HMM / SFSA / WFSA Decoding, Evaluation, and Learning for Hidden Markov Models & Stochastic/Weighted Finite State Automata

COMP4221, Fall 2015

Prof. Dekai Wu HKUST Human Language Technology Center Department of Computer Science and Engineering Hong Kong University of Science and Technology <u>dekai@cs.ust.hk</u>

2015.11.15 draft for your personal use only

MANY ERRORS! PLEASE DO NOT DUPLICATE OR DISTRIBUTE THIS VERSION

The Trellis

Markov Assumption

- The Markov assumption states that probability of the occurrence of an observed token o_t at time t depends <u>only</u> on the occurrence of o_{t-1} at time t-1
 - Chain rule:

$$P(\mathbf{o}) = P(o_{0..T}) = P(o_0, ..., o_{T-1}) = P(o_0) \prod_{t=1}^{T-1} P(o_t \mid o_0, ..., o_{t-1})$$

• Markov assumption:

$$P(\mathbf{o}) = P(o_{0.T}) = P(o_0, ..., o_{T-1}) \approx P(o_0) \prod_{t=1}^{T-1} P(o_t | o_{t-1})$$

Parameters of an HMM

- States: a set of state nodes n=n₀,...,n_{N-1}
- Transition probabilities: **a**= a_{0,0}, a_{0,1},..., a_{N-1,N-1} where each a_{i,j} represents the probability of transitioning to n_j, given that we're coming from state n_j
- Emission probabilities: a set **b** of functions of the form b_i(o_t) which is the probability of observation o_t being emitted by n_i at time t
- Initial state distribution: π_i is the probability that n_i is a start state

The Three Basic HMM Problems

- Problem 1: Decoding. Given the observation sequence o=o_{0..7}=o₀,...,o₇₋₁ and an HMM model λ = (a, b, π), how do we find the state sequence that best explains the observations?
- Problem 2: Evaluation. Given the observation sequence o=o_{0...τ} and an HMM model λ = (a, b, π), how do we compute the probability of o given the model?

The Three Basic HMM Problems

Problem 3: Learning. How do we adjust the model parameters $\lambda = (\mathbf{a}, \mathbf{b}, \pi)$, so as to maximize $P(\mathbf{o} \mid \lambda)$?

Problem 1: Decoding

- For Problem 1, we want to find the path with the highest probability.
- We want to find the state sequence $\mathbf{q}=q_{0..7}=q_0...q_{T-1}$, such that $\mathbf{q} = \underset{\mathbf{q}'}{\operatorname{argmax}} P(\mathbf{q}' | \mathbf{o}, \lambda)$
- Naïve computation is very expensive. Given T observations and N states, there are N^T possible state sequences.
- Even small HMMs, e.g. *T*=10 and *N*=10, contain 10 billion different paths
- Solution: use dynamic programming

Viterbi Algorithm

- Similar to computing the forward probabilities, but instead of summing over transitions from incoming states, compute the maximum
- Forward: $\alpha_t(j) = \left[\sum_{i=0}^{N-1} \alpha_{t-1}(i) a_{ij}\right] b_j(o_t)$
- Viterbi Recursion:

$$\delta_t(j) = \left[\max_{0 \le i < N} \delta_{t-1}(i) a_{ij}\right] b_j(o_t)$$

Viterbi Algorithm

- Initialization: $\delta_0(j) = \pi_j b_j(o_0)$ $0 \le j < N$
- Induction:

$$\delta_t(j) = \left[\max_{0 \le i < N} \delta_{t-1}(i) a_{ij}\right] b_j(o_t)$$

$$\psi_t(j) = \left[\arg\max_{0 \le i < N} \delta_{t-1}(i) a_{ij}\right] \quad 0 < t < T, 0 \le j < N$$

- Termination: $p^* = \max_{0 \le i < N} \delta_{T-1}(i) \quad q^*_{T-1} = \underset{0 \le i < N}{\operatorname{arg max}} \delta_{T-1}(i)$
- Reconstruction: $q_t^* = \psi_{t+1}(q_{t+1}^*)$ t = T 2,...,0

Forward Probabilities

• What is the probability that, given an HMM λ , at time *t* the state is *i* and the partial observation $o_0 \dots o_t$ has been generated?

$$\alpha_t(i) = P(o_{0..t+1}, q_t = n_i \mid \lambda) = P(o_0 \dots o_t, q_t = n_i \mid \lambda)$$

Problem 2: Probability of an Observation Sequence

- What is $P(\mathbf{o} \mid \lambda)$?
- The probability of a observation sequence is the sum of the probabilities of all possible state sequences in the HMM, i.e, the sum over all paths that generate o through an HMM efficiently.
- The solution to Problem 1 (decoding) gives us the max over all paths that generate o through an HMM efficiently.

Forward Probabilities

Forward Algorithm

- Initialization: $\alpha_0(j) = \pi_j b_j(o_0)$ $0 \le j < N$
- Induction: $\alpha_{t}(j) = \left[\sum_{i=0}^{N-1} \alpha_{i-1}(i)a_{ij}\right]b_{j}(o_{t}) \quad 0 < t < T, 0 \le j < N$

• Termination:
$$P(\mathbf{o} \mid \lambda) = \sum_{i=0}^{N-1} \alpha_{T-1}(i)$$

Backward Probabilities

- Or, we can instead compute right-to-left, analogous to the forward probability, but in the opposite direction
- What is the probability that, given an HMM λ and given the state at time t is i, the partial observation o_{t+1..T} is generated?

$$\beta_t(i) = P(o_{t+1\dots T} \mid q_t = n_i, \lambda) = P(o_{t+1}\dots o_{T-1} \mid q_t = n_i, \lambda)$$

Forward Algorithm Complexity

- In the naïve approach to solving problem 1 it takes on the order of 2T×N^T computations
- The forward algorithm takes on the order of N²T computations

Backward Probabilities

Backward Algorithm

- Initialization: $\beta_{T-1}(i) = 1, \quad 0 \le i < N$
- Induction:

$$\beta_{t}(i) = \left[\sum_{j=0}^{N-1} a_{ij} b_{j}(o_{t+1}) \beta_{t+1}(j)\right] t = T - 2...0, 0 \le i < N$$

Termination:

$$P(\mathbf{o} \mid \boldsymbol{\lambda}) = \sum_{i=0}^{N-1} \pi_i \,\beta_0(i)$$

Problem 3: Learning

- Up to now we' ve assumed that we know the underlying model λ = (a, b, π)
- Often these parameters are estimated on annotated training data, which has two drawbacks:
 - Annotation is difficult and/or expensive
 - Training data is different from the current data
- We want to maximize the parameters with respect to the current data, i.e., we' re looking for a maximum likelihood model λ*, such that

$$\lambda^* = \operatorname*{argmax}_{\lambda} P(\mathbf{o} \mid \lambda)$$

Problem 3: Learning

- Unfortunately, there is no known way to analytically find a global maximum, i.e., a model λ', such that λ' = arg max P(o | λ)
- But it is possible to find a *local* maximum via the expectation-maximization (EM) approach
- Given an initial model λ , we can always find a model λ ', such that $P(\mathbf{o} \mid \lambda') \ge P(\mathbf{o} \mid \lambda)$

Parameter Re-estimation

- Use the forward-backward algorithm (a.k.a. the Baum-Welch algorithm), which is a hill-climbing algorithm
- Using an initial parameter instantiation, the forward-backward algorithm iteratively re-estimates the parameters, and improves the probability that the given observations are generated by the new parameters

Parameter Re-estimation

- Three parameters need to be re-estimated:
 - Initial state distribution: π_i
 - Transition probabilities: a_{i,i}
 - Emission probabilities: $b_i(o_t)$

Re-estimating Transition Probabilities

Expected number of transitions:

what's the probability of being in state n_i at time *t* and going to state n_j , given the current model and parameters?

$$\xi_t(i,j) = P(q_t = n_i, q_{t+1} = n_j \mid \mathbf{0}, \lambda)$$

Re-estimating Transition Probabilities

- The key intuition is that we want to compute our expected fractional counts on the number of times each transition is traversed, and then normalize:
 - $\hat{a}_{i,j} = \frac{\text{expected number of transitions from state } n_i \text{ to state } n_j}{\text{expected number of transitions from state } n_i}$

Re-estimating Transition Probabilities

Re-estimating Transition Probabilities

- Remember, the intuition behind the re-estimation equation for transition probabilities is
 - $\hat{a}_{i,j} = \frac{\text{expected number of transitions from state } n_i \text{ to state } n_j}{\text{expected number of transitions from state } n_i}$

• Formally:

$$\hat{a}_{i,j} = \frac{\sum_{t=0}^{T-2} \xi_t(i,j)}{\sum_{j'=0}^{N-1} \sum_{t=0}^{T-2} \xi_t(i,j')}$$

Re-estimating Transition Probabilities

We can rewrite this more neatly as

$$\hat{a}_{i,j} = \frac{\sum_{t=0}^{T-2} \xi_t(i,j)}{\sum_{t=0}^{T-2} \gamma_t(i)}$$

where we define $\gamma_t(i) = \sum_{j=0}^{N-1} \xi_t(i,j)$

to be the probability of being in state n_i at time t, given the complete observation **o**

Review of Probabilities

Forward probability: $\alpha_t(i)$ The probability of being in state n_i gives

The probability of being in state n_{i} , given the partial observation o_0, \dots, o_t

- Backward probability: $\beta_t(i)$ The probability of being in state n_i , given the partial observation o_{t+1}, \dots, o_{T-1}
- Transition probability: ξ_t(i, j)
 The probability of going from state n_j, to state n_j, given the complete observation o₀,...,o_{T-1}
- State probability: $\gamma_t(i)$ The probability of being in state n_i , given the complete

Re-estimating Initial State Probabilities

- Initial state distribution: π_i is the probability that n_i is a start state
- Re-estimation is easy: $\hat{\pi}_i$ = expected number of times in state n_i at time 0
- **Formally:** $\hat{\pi}_i = \gamma_0(i)$

observation o_0, \ldots, o_{T-1}

Re-estimation of Emission Probabilities

Emission probabilities are re-estimated as

 $\hat{b}_i(k) = \frac{\text{expected number of times in state } n_i \text{ and observe symbol } w_k}{\text{expected number of times in state } n_i}$

Formally:

$$\hat{b}_{i}(k) = \frac{\sum_{t=0}^{T-1} \delta(o_{t}, w_{k}) \gamma_{t}(i)}{\sum_{t=0}^{T-1} \gamma_{t}(i)}$$

Where $\delta(o_t, w_k) = 1$, if $o_t = w_k$, and 0 otherwise

Note that δ here is the Kronecker delta function and is not related to the δ in the discussion of the Viterbi algorithm!!

To iteratively update the model

• Coming from $\lambda = (\mathbf{a}, \mathbf{b}, \pi)$ we get to $\lambda' = (\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\pi})$ by the following update rules:

$$\hat{a}_{i,j} = \frac{\sum_{t=0}^{T-2} \xi_t(i,j)}{\sum_{t=0}^{T-2} \gamma_t(i)} \qquad \hat{b}_i(k) = \frac{\sum_{t=0}^{T-1} \delta(o_t, w_k) \gamma_t(i)}{\sum_{t=0}^{T-1} \gamma_t(i)} \qquad \hat{\pi}_i = \gamma_0(i)$$

Expectation-Maximization

- The forward-backward algorithm is an instance of the more general EM algorithm
 - The E Step: Compute the forward and backward probabilities for a given model
 - The M Step: Re-estimate the model parameters

Hidden Markov Models

Bonnie Dorr Christof Monz

CMSC 723: Introduction to Computational Linguistics

Lecture 5

October 6, 2004

Hidden Markov Model (HMM)

- HMMs allow you to estimate probabilities of unobserved events
- Given plain text, which underlying parameters generated the surface
- E.g., in speech recognition, the observed data is the acoustic signal and the words are the hidden parameters

HMMs and their Usage

- HMMs are very common in Computational Linguistics:
 - Speech recognition (observed: acoustic signal, hidden: words)
 - Handwriting recognition (observed: image, hidden: words)
 - Part-of-speech tagging (observed: words, hidden: part-of-speech tags)
 - Machine translation (observed: foreign words, hidden: words in target language)

Noisy Channel Model

- In speech recognition you observe an acoustic signal (A=a₁,...,a_n) and you want to determine the most likely sequence of words (W=w₁,...,w_n): P(W I A)
- Problem: A and W are too specific for reliable counts on observed data, and are very unlikely to occur in unseen data

Noisy Channel Model

- Assume that the acoustic signal (A) is already segmented wrt word boundaries
- P(W I A) could be computed as

$$P(W \mid A) = \prod_{a_i} \max_{w_i} P(w_i \mid a_i)$$

- Problem: Finding the most likely word corresponding to a acoustic representation depends on the context
- E.g., /'pre-z&ns / could mean "presents" or "presence" depending on the context

Noisy Channel in a Picture

39

Noisy Channel Model

- Given a candidate sequence W we need to compute P(W) and combine it with P(W I A)
- Applying Bayes' rule: $\underset{W}{\operatorname{arg max}} P(W \mid A) = \underset{W}{\operatorname{arg max}} \frac{P(A \mid W)P(W)}{P(A)}$
- The denominator P(A) can be dropped, because it is constant for all W

Decoding

The decoder combines evidence from

The likelihood: P(A I W) This can be approximated as:

$$P(A \mid W) \approx \prod_{i=1}^{n} P(a_i \mid w_i)$$

The prior: P(W) This can be approximated as:

$$P(W) \approx P(w_1) \prod_{i=2}^{n} P(w_i \mid w_{i-1})$$

Search Space

 Given a word-segmented acoustic sequence list all candidates

'bot,	ik-'spen-siv	'pre-z ^{&} ns
boat P('bot bald)	excessive	presidents
bald P(inactive bald)	expensive	presence
bold	expressive	presents
bought	inactive	press

• Compute the most likely path