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Abstract—Given two spatial data sets A and B, a top-k spatial join retrieves the k objects from A or B that intersect the largest number

of objects from the other data set. Depending on the application requirements, there exist several variations of the problem. For

instance, B may be a point data set, and the goal may be to retrieve the regions of A that contain the maximum number of points. The

processing of such queries with conventional spatial join algorithms is expensive. However, several improvements are possible based

on the fact that we only require a small subset of the result (instead of all intersection/containments pairs). In this paper, we propose

output-sensitive algorithms for top-k spatial joins that utilize a variety of optimizations for reducing the overhead.

Index Terms—Database, spatial database, spatial joins.
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1 INTRODUCTION

A spatial join retrieves the pairs of objects that satisfy
some spatial predicate (most often intersection). Joins

have been studied quite extensively in the spatial database
literature because they are involved in several common
queries (e.g., map overlays) and they incur high execution
cost, which calls for performance optimizations. Conse-
quently, various algorithms have been proposed (see
Section 2), covering all possible combinations of indexed
and nonindexed data sets. In most cases, the result of a
spatial join is rather large (for typical geographic layers,
linear to the cardinality of the participating data sets). In
several applications, however, the user may be interested in
only a small subset of the output. This paper studies such a
query type, called the top-k spatial join (top-k SJ).

Given two data sets A and B, the top-k SJ retrieves the

k objects in data set A or B that intersect the maximum

number of objects from the other data set. For example, in

VLSI design, a circuit layer consists of numerous wires,

represented as rectangles. When two layers are placed

together, the intersection between the wires of different

layers may cause electro-magnetic interference. A top-k

spatial join can be applied to retrieve the wires intersecting

the largest number of wires from the other layer. The result

indicates the positions where the topology of the circuit can

be improved to reduce interference.
Similarly, the top-k spatial semijoin returns the k objects of

A with the maximum intersection or containment counts. For

example, consider a traffic supervision system, where data

set A represents urban regions and B stands for vehicle

locations monitored through sensor networks [7]. In order

to balance the traffic, we should have knowledge about the

regions with the maximum number of cars. Similar queries

are relevant for systems monitoring mobile devices (e.g.,
find the area with the highest user density) and other
spatial decision making applications.

Top-k spatial joins have some similarity with multi-
dimensional range aggregate queries. Given a set A and a
window q in a multidimensional vector space, a range
aggregate (RA) query returns a single value that sum-
marizes the subset R � A of objects intersecting (or inside) q
according to an aggregation function (e.g., the number of
objects qualifying q instead of their concrete ids). Several
techniques [8], [14], [24], [35] have been proposed or the
efficient processing of RA queries in spatial databases (see
[34] for an overview of related work). However, the
application of these techniques to top-k spatial (semi) joins
would incur large computational overhead because the
number of RA queries increases linearly with the cardinal-
ities jAj and jBj of the participating data sets. In particular,
the processing of a top-k semijoin requires the application of
jAj RA queries (one for each object of A), while a full join
requires jAj þ jBj RA queries.

Top-k joins in relational databases retrieve the k tuples of
the join result with the highest value of a scoring function.
However, existing relational methods (e.g., [13], [22]) are
inapplicable to top-k SJ for the same reasons that equi-join
algorithms are inapplicable to spatial joins (a lack of one-
dimensional ordering of tuples, intersection as opposed to
equality join condition, etc.). A naı̈ve approach to evaluate
top-k SJ is to: 1) apply a conventional spatial join algorithm
on the two data sets A and B, 2) count the number of output
pairs in which each object participates, and 3) return the
k objects with the maximum intersection counts. However,
this method may cause a significant amount of redundant
work, especially if the value of k is small.

Assuming that, in practice, the number k of requested
objects is very small compared to the entire spatial join
result, we propose a set of output-sensitive algorithms that
apply the branch-and-bound framework for pruning the
search space. Following most of the related work in the
spatial database literature, we consider that the spatial data
sets are indexed by R-trees [9] (or their variations [2], [31]),
but the general methodology is applicable to any data-
partition method (e.g., X-trees [3]). The remainder of the
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paper is structured as follows: Section 2 reviews the related
work, focusing mostly on spatial joins. Section 3 proposes
the basic top-k SJ algorithm and discusses its properties.
Section 4 describes several optimizations for reducing the
I/O overhead, and studies variations of the problem.
Section 5 contains an experimental evaluation of the
proposed techniques and Section 6 concludes the paper.

2 RELATED WORK

Early spatial join methods apply transformation of objects
in order to overcome the difficulties raised by their spatial
extent and dimensionality. The first known algorithm [23]
uses a grid to regularly divide the multidimensional space
into cells, which are sorted by z-ordering (or any other
space-filling curve [21]). Each object is then approximated
by the set of cells intersected by its minimum bounding
rectangle (MBR), i.e., a set of z-values. Since z-values are
1-dimensional, the objects can be dynamically indexed
using relational index structures, like the B+-tree, and the
spatial join is performed in a sort-merge join fashion. Rotem
[27] proposes an algorithm based on a spatial join index,
which partially precomputes the join result and employs
grid files to index the objects in space.

The most influential algorithm is the R-tree join (RJ) [5]
due to its efficiency and the popularity of R-trees. RJ is
based on the enclosure property of R-tree nodes: If two
intermediate nodes do not intersect, there can be no MBRs
below them that intersect. Following this observation, RJ
starts from the roots of the trees to be joined and finds pairs
of overlapping entries. For each such pair, the algorithm is
recursively called, until the leaf levels, where overlapping
pairs constitute solutions. Two optimization techniques can
be used to improve the CPU speed of RJ [5]. The first, search
space restriction, reduces the quadratic number of pairs to be
evaluated when two nodes ni, nj are joined. If an entry
ei 2 ni does not intersect the MBR of nj, then there can be no
entry ej 2 nj, such that ei and ej overlap. Using this fact,
space restriction performs two linear scans in the entries of
both nodes, and prunes out from each node the entries that
do not intersect the MBR of the other node. The second
technique, based on the plane sweep paradigm, applies
sorting on one dimension in order to reduce the cost of
computing overlapping pairs between the nodes to be
joined. Huang et al. [12] propose a breadth-first optimized
version of RJ that sorts the output at each level in order to
reduce the number of page accesses.

Research after RJ focused mostly on spatial join proces-
sing when one or both inputs are nonindexed. Nonindexed
inputs are usually intermediate results of a preceding
operator. The simplest method to process a pairwise join in
the presence of one index, is by applying a window query to
the existing R-tree for each object in the nonindexed data set
(index nested loops). Due to its computational burden, this
method is used only when the joined data sets are relatively
small. Another approach is to build an R-tree for the
nonindexed input using bulk loading [26] and then employ
RJ to match the trees. Lo and Ravishankhar [16] use the
existing R-tree as a skeleton to build a seeded tree for the
nonindexed input. The sort and match algorithm [25]
spatially sorts the nonindexed objects but, instead of

building the packed tree, it matches each in-memory
created leaf node with the leaf nodes of the existing tree
that intersect it. Finally, the slot index spatial join (SISJ) [20]
applies hash-join, using the structure of the existing R-tree
to determine the extents of the spatial partitions.

If no indexes exist, both inputs have to be preprocessed
in order to facilitate join processing. Arge et al. [1] propose
an algorithm, called scalable sweeping-based spatial join, that
employs a combination of plane sweep and space partitioning
to join the data sets. Patel and DeWitt [26] describe a hash-
join algorithm, partition-based spatial merge join (PBSM), that
regularly partitions the space, using a rectangular grid, and
hashes both inputs into the partitions. It then joins groups of
partitions that cover the same area using plane sweep to
produce the join results. Some objects from both sets may be
assigned in multiple partitions, so the algorithm needs to
sort the results in order to remove the duplicate pairs. Size
separation spatial join [15] is also based on regular space
decomposition, but avoids replication of objects during the
partitioning phase by introducing more than one partition
layers. Spatial hash-join [17] avoids duplicate results by
performing an irregular decomposition of space, based on
the data distribution of the build input.

In addition to “conventional” intersection joins, there
have been numerous papers on parallel algorithms [18],
high-dimensional similarity (distance) joins [4], and multi-
way spatial joins involving multiple inputs [19]. In a recent
paper, Shou et al. [33] describe several methods for
processing iceberg spatial joins, which also include a
cardinality constraint (e.g., find all regions of A that
intersect at least 10 regions of B). In particular, 1) when
both A and B are indexed, they apply an optimized version
of RJ, 2) when only one data set is indexed, an optimized
version of SISJ, and 3) when neither data set is indexed, an
optimized version of PBSM. In all cases, the cardinality
constraint is utilized to avoid visiting nonqualifying nodes.1

Another related problem refers to closest-pair queries,
which retrieve the k pairs of objects from data sets A and B
with the minimum distance. Similar to RJ, algorithms for
closest pair queries [6], [10], [32] traverse synchronously the
R-trees of the participating data sets, following pairs of
entries that can lead to a result (i.e., entries whose minimum
distance is smaller than that of the already discovered
closest pairs).

The problem discussed in this paper is related to a
certain extent with all the above topics. First, we aim at
processing spatial joins, taking, however, into account the
number of intersections for each object (similar to iceberg
joins). Furthermore, like closest pair queries, the goal is to
return the top-k results (and not all objects or pairs that
satisfy the cardinality constraint as in the case of iceberg
joins). In the next section, we describe the general algorithm
for processing top-k spatial joins.

3 TOP-k SPATIAL JOIN ALGORITHM

We first present the top-k SJ (TS) algorithm in Section 3.1,
followed by a discussion in Section 3.2. For our examples,
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we use the two region data sets of Fig. 1 and the

corresponding R-trees, assuming a capacity of five entries

per node (some objects inside the nodes are omitted for

clarity). Both R-trees have height 2 and the leaf nodes are

at level 0. The result of a top-1 join in this example is

fa1; 6; ½b1 b3 b5 b7 b18 b19�g since a1 intersects these six

objects of B.
In the general case, the output of TS is a list with k entries

of the form hid; count; ILi, where id is an object ID, IL is the

list of its intersecting objects (from the other data set), and

count is the cardinality of IL. The result is reported in

descending order of count. For each two objects i, j, such that

i belongs to the result and j does not: countðjÞ � countðiÞ.
Some frequently used symbols are described in Table 1.

3.1 Description of the Algorithm

TS is based on the branch-and-bound paradigm. For the
effective application of TS (or any branch-and-bound
algorithm), we need to define two measures: 1) a pruning
condition, which excludes subtrees that cannot lead to better
results (than the ones already found), and 2) a key that
determines the order by which the qualifying subtrees are
visited so that good solutions are identified as early as
possible (increasing the effectiveness of the pruning
condition). In some cases, the same metric can be applied
for both tasks, e.g., for nearest-neighbor search, the mindist2

of a node to a query point is commonly used to determine
the visiting order and to prune nodes (whose mindist is
larger than the distance of the best neighbor already found).
We first provide some definitions, which will be later
utilized for determining the visiting order and pruning
condition of TS.

Definition 1. Let e be an intermediate entry of Ra, C the node

capacity, and e:level the level of the node that contains e. Then,

the upper bound maxnumðeÞ for the number of objects in the

subtree of e is:

maxnumðeÞ ¼ Ce:level:

Definition 2. If e is a leaf entry (i.e., an object) of Ra, we define

countðeÞ as the number of objects of Rb that intersect e. If e is

an intermediate entry, countðeÞ is an upper bound of the

actual count of any object in e, which is obtained as:

countðeÞ ¼
X

ei2Rb and ei intersects e

maxnumðeiÞ:

In Fig. 1, since A1 is a level 1 entry,maxnumðA1Þ ¼ 5, i.e.,
the maximum number of objects (of Ra) inside A1 is 5. In
order to obtain a value for countðA1Þ, note that A1 overlaps
three entries B1, B2, B5 of Rb, whose maxnum is also 5.
Therefore, assuming that there is an object in A1 intersecting
all objects in B1, B2, and B5, countðA1Þ ¼ 3 � 5 ¼ 15.
Although this upper bound seems loose (especially for the
high tree levels), as discussed in the Section 3.2, it is the
tightest upper bound that can be obtained without any
assumptions about the data distribution and object extent.
Count provides a termination condition (i.e., we do not need
to visit entries whose count is smaller than that of the top-k
results already found) and a visiting order (i.e., we first visit
entries with high counts based on the intuition that they are
likely to lead to good results).

Now, we describe the algorithm considering, for simpli-
city, that the two R-trees have the same height (different
heights are discussed in Section 4). First, the roots of the two
R-trees are loaded in memory, and TS finds the intersecting
entry pairs. Then, it computes, for each root entry e that
appears in a pair, its intersecting list (IL), which contains the
entries of the other tree intersecting e: A1:IL ¼ ½B1 B2 B5�,
B1:IL ¼ ½A2 A3�, A2:IL ¼ ½B3 B4�, B2:IL ¼ ½A1 A3�, and so
on. TS inserts the root entries, their counts, and their
intersecting lists into a heap H, sorted by the counts in
descending order. Specifically, each heap element has the
form E : he; count; listi, where 1) e is the entry (of Ra or Rb),
2) countðeÞ ¼

P
ei2e:IL maxnumðeiÞ, and 3) list is e:IL. Fig. 2

shows the content of H after visiting the root.
Next, TS deheaps the first entry (A1) of H. The algorithm

retrieves, besides node A1, the nodes pointed by the entries
in its IL, i.e., B1, B2, B5 and joins3 the entries of A1 with
those of B1, B2, B5. The intersection pairs ða1; b1Þ, ða1; b3Þ,
ða1; b5Þ, ða1; b7Þ, ða1; b18Þ, ða1; b19Þ, ða2; b20Þ, ða3; b3Þ, ða3; b4Þ are
computed and the ILs for the entries ða1; a2; a3Þ of node A1

are built: a1:IL ¼ ½b19 b18 b1 b3 b7 b5�, a2:IL ¼ ½b20�, and
a3:IL ¼ ½b3 b4�. The entries are then inserted to H, according
to their key value (a1:key ¼ 6, a3:key ¼ 2, a2:key ¼ 1), which
now corresponds to the actual number of intersections
(instead of an upper bound). Fig. 3 shows the contents of H
at this point.
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2. Mindistðn; qÞ between node n and q is the minimum distance between
any point in the MBR of n and q [28].

3. We apply the space restriction and plane sweep optimizations introduced
in [5].

Fig. 1. Example data sets and corresponding R-trees.



Note that TS only builds the intersecting lists for entries of
node A1 but not for nodes B1, B2, and B5. There are two
reasons for this: 1) the deheaped entry is A1, meaning that
we are looking for potential results in node A1; 2) B1, B2, B5

may also intersect other nodes from Ra. Potential candi-
dates in node B1 (or B2, B5) will be examined when B1 is
deheaped (B1 is in H), in which case it will be visited again.
In Section 4, we explore alternative strategies that expand
several nodes simultaneously.

If we only want the top-1 result, a1 becomes the first
candidate and all heap entries with keys smaller than or
equal to 6 (a1:key) can be removed since they will not lead to
an object with a higher count of intersections (similarly, a2,
a3 should not be inserted at all in H). Object a1 is not
reported immediately because better objects may exist in
nodes preceding it in H. Instead, it is reported when it is
deheaped (provided that it has not been pruned before by a
better object). Fig. 4 presents the pseudocode of TS.

First, the algorithm joins the roots, computes the
intersection lists of their entries, and inserts each entry
with its IL and count into the heap. When an entry e is
deheaped, if it corresponds to an object, it is reported (the
algorithm terminates when k objects have been reported).
Otherwise, if e points to a node n, n is joined with all nodes
pointed by the entries in e:IL, and the count of each entry
e0 2 n is computed. If e0 can lead to a better solution (i.e.,
e0:count exceeds the pruning condition), it is inserted intoH.
In the case that e0 is an actual object (e.g., a1 in the previous
example) the pruning condition is set to the value of
e0:count. If we want to reduce the heap size requirements,
we can remove all entries after e0 in H, but this does not
affect the performance of TS because the algorithm will
terminate before such entries are considered anyway.

TS can be applied with minor modifications for incre-
mental processing of top-k spatial joins, where the value of k
is not set in advance. The difference with conventional
processing is that TS now does not use any pruning
condition because all objects may have to be reported. In

such cases, the heap may exceed the size of the available
main memory, leading to buffer thrashing. Hjaltason and
Samet [11] propose a heap management technique to
alleviate the problem, which is also applicable to TS. In
particular, the content of the heap is organized in a B-tree
(where the search key is the count). The part of the tree that
contains heap elements with small count values (which will
get deheaped early) is kept in main memory and the rest in
the disk.

3.2 Discussion about Search Order and Pruning

In the previous section, we used the estimated count of
nodes for determining both the visiting order and the
pruning condition. Although count in most cases provides
only a rough estimation, it turns out that it is the tightest
pruning condition that we can achieve given no addi-
tional knowledge about the data distribution or extent. In
order to comprehend this, consider Fig. 5 where the root
entry e 2 RTa intersects all root entries e1 to e5 2 RTb, i.e.,
countðeÞ ¼ 25. Object oa (shaded) in the subtree of e also
has countðoaÞ ¼ 25. Similar examples can be constructed
for any situation when there is no constraint on the object
size. Thus, TS has to use count in order to avoid false
misses. Furthermore, it has been shown in [11] that the
best visiting order when using a heap is also according to
the pruning condition. Thus, the performance of TS, in
terms of node accesses, cannot be improved by simply
changing the sorting key in the heap (e.g., using the
intersection area of an entry instead of its count).

On the other hand, a number of indexes proposed for the
efficient processing of range aggregate queries can be
utilized to enhance performance of top-k joins. For instance,
the aggregate R-tree (aR-tree) [14], [24] stores, for each
intermediate entry, the number of objects in its subtree.
Having this knowledge, we can replace the upper bound for
maxnum in the definition of count with the actual number,
which leads to higher pruning (the algorithm remains the
same). In Section 5, we experimentally investigate the
performance gains of this approach.

In the next section, we explore several heuristics
assuming that the data sets are indexed by conventional
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Fig. 2. Contents of heap after visiting the roots.

Fig. 3. Contents of heap after deheaping A1 (A1, B1, B2, B5 visited).

Fig. 4. Pseudocode of TS.



R-trees due to their higher generality (compared to
aggregate structures). In particular, we first exploit the fact
that there are multiple visits to the same node at different
phases of the join process, which can be combined in a
single access. Furthermore, the existence of a buffer may
significantly influence the effectiveness of algorithms that
are based on synchronous traversal of two trees; for
instance, the evaluation of [6] suggests that the depth-first
traversal (despite the larger number of node accesses) is
much more efficient than the best-first implementation of
closest-pair queries, even if a small buffer is used.
Motivated by this observation, we also present alternative
visiting order heuristics for reducing the page faults of TS in
the presence of an LRU buffer.

4 OPTIMIZATIONS

TS may visit the same node n multiple times: 1) when the
entry e (pointing to n) is deheaped; 2) when each entry e0,
such that e 2 e0:IL, is deheaped. In the running example, for
instance, the node of root entry A1 will be accessed when
B1, B2, and B5 are deheaped (unless the algorithm
terminates before). In Sections 4.1, 4.2, and 4.3, we propose
optimizations that organize these visits so that the number
of node accesses and/or page faults is minimized.
Section 4.4 discusses top-k spatial semijoins.

4.1 Multiple Expansions Method

The basic idea of the multiple expansions (ME) method is,
whenever we expand (i.e., visit) an entry, to also update
the information about all entries in its intersection list.
Consider, for instance, the status of the heap after the
processing of root entries shown in the first row of Fig. 6.
When A1 is deheaped, we use its content to update B1,
B2, and B5 as follows: In node A1, the only entries that
intersect B1 are a1 and a3; thus, A1 in B1:IL is replaced
by a1 and a3. Accordingly, the contribution of A1 to the
count of B1 changes from 5 to 2. Similarly, for B2 :

B2:IL ¼ ½A3 a1� and countðB2Þ ¼ 6, while for B5 : B5:IL ¼
½a1 a2� and countðB5Þ ¼ 2. The second row of Fig. 6 shows
the new heap content.

Note that the updated entries B1, B2, B5 have now
smaller counts, which implies that they may be pruned
earlier (i.e., before the expansion of the corresponding
nodes). Furthermore, the number of node accesses can be
further improved. Recall from Section 3.1 that, in addition
to the node of A1, when A1 is deheaped, TS also retrieves
the nodes of B1, B2, and B5 to compute the actual counts of
objects in A1. Thus, we can use the contents of B1, B2, and
B5, to update the other entries in H that intersect them, i.e.,
all entries in the intersection lists of B1, B2, and B5. For
instance, since B1:IL ¼ ½A3 a1 a3�, B1 also intersects A3. In
node B1, the only entries overlapping A3 are b7 and b6.
Accordingly, the contribution of B1 to the count of A3

changes from 5 to 2. Similarly, B2:IL ¼ ½A3 a1�, and we
further update A3. B5 does not cause any changes because
B5:IL contains only the actual objects a1 and a2. The heap
after these steps is shown in the third row of Fig. 6 (note the
different position and content of the element corresponding
to A3). The above operations update the IL of an entry in H
without expanding it, which would cause a significant
enlargement of the heap.

A point that needs to be clarified concerns the efficient
retrieval of the entries in the intersection list of the
expanded node since the heap is organized by the count,
whereas we want to retrieve entries according to their IDs.
In order to avoid sequential scanning of the heap (which is
potentially large), we maintain in memory two binary
search trees (BST), each responsible for the entries of one
R-tree. Fig. 7 shows the corresponding BST, together with
the content of the heap, after the root entries have been
traversed (i.e., before visiting A1 in Fig. 6).

The entries in H are denoted by (entry.id, treeno). For
example, A1 is represented as (1,0) meaning that its entry.id
is 1 and it belongs to Ra; accordingly, B1 is (1,1). Each BST is
built on the object ID (i.e., the IDs of entries in the left
subbranch of a BST node are smaller than the ID of the
node). The numbers in braces indicate the position of the
corresponding element in H. For example, (1,0) (A1) is the
first element. In general, the position of any entry can be
found with cost that is logarithmic to the number of
elements in the heap.

The maintenance of BST requires insertion, deletion, and
update operations. When an element is inserted or removed
from H, the pair (entry.id, treeno) is added to, or deleted
from, the corresponding BST. An update occurs when the
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Fig. 5. Count gives the actual number of intersections.

Fig. 6. Example of multiple expansions.



count of an entry changes, modifying its order in H. In this
case, the position field in the BST node is modified
accordingly to reflect the change. In our implementation,
the construction and update operations of BST are
embedded in the heap.

Fig. 8 shows the pseudocode of ME, which is invoked in
two cases: 1) when an entry e (e.g., A1 in the running
example) is deheaped, so that its IL is also retrieved (from
the top of the heap), and 2) when e is visited because it is in
the IL of the deheaped entry (e.g., B1, B2, B5), in which case
its e:IL is found using the corresponding BST. The
pseudocode assumes that both the intersection list and the
contents of the node (n) pointed by e have been retrieved.

It is possible in some cases that, although ei 2 e:IL, the
opposite is not true, i.e., e =2 ei:IL, even if e and ei are at
the same level (this necessitates line 3 in the pseudocode
of Fig. 8). Such a situation is shown in Fig. 9, where each
Ai, Bi is a root entry and each ai, bi corresponds to a leaf
node (the node capacity is 5). After all entries are inserted
into the heap, A1 is deheaped and B1 is visited because it
is in A1:IL. The contents of B1 are used to update
A2:ILðB1 2 A2:IL ¼ ½B1 B3�Þ, which becomes A2:IL ¼
½b1 B3� (b1 is the only child of B1 that intersects A2). The
heap at this stage is shown in the second row of Fig. 9
(note that B2 is eliminated because the only entry in B2:IL
is A1, and no child of A1 intersects B2). Subsequently,
when B1 is deheaped, the entries in B1:IL are examined
for possible updates. In this case, although A2 2 B1:IL,
B1 =2 A2:IL because of the updates that occurred during
the processing of A1.

ME adds lower level entries, causing a level difference
between the heap element and the entries in its IL. On the
other hand, the original TS traverses synchronously the two
trees (as most conventional spatial join algorithms). In order
to integrate ME in TS, we adopt a technique similar to fix-at-
root4 [6] for processing node pairs that belong to different

levels. The main idea of the technique is that downwards
propagation stops in the tree of the lower level node, while
propagation in the other tree continues, until a pair of nodes
at the same level is reached. Then, the algorithm proceeds in
a “synchronous” way.

4.2 Access Locality Method

In this section, we propose an alternative access locality (AL)

method that utilizes the existence of an LRU buffer. In

particular, AL: 1) retrieves a set of top-k candidates (i.e.,

objects with a large intersection count, but not necessarily

actual results) and, then, for every subsequent deheaped

entry e (pointing to node n), 2) if e is at level 1 (i.e., pointing

to a leaf node), it inserts e in a locality heap (LH) sorted on

the lower-left x coordinate, or 3) if e is at a higher level, it

performs the join between e and e:IL, and inserts the entries

of n in the original heap H. Although the total number of

node accesses may increase, the number of page faults is

expected to decrease due to the locality of subsequent leaf

node accesses. Fig. 10 illustrates the general concept of AL.
Fig. 11 presents the pseudocode of the top-k SJ algorithm

combined with AL (TS_AL). Initially, TS_AL proceeds in a

way similar to TS until it retrieves the first k candidates.

After that point, level-1 entries are inserted into LH (instead

of H). When the size of LH reaches a threshold T , TS_AL

starts to deheap LH and performs the node-pair joins,

generating output pairs (of actual objects) in a “batch

mode.” When the content of LH is exhausted, TS_AL

iteratively deheaps H until the number of entries in LH

reaches again T , or the last deheaped entry (from H) has a

count smaller than that of the current result, in which case

all entries of H are pruned (but those of LH must be

considered). The initial retrieval of the k-candidates (using

only the conventional heap) aims at providing a fast bound

for subsequent pruning of nonqualