Unsupervised False Friend Disambiguation

Using Contextual Word Clusters and Automatic Word Alignments

Maryam Aminian, Mahmoud Ghoneim, Mona Diab

CARE4Lang
George Washington University

SSST-9

(Mitkov+ 2008)

Similar spelling

(Mitkov+ 2008)

Similar spelling

Language 1	Language 2	Similar Spelling	Different meaning	False Friend
color (En)	color (Sp)	>	X	NO

(Mitkov+ 2008)

Similar spelling

Language 1	Language 2	Similar Spelling	Different meaning	False Friend
color (En)	color (Sp)	>	×	NO
Library (En)	Librairie (Fr) (bookshop)	×	V	YES

(Mitkov+ 2008)

Similar spelling

Language 1	Language 2	Similar Spelling	Different meaning	False Friend
color (En)	color (Sp)	~	×	NO
Library (En)	Librairie (Fr) (bookshop)	~	y	YES
Gift (En)	Gift (Gr) (poison)	•	'	YES

False Friend in Cross-Lang Variant Context

Similar spelling

Different meaning

Standard Language (ST)

Modern Standard Arabic (MSA)

Dialectal Language (DA)

Less Frequent

Background: Arabic DA vs. ST

- DAs have no standard orthographies
- DAs permeate social media
- Code switching between ST and DA within the same utterance is pervasive
- Numerous NLP tools exist for ST
- However, DA and ST variants of Arabic are significantly different on all levels of linguistic representation hampering direct application of ST NLP tools to DA processing

Egyptian:

mc mlkyp xASp yEny AqSd zy AlAtwbys w+ Almtrw w+ AlqTAr . . . Alx

Reference:

Egyptian:

mc mlkyp xASp yEny AqSd zy AlAtwbys w+ Almtrw w+ AlqTAr . . . Alx

Not enough DA parallel data to train the translation model and build stand alone machine translation systems for DA

Robust SMT systems exist for ST

Reference:

Egyptian: mc mlkyp xASp yEny AqSd zy AlAtwbys w+ Almtrw w+ AlqTAr . . . Alx

Robust SMT trained exclusively with ST

data

Translation:

privately, I mean, I mean, I do not like the bus and subway train, etc.

X

Reference:

Egyptian:

mc mlkyp xASp yEny AqSd zy AlAtwbys w+ Almtrw w+ AlqTAr . . . Alx

$$zy$$
 mvl $Like$

Reference:

Reference:

Reference:

Our Goal

Enhance cross- language variant SMT performance, crucially, in absence of in-domain training data

i.e. using an exclusively ST system to translate DA data

Our Approach

Our Approach

- ✓ There is no labeled data with FF tags
- ✓ Training data for PARL is created automatically

Generating Training Data

1. Identify words used in both DA & ST (Cross-variant homographs)

$$\mathcal{L}(k,i) = \{ \mathsf{DA}, \mathsf{ST} \}$$

Generating Training Data

Generating Training Data

PARL Setup

- ✓ Averaged Perceptron for classification
- ✓ Words represented with the following features:
 - Lemma of current word
 - ❖ POS of current word
 - POS of previous word
 - ❖ POS of next word

Our Approach

PARL Classifier

WC Classifier

WC Classifier

Training

$$P_{\tau}(c|w) \text{ for } \tau \in \{-2, -1, +1, +2\}$$

$$c \in \{1, 2, ..., K\}$$

Estimated using maximum likelihood estimation with additive smoothing

WC Classifier

Disambiguation

✓ Given a set of predefined ST equivalents for each DA word w:

 $\omega^* = \begin{bmatrix} \text{Hypothesis: This ST equivalent is more} \\ \text{likely to appear in the context compared to} \\ \text{other possible equivalents} \end{bmatrix} \varepsilon_\tau |\omega)$

WC Classifier

Disambiguation

✓ Given a set of predefined ST equivalents for each DA word w:

Experimental Setup

- ✓ Trained using ST parallel data from multiple LDC corpora
- ✓ GIZA++ (Och and Ney, 2003) for word alignment
- ✓ AIDA: Token dialect identification tool (Elfardy et al., 2013)
 - ❖ AIDA provides a list of ST equivalents for each DA word

