns"
boat" excessive" presidents"
bald" expensive" presence"
bold" expressive" presents"
bought" inactive" press"!

P(inactive |bald)
!

P('bot |bald)

