Word's Vector Representations meet Machine Translation

Eva Martínez Garcia

Cristina España-Bonet Jörg Tiedemann *Lluís Màrquez*

SSST-8 Workshop Doha, Qatar October 25, 2014

- We learn distributed vector representations of bilingual word pairs
- Motivation: better characterize ambiguous words for MT
 desk|mesa vs. desk|mostrador vs. desk|escritorio
- Bilingual representations capture information from source and target language contexts simultaneously
- We present two preliminary evaluations

Summary

- We learn distributed vector representations of bilingual word pairs
- Motivation: better characterize ambiguous words for MT
 desk|mesa vs. desk|mostrador vs. desk|escritorio
- Bilingual representations capture information from source and target language contexts simultaneously
- We present two preliminary evaluations
- Future plan: use bilingual models in MT for improving lexical selection and document-level semantic coherence

Training Bilingual Vector Representations

- We use the word2vec software (Mikolov et al. 2013) with parallel corpora and automatic word-alignments
- Parallel corpora: Opus (Europarl, UN, OpenSubtitles, etc.)
- Word alignments: GIZA++ (one to one)
- We train bilingual and monolingual vector models

 $\triangleright~$ Size: \sim 700 Mw (EN) - 1,100 Mw (ES)

- Parameters
 - Vector dimensionality
 - Context window

Eval I: Ability to Capture Relational Similarities

- Solving semantic analogies with vector models:
 - Athens is to Greece as Paris is to ?
 - Paris Athens + Greece = France

Eval I: Ability to Capture Relational Similarities

- Solving semantic analogies with vector models:
 - Athens is to Greece as Paris is to ?
 - Paris Athens + Greece = France
- Bilingual version of the same task
- Test set of 19,520 questions in 11 categories
 - EN: available in the work2vec data distribution
 - EN|ES (and also ES): translated and manually built by a Spanish native speaker

Eval II: Cross-Lingual Lexical Substitution

- Find the best translation of a given ambiguous word in context (source and target)
 - Same setting as SemEval-2010 task 2

Eval II: Cross-Lingual Lexical Substitution

- Find the best translation of a given ambiguous word in context (source and target)
 - Same setting as SemEval-2010 task 2
- Test set from News Commentary 2010
 - Ambiguous words (lemma level) automatically detected
 - Stop word list to filter out non content words

Eval II: Cross-Lingual Lexical Substitution

- Find the best translation of a given ambiguous word in context (source and target)
 - Same setting as SemEval-2010 task 2
- Test set from News Commentary 2010
 - Ambiguous words (lemma level) automatically detected
 - Stop word list to filter out non content words
- Method:
 - ▷ Context Vector: $v = \sum_{i=1}^{n} \vec{w}(t \pm i)$
 - Best translation: word pair that minimizes distance to v (i.e. best fit to the bilingual context)

Conclusions

- Results in both evaluation are modest, but suggest that the bilingual vector models:
 - capture information useful to uncover semantic relations
 - can help MT lexical selection
- Limitations:
 - > quality of translations, alignments, coverage, etc..

Conclusions

- Results in both evaluation are modest, but suggest that the bilingual vector models:
 - capture information useful to uncover semantic relations
 - can help MT lexical selection
- Limitations:
 - > quality of translations, alignments, coverage, etc..
- More experimentation and extensions to come soon

Visit out poster for more details. Thanks!