Markov Assumption

- The Markov assumption states that the probability of the occurrence of an observed token o_t at time t depends only on the occurrence of o_{t-1} at time $t-1$

- Chain rule:
 \[P(o) = P(o_0, \ldots, o_T) = P(o_0) \prod_{t=1}^{T-1} P(o_t | o_0, \ldots, o_{t-1}) \]

- Markov assumption:
 \[P(o) = P(o_0, \ldots, o_T) = P(o_0) \prod_{t=1}^{T-1} P(o_t | o_{t-1}) \]

The Trellis

Parameters of an HMM

- States: a set of state nodes $n = n_0, \ldots, n_{N-1}$
- Transition probabilities: $a = a_{0,0}, a_{0,1}, \ldots, a_{N-1,N-1}$ where each a_{ij} represents the probability of transitioning to n_j given that we're coming from state n_i
- Emission probabilities: a set b of functions of the form $b_i(o_t)$ which is the probability of observation o_t being emitted by n_i at time t
- Initial state distribution: π_i is the probability that n_i is a start state
The Three Basic HMM Problems

- Problem 1: Decoding. Given the observation sequence $o= o_0, o_1, \ldots, o_T$, and an HMM model $\lambda = (a, b, \pi)$, how do we find the state sequence that best explains the observations?

- Problem 2: Evaluation. Given the observation sequence $o= o_0, o_1, \ldots, o_T$ and an HMM model $\lambda = (a, b, \pi)$, how do we compute the probability of o given the model?

- Problem 3: Learning. How do we adjust the model parameters $\lambda = (a, b, \pi)$, so as to maximize $P(o \mid \lambda)$?

Problem 1: Decoding

- For Problem 1, we want to find the path with the highest probability.
- We want to find the state sequence $q = q_0, q_1, \ldots, q_T$, such that $q = \arg \max P(q \mid o, \lambda)$.
- Naïve computation is very expensive. Given T observations and N states, there are N^T possible state sequences.
- Even small HMMs, e.g. $T=10$ and $N=10$, contain 10 billion different paths.
- Solution: use dynamic programming.

Viterbi Algorithm

- Similar to computing the forward probabilities, but instead of summing over transitions from incoming states, compute the maximum.
- Forward:
 $$\alpha_t(j) = \sum_{i=0}^{N-1} \alpha_{t-1}(i)a_{ij}b_j(o_t)$$
- Viterbi Recursion:
 $$\delta_t(j) = \max_{0 \leq \ell < N} \delta_{t-1}(i)a_{ij}b_j(o_t)$$
Viterbi Algorithm

- Initialization: \(\delta_0(j) = \pi_j b_j(o_0) \quad 0 \leq j < N \)
- Induction:
 \[
 \delta_t(j) = \max_{0 \leq i < N} \delta_{t-1}(i) a_{ij} b_j(o_t)
 \]
 \[
 \psi_t(j) = \arg \max_{0 \leq i < N} \delta_{t-1}(i) a_{ij} \quad 0 < t < T, 0 \leq j < N
 \]
- Termination: \(p^* = \max_{0 \leq i < N} \delta_{T-1}(i) \quad q^*_{T-1} = \arg \max_{0 \leq i < N} \delta_{T-1}(i) \)
- Reconstruction: \(q_t^* = \psi_{t+1}(q_{t+1}) \quad t = T - 2, \ldots, 0 \)

Problem 2: Probability of an Observation Sequence

- What is \(P(o \mid \lambda) \)?
- The probability of a observation sequence is the sum of the probabilities of all possible state sequences in the HMM, i.e., the sum over all paths that generate \(o \) through an HMM efficiently.
- The solution to Problem 1 (decoding) gives us the max over all paths that generate \(o \) through an HMM efficiently.

Forward Probabilities

- What is the probability that, given an HMM \(\lambda \), at time \(t \) the state is \(i \) and the partial observation \(o_0 \ldots o_t \) has been generated?

 \[
 \alpha_t(i) = P(o_0 \ldots o_t, q_t = n_i \mid \lambda) = P(o_0 \ldots o_t, q_t = n_i \mid \lambda)
 \]
Forward Algorithm

- Initialization: \(\alpha_0(j) = \pi_j b_j(o_0) \quad 0 \leq j < N \)

- Induction:
 \[
 \alpha_t(j) = \sum_{i=0}^{N-1} \alpha_{t-1}(i) a_{ij} b_j(o_t) \quad 0 < t < T, 0 \leq j < N
 \]