False Friend Identification

PARL Classifier

Experimental Setup

- ✓ Trained using Arabic Gigaword 4
- ✓ word2vec (Mikolov et al., 2013) K-means word clustering tool to obtain word clusters

FF Disambiguation (Replacement)

WC Classifier

Evaluation

- ✓ Extrinsic evaluation of FF using SMT system
- ✓ Evaluation metrics: BLEU, METEOR, TER, WER, PER
- ✓ Evaluation set: BOLT-ARZ DA data set
- ✓ SMT setup:
 - ❖ Moses decoder to build a standard phrase-based SMT system
 - Factored translation model with lemma and POS factors
 - ❖ Feature weights are tuned to maximize BLEU score on the tuning set using MERT
 - ❖ Final results are reported by averaging over 3 tuning sessions with random initialization
 - ❖ SRILM to build 5-gram language models with modified Kneser-Ney smoothing

	FF Identification	FF Replacement
No Replacement Baseline	×	×
Random Baseline	DA-ST Homographs	Random subset of FF set Random equivalent selection
Blind Baseline	DA-ST Homographs	Whole set of FF Random equivalent selection

Experimental Conditions

3aselines

Replacement

	FF Identification	FF Replacement
No Replacement Baseline	×	×
Random Baseline	DA-ST Homographs	Random subset of FF set Random equivalent selection
Blind Baseline	DA-ST Homographs Random equiva	
PARL	PARL	Whole set of FF Random equivalent selection
WC	WC	WC
WC _{cor}	WC _{cor}	WC _{cor}
PARL+WC	PARL	WC
PARL+WC _{cor}	PARL	WC _{cor}

	FF Identification	FF Replacement
No Replacement Baseline	×	×
Random Baseline	DA-ST Homographs	Random subset of FF set Random equivalent selection
Blind Baseline	DA-ST Homographs	Whole set of FF Random equivalent selection

- ✓ Random and Blind Baselines contrast impact of PARL on SMT performance
- ✓ No Replacement Baseline contrast impact of whole pipeline on SMT performance

	BLEU	METEOR	TER	WER	PER
Rand. Baseline	20.6	27.5	65.9	69.2	45.3
Blind Baseline	20.1	27.2	68.3	71.6	46.6
PARL	20.7	27.1	67.5	69.6	45.5

✓ Using PARL for FF identification improves SMT performance compared to Random and Blind baselines

	BLEU	METEOR	TER	WER	PER
NoReplac. Baseline	21.3	28.0	65.2	68.6	44.6
PARL	20.7	27.1	67.5	69.6	45.5
WC	20.8	27.5	66.2	69.1	45.2
$WC^{$	20.9	27.7	65.4	68.7	44.8
PARL+WC	21.0	27.7	66.2	68.5	45.3
$PARL + WC_{cor}$	21.3	27.9	65.5	68.0	44.5

[✓] Using contextual word clusters for FF identification and disambiguation has a higher impact on final SMT performance compared to PARL component

	BLEU	METEOR	TER	WER	PER
NoReplac. Baseline	21.3	28.0	65.2	68.6	44.6
PARL	20.7	27.1	<u>67.5</u>	69.6	<u>45.5</u>
WC	20.8	27.5	66.2	69.1	45.2
WC_{cor}	20.9	27.7	65.4	68.7	44.8
PARL+WC	21.0	27.7	66.2	68.5 −	45.3
$PARL + WC_{cor}$	21.3	27.9	65.5	68.0	44.5

[✓] WC_{cor} disambiguation module results higher improvement in SMT performance compared to WC

	BLEU	METEOR	TER	WER	PER
NoReplac. Baseline	21.3	28.0	65.2	68.6	44.6
PARL	20.7	27.1	67.5	69.6	45.5
WC	20.8	27.5	66.2	69.1	45.2
WC_{cor}	20.9	27.7	<u>65</u> .4	68.7	44.8
PARL+WC	21.0	27.7	66.2	68.5	45.3
$PARL + WC_{cor}$	21.3	27.9	65.5	68.0	44.5

[✓] PARL+WC $_{cor}$ rectify some of the mistakes from PARL by using WC $_{cor}$ as an additional FF identifier

	BLEU	METEOR	TER	WER	PER
NoReplac. Baseline	21.3	28.0	65.2	68.6	44.6
PARL	20.7	27.1	67.5	69.6	45.5
WC	20.8	27.5	66.2	69.1	45.2
WC_{cor}	20.9	27.7	65.4	68.7	44.8
PARL+WC	21.0	27.7	66.2	_68.5	45.3
$PARL + WC_{cor}$	21.3	27.9	65.5	68.0	44.5

✓ Though no improvement over vanilla baseline in bleu scores, our approach has the power to enhance SMT lexical choice and select more accurate target translations for the false friends.

	BLEU	METEOR	TER	WER	PER
NoReplac. Baseline	21.3	28.0	65.2	68.6	44.6
PARL	20.7	27.1	67.5	69.6	45.5
WC	20.8	27.5	66.2	69.1	45.2
WC_{cor}	20.9	27.7	65.4	68.7	44.8
PARL+WC	21.0	27.7	66.2	68.5	45.3
$PARL + WC_{cor}$	21.3	27.9	65.5	68.0	44.5

[✓] Issue is that the SMT translation table does not contain adequate bilingual phrase pairs for some of the replaced MSA equivalents (suggested by AIDA tool)

Ref.	let us forget about our differences and unite .
Input DA	nsyb +nA mn AlAxtlAf w+ ntwHd
Sentence with Replacement	trk +nA mn AlAxtlAf w+ ntwHd
Baseline Trans.	we disagree and suffering from
Replacement Trans.	let us <i>leave</i> the difference and unify

- ✓ Word 'nsyb' which means forget in this context is replaced with MSA equivalent 'trk' that means leave or forget
- ✓ Decoder has translated phrase 'trk +nA mn AlAxt- lAf' into a longer phrase *let us leave the difference* instead of generating an incoherent translation such as baseline

Ref.	and those who said that the girls indeed , i heard very bad words , why ?
Input DA	w+ Ally yqwl AlbnAt b+ jd smEt AllfAZ wHcp qwy lyh kdh
Sentence with Replacement	w+ Ally yqwl AlbnAt b+ jd smEt AllfAZ syC qwy lyh kdh
Baseline Trans.	and to say very very difficult . that is why i heard
Replacement Trans.	and to say seriously , i heard a strong bad words , why ?

- ✓ Word 'wHcp' in the third example is not a pure EGY word
- ✓ However, it conveys a meaning different from its observed senses in the phrase table (meaning "to miss someone or difficult")
- ✓ Our approach has improved SMT lexical choice significantly in this example

Ref.	also eradication of poverty and need is very important , toqua
Input DA	w+ kmAn AlqDAC Ely Alfqr w+ HAjp mhm jdA yA+ tqy
Sentence with Replacement	w+ kmAn AlqDAC Ely Alfqr w+ <mark>Amr</mark> kbyr jdA yA+ tqy
Baseline Trans.	and also the eradication of poverty and need is very important, and to say very very difficult. that is why i heard
Replacement Trans.	and also the eradication of poverty and a very large ,

- ✓ FF identifier has incorrectly identified word 'HAjp' (need in this context) as FF
- ✓ Decoder is not able to find a proper translation for the replaced word in the context

Ref.	i will tell you a story , and you judge whose fault it is .
Input DA	Tb AnA H+ AHky I+ HDrp +k mwqf w+ tqwly myn Ally glTAn
Sentence with Replacement	tmAm AnA H+ AHky l+ HDrp +k mwqf w+ tqwly myn Ally glTAn
Baseline Trans.	ok , I am going to talk to you and say who was wrong .
Replacement Trans.	I will talk to you stand and say who was wrong .

- ✓ Word 'Tb' in the baseline sentence means all right, very well or ok in EGY while it means medicine when used in MSA
- ✓ FF identifier has correctly identified this word as a FF.
- ✓ WC disambiguator module also has adequately replaced word 'Tb' with the MSA word 'tmAm'

Contributions

- ✓ We presented a new approach for improving cross-dialect SMT performance without any in-domain training data
- ✓ We showed that our approach improves DA-EN SMT lexical choice
- ✓ We devised an unsupervised effective approach for false friend identification and disambiguation

Future Work

- ✓ Exploring an automatic way to generate the list of possible equivalents for FF
- ✓ Benefiting from continuous word vectors and their similarity to extract possible word senses for a particular FF

Thank you!

Special thanks to QTLeap best paper award committee

http://www.seas.gwu.edu/~aminian/

