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Markov Assumption

m The Markov assumption states that
probability of the occurrence of an
observed token o, at time t depends only
on the occurrence of o, at time t-1
m Chain rule: .

P(0) = P(0,. 1) = P(0y....0;) = P(0,)] [ P(0,105,...0,.,)
= Markov assumption:
P(0) = P(0,. ;) = P(0y,...s0,_,) = P(oO)HP(o lo,,)

t=1

The Trellis

Parameters of an HMM

m States: a set of state nodes n=n,,...,ny_;

m Transition probabilities: a= a, 4,8 1,...,8n.1 -1
where each g;; represents the probab|l|ty of
transitioning to n;, given that we're coming from
state n,

m Emission probabilities: a set b of functions of
the form b(o,) which is the probability of
observation o, being emitted by n; at time ¢

m Initial state distribution: 7, is the probability that
n;is a start state



The Three Basic HMM Problems

m Problem 1: Decoding. Given the observation
sequence 0=0, 1=0y,...,01.; and an HMM model

A =(a,b,m) , how do we find the state sequence
that best explains the observations?

= Problem 2: Evaluation. Given the observation
sequence 0=0, rand an HMM model A = (a,b, ),
how do we compute the probability of o given the
model?

The Three Basic HMM Problems

m Problem 3: Learning. How do we adjust
the model parameters 4 =(a,b,m), SO as
to maximize P(olA)?

Problem 1: Decoding

m For Problem 1, we want to find the path with the
highest probability.
m We want to find the state sequence
d=q,.7=Y---9r.1, Such that q =argmax P(q'lo,A)
o

m Naive computation is very expensive. Given T
observations and N states, there are NT
possible state sequences.

m Even small HMMs, e.g. T=10 and N=10,
contain 10 billion different paths

m Solution: use dynamic programming

Viterbi Algorithm

m Similar to computing the forward
probabilities, but instead of summing over
transitions from incoming states, compute
the maximum

= Forward:  , ;_

E_at_l (i)al.jl b,(0,)

i=0

m Viterbi Recursion:
61(.]) = I:%)EE})\? 61—1 (l) aii] b.i (Of)



Viterbi Algorithm

m [nitialization:  §,(j)=7;b,(0,) O0=<j<N
® [nduction:

5,()=|maxs. (ha, |b,0,)

Y.(j)= largmaxét_l(i)a,.j] 0<t<T,0=<sj<N

O<i<N

= Termination: p  =maxd,_ (i) ¢r_ = argmaxd,_ (i)
O<i<N O<i<N

= Reconstruction: ¢, =¥,,(¢,,,) 1=T-2,..,0

Problem 2: Probability of an Observation
Sequence

m Whatis P(olA)?

m The probability of a observation sequence is the
sum of the probabilities of all possible state
sequences in the HMM, i.e, the sum over all
paths that generate o through an HMM
efficiently.

m The solution to Problem 1 (decoding) gives us
the max over all paths that generate o through
an HMM efficiently.

Forward Probabilities

m What is the probability that, given an
HMM A , at time t the state is j and the
partial observation o, ... 0, has been
generated?

o (i)=P(o, ,,..q =n1A)=P(o,...0,,q, =n 1)

Forward Probabilities

a,(i)=P(0,...0,,q, =n, | L)

alpha'_1 (1)

alpha‘_1 2)
alphay_1(N) bj(Ot)
»
Oy oo O o

a,(j)= Ea,_l(i)a,]}bl(o,)
i=0



Forward Algorithm

m |nitialization: «,(j)=mb;(0,) 0=<j<N

m Induction:
a,(j)= [Ea,_l(i)al.j] b(o) 0<t<T,0<j<N

i=0

= Termination: P(ol4)= >, ()

i=0

Forward Algorithm Complexity

m In the naive approach to solving
problem 1 it takes on the order of 2TxN"
computations

m The forward algorithm takes on the order
of N°T computations

Backward Probabilities

m Or, we can instead compute right-to-left,
analogous to the forward probability,
but in the opposite direction

m What is the probability that, given
an HMM A and given the state at time ¢
is i, the partial observation o,,; 7 is
generated?

/))z(l) = P(Oz+1..T |qt = ni’A’)= P(0t+l“'0T—l Iqt = ni’A’)

Backward Probabilities

B.(i)=P(o,,,...0 1q, =n,,A)

betay (1)

[ R
Ots1 Or

B ()= [Sa,,b,(om Bl ]
j=0



Backward Algorithm
m Initialization: p,_(i))=1, O0<i<N

m Induction:
@@{2%@mnmw>

Jj=0

t=T7-2.0,0si<N

m Termination: .
HMM=Em&®

Problem 3: Learning

= Up to now we’ ve assumed that we know the
underlying model A =(a,b,x)

m Often these parameters are estimated on
annotated training data, which has two
drawbacks:

m Annotation is difficult and/or expensive
m Training data is different from the current data

m We want to maximize the parameters with
respect to the current data, i.e., we’ re looking
for a maximum likelihood model A *, such that

A* =argmax P(0lA)
A

Problem 3: Learning

m Unfortunately, there is no known way to
analytically find a global maximum, i.e., a
model A', such that A'=argmax P(olA)

A

m But it is possible to find a local maximum
via the expectation-maximization (EM) approach

m Given an initial model A, we can always find a
model A', such that P(olA")=P(olA)

Parameter Re-estimation

m Use the forward-backward algorithm
(a.k.a. the Baum-Welch algorithm), which
is a hill-climbing algorithm

m Using an initial parameter instantiation,
the forward-backward algorithm iteratively
re-estimates the parameters, and
improves the probability that the given
observations are generated by the new
parameters



Parameter Re-estimation

m Three parameters need to be re-estimated:
m Initial state distribution: I,
= Transition probabilities: a;;
m Emission probabilities: b, (o))

Re-estimating Transition Probabilities

m The key intuition is that we want to
compute our expected fractional counts
on the number of times each transition is
traversed, and then normalize:

. expected number of transitions from state n; to state n;

ai,j

expected number of transitions from state n,

Re-estimating Transition Probabilities

m Expected number of transitions:

what’ s the probability of being in state n;
at time t and going to state n, given the
current model and parameters?

., j))=P(g,=n;q,,=n;10,2)

Re-estimating Transition Probabilities

§,j)=P(g,=n,q,=n;101)

o O

bela1 +1 (0]

alphay(i)

Q OF
)

Ot.1 Ot Oty1 Ots2
P(qt = ni’ qu = nj’o I A‘) = a((l) ai,j bj(0t+| ) ﬁnl (.]) _ a;(l) ajyj bj(OHI) ﬂH](j)

Pl Pourl?) S aa, b0, b.0)

J=0

gr(i’j)=




Re-estimating Transition Probabilities

m Remember, the intuition behind the
re-estimation equation for transition
probabilities is

. expected number of transitions from state n; to state n;
ij=

expected number of transitions from state n;

= Formally: Tz'zgt(i’j)

— =0
ij ~ NoIT=2

> Y& G

j'=0 1=0

Q>

Re-estimating Transition Probabilities

m We can rewrite this more neatly as
DEG)

— =0

Tz_zy,(i)

where we define V,(i)=2_§t(i,j)

Jj=0

A

i.j

to be the probability of being in state n; at
time t, given the complete observation o

Review of Probabilities

= Forward probability: at(i)

The probability of being in state n, given the partial
observation o,,...,0;

m Backward probability: /3t(l')

The probability of being in state n, given the partial
observation o;,,...,07.

= Transition probability: &, (i, j)
The probability of going from state n;, to state n, given
the complete observation o,,...,0+;

= State probability: ¥,(7)

The probability of being in state n, given the complete
observation oy,...,074

Re-estimating Initial State Probabilities

m Initial state distribution: =, is the
probability that n; is a start state

m Re-estimation is easy:
71, = expected number of times in state n; at time O

m Formally: 7, =v,0)



Re-estimation of Emission Probabilities

m Emission probabilities are re-estimated as

b(k)= expected number of times in state n, and observe symbol w,

expected number of times in state n;

= Formally: L
Y >.6(0,,w,)7,(0)

éi(k) =0
40!
t=0
Where 8(o,,w,)=1, if 0, =w,, and 0 otherwise

Note that 6 here is the Kronecker delta function and is not
related to the  in the discussion of the Viterbi algorithm!!

To iteratively update the model

m Coming from A =(a,b,x) we get to
A'=(a,b,%) by the following update rules:

T-2
DEG)) 3600, w1,
i, =2 b= 7, =7,(i)

S0 S

1=

Expectation-Maximization

m The forward-backward algorithm is an
instance of the more general EM
algorithm

m The E Step: Compute the forward and
backward probabilities for a given model

m The M Step: Re-estimate the model
parameters



Hidden Markov Models

Bonnie Dorr  Christof Monz
CMSC 723: Introduction to Computational Linguistics
Lecture 5

October 6, 2004

Hidden Markov Model (HMM)

m HMMs allow you to estimate probabilities
of unobserved events

m Given plain text, which underlying
parameters generated the surface

m E.g., in speech recognition, the observed
data is the acoustic signal and the words
are the hidden parameters

HMMs and their Usage

m HMMs are very common in Computational
Linguistics:

m Speech recognition (observed: acoustic signal,
hidden: words)

m Handwriting recognition (observed: image, hidden:
words)

m Part-of-speech tagging (observed: words, hidden:
part-of-speech tags)

= Machine translation (observed: foreign words,
hidden: words in target language)

Noisy Channel Model

m In speech recognition you observe an
acoustic signal (A=a;,...,a,) and you want
to determine the most likely sequence of
words (W=w,,...,w,): P(W I A)

m Problem: A and W are too specific for
reliable counts on observed data, and are
very unlikely to occur in unseen data



Noisy Channel Model

m Assume that the acoustic signal (A) is already
segmented wrt word boundaries

m P(W I A) could be computed as
P(W 1A) =] [max P(w, la,)

= Problem: Finding the most likely word
corresponding to a acoustic representation
depends on the context

m E.g., /'pre-z&ns / could mean “presents” or
“presence” depending on the context

Noisy Channel Model

m Given a candidate sequence W we need
to compute P(W) and combine it with P(W
| A)
m Applying Bayes’ rule:
P(AIW)P(W)
P(A)

m The denominator P(A) can be dropped,
because it is constant for all W

argmax P(W | A) = argmax
w w

Noisy Channel in a Picture

guess at
original
sentence

Ifmusic be the
food of love.

source no:.iy
sentence sentence

If music be the
food of love

DECODER

“?Alice was beginning to get™
5 ily.

?Ina round...

?If music be the food of love...

?If music be the foot of dove.

Decoding

The decoder combines evidence from
= The likelihood: P(A | W)
This can be approximated as:

PAIW) =[] Pla;1w,)

m The prior: P(W)
This can be approximated as:

P(W) = P(w, )H;P(wi lw,_,)

39



Search Space

m Given a word-segmented acoustic sequence list
all candidates

‘oot ik-'spen-siv 'pre-z&ns

boat) P(bot Ibald) | @XCESSIVE A presidents
ba];gnMelbal 0 expensive presence

bold expressive . presents

bought “linactive press

m Compute the most likely path