- Termination: \(P(o \mid \lambda) = \sum_{i=0}^{N-1} \alpha_{T-1}(i) \)

Forward Algorithm Complexity

- In the naïve approach to solving problem 1 it takes on the order of \(2T \times N^T \) computations
- The forward algorithm takes on the order of \(N^2 T \) computations

Backward Probabilities

- Or, we can instead compute right-to-left, analogous to the forward probability, but in the opposite direction
- What is the probability that, given an HMM \(\lambda \) and given the state at time \(t \) is \(i \), the partial observation \(o_{t+1..T} \) is generated?
 \[
 \beta_t(i) = P(o_{t+1..T} \mid q_t = n_i, \lambda) = P(o_{t+1}...o_{T-1} \mid q_t = n_i, \lambda)
 \]

Backward Probabilities
Backward Algorithm

- Initialization: \(\beta_{T-1}(i) = 1, \ 0 \leq i < N \)

- Induction:
 \[
 \beta(i) = \sum_{j=0}^{N-1} a_i b_j(o_i) \beta(i) \quad i = T-2...0, \ 0 \leq i < N
 \]

- Termination:
 \[
 P(o \mid \lambda) = \sum_{i=0}^{N-1} \pi_i \beta_0(i)
 \]

Problem 3: Learning

- Up to now we’ve assumed that we know the underlying model \(\lambda = (a, b, \pi) \)
- Often these parameters are estimated on annotated training data, which has two drawbacks:
 - Annotation is difficult and/or expensive
 - Training data is different from the current data
- We want to maximize the parameters with respect to the current data, i.e., we’re looking for a maximum likelihood model \(\lambda^* \), such that \(\lambda^* = \arg\max_{\lambda} P(o \mid \lambda) \)

Parameter Re-estimation

- Use the forward-backward algorithm (a.k.a. the Baum-Welch algorithm), which is a hill-climbing algorithm
- Using an initial parameter instantiation, the forward-backward algorithm iteratively re-estimates the parameters, and improves the probability that the given observations are generated by the new parameters
Parameter Re-estimation

- Three parameters need to be re-estimated:
 - Initial state distribution: \(\pi_i \)
 - Transition probabilities: \(a_{ij} \)
 - Emission probabilities: \(b_i(o) \)

Re-estimating Transition Probabilities

- Expected number of transitions:

 what’s the probability of being in state \(n_i \) at time \(t \) and going to state \(n_j \) given the current model and parameters?

 \[
 \xi_t(i, j) = P(q_t = n_i, q_{t+1} = n_j | o, \lambda)
 \]
Re-estimating Transition Probabilities

- Remember, the intuition behind the re-estimation equation for transition probabilities is
 \[\hat{a}_{i,j} = \frac{\text{expected number of transitions from state } n_i \text{ to state } n_j}{\text{expected number of transitions from state } n_i} \]

- Formally:
 \[\hat{a}_{i,j} = \frac{\sum_{t=0}^{T-2} \xi_t(i,j)}{\sum_{j'=0}^{N-1} \sum_{j''=0}^{N-1} \xi_t(i,j'')} \]

Re-estimating Transition Probabilities

- We can rewrite this more neatly as
 \[\hat{a}_{i,j} = \frac{\sum_{t=0}^{T-2} \xi_t(i,j)}{\sum_{i'=0}^{N-1} \gamma_t(i')} \]

 where we define
 \[\gamma_t(i) = \sum_{j'=0}^{N-1} \xi_t(i,j') \]

 to be the probability of being in state \(n_i \) at time \(t \), given the complete observation \(o \)

Review of Probabilities

- Forward probability: \(\alpha_t(i) \)
 - The probability of being in state \(n_i \) given the partial observation \(o_0, \ldots, o_t \)

- Backward probability: \(\beta_t(i) \)
 - The probability of being in state \(n_i \) given the partial observation \(o_{t+1}, \ldots, o_T \)

- Transition probability: \(\xi_t(i,j) \)
 - The probability of going from state \(n_i \) to state \(n_j \) given the complete observation \(o_0, \ldots, o_{T-1} \)

- State probability: \(\gamma_t(i) \)
 - The probability of being in state \(n_i \) given the complete observation \(o_0, \ldots, o_{T-1} \)

Re-estimating Initial State Probabilities

- Initial state distribution: \(\pi_i \) is the probability that \(n_i \) is a start state

- Re-estimation is easy:
 \[\hat{\pi}_i = \text{expected number of times in state } n_i \text{ at time } 0 \]

- Formally:
 \[\hat{\pi}_i = \gamma_0(i) \]
Re-estimation of Emission Probabilities

- Emission probabilities are re-estimated as
 \[
 \hat{b}_i(k) = \frac{\text{expected number of times in state } n_i \text{ and observe symbol } w_k}{\text{expected number of times in state } n_i}
 \]

- Formally:
 \[
 \hat{b}_i(k) = \frac{T-1}{\sum_{t=0}^{T-1} \gamma_t(i)} \sum_{t=0}^{T-1} \delta(o_t, w_k) \gamma_t(i)
 \]

Where \(\delta(o_t, w_k) = 1 \), if \(o_t = w_k \), and 0 otherwise.

Note that \(\delta \) here is the Kronecker delta function and is not related to the \(\delta \) in the discussion of the Viterbi algorithm.

To iteratively update the model

- Coming from \(\lambda = (a, b, \pi) \) we get to \(\lambda' = (\hat{a}, \hat{b}, \hat{\pi}) \) by the following update rules:

 \[
 \hat{a}_{i,j} = \frac{\sum_{t=2}^{T-2} \xi_t(i,j)}{\sum_{t=2}^{T-2} \gamma_t(i)}, \quad \hat{b}_i(k) = \frac{\sum_{t=0}^{T-1} \delta(o_t, w_k) \gamma_t(i)}{\sum_{t=0}^{T-1} \gamma_t(i)}, \quad \hat{\pi}_i = \gamma_0(i)
 \]

Expectation-Maximization

- The forward-backward algorithm is an instance of the more general EM algorithm

 - The E Step: Compute the forward and backward probabilities for a given model
 - The M Step: Re-estimate the model parameters
Hidden Markov Models

Hidden Markov Model (HMM)

- HMMs allow you to estimate probabilities of unobserved events
- Given plain text, which underlying parameters generated the surface
- E.g., in speech recognition, the observed data is the acoustic signal and the words are the hidden parameters

HMMs and their Usage

- HMMs are very common in Computational Linguistics:
 - Speech recognition (observed: acoustic signal, hidden: words)
 - Handwriting recognition (observed: image, hidden: words)
 - Part-of-speech tagging (observed: words, hidden: part-of-speech tags)
 - Machine translation (observed: foreign words, hidden: words in target language)

Noisy Channel Model

- In speech recognition you observe an acoustic signal \(A = a_1, \ldots, a_n \) and you want to determine the most likely sequence of words \(W = w_1, \ldots, w_n \): \(P(W \mid A) \)
- Problem: \(A \) and \(W \) are too specific for reliable counts on observed data, and are very unlikely to occur in unseen data
Noisy Channel Model

- Assume that the acoustic signal (A) is already segmented wrt word boundaries
- \(P(W \mid A) \) could be computed as
 \[
 P(W \mid A) = \prod_{w_i} \max_{a_i} P(w_i \mid a_i)
 \]
- Problem: Finding the most likely word corresponding to an acoustic representation depends on the context
- E.g., /pre-zsns/ could mean “presents” or “presence” depending on the context

Noisy Channel Model

- Given a candidate sequence W we need to compute \(P(W) \) and combine it with \(P(W \mid A) \)
- Applying Bayes’ rule:
 \[
 \arg \max_W P(W \mid A) = \arg \max_W \frac{P(A \mid W)P(W)}{P(A)}
 \]
- The denominator \(P(A) \) can be dropped, because it is constant for all \(W \)

Decoding

The decoder combines evidence from

- The likelihood: \(P(A \mid W) \)
 This can be approximated as:
 \[
 P(A \mid W) = \prod_{i=1}^n P(a_i \mid w_i)
 \]
- The prior: \(P(W) \)
 This can be approximated as:
 \[
 P(W) = P(w_1) \prod_{i=2}^n P(w_i \mid w_{i-1})
 \]
Search Space

- Given a word-segmented acoustic sequence list all candidates

<table>
<thead>
<tr>
<th>'bot</th>
<th>ik-'spen-siv</th>
<th>'pre-z ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>boat</td>
<td>excessive</td>
<td>presidents</td>
</tr>
<tr>
<td>bald</td>
<td>expensive</td>
<td>presence</td>
</tr>
<tr>
<td>bold</td>
<td>expressive</td>
<td>presents</td>
</tr>
<tr>
<td>bought</td>
<td>inactive</td>
<td>press</td>
</tr>
</tbody>
</table>

- Compute the most likely path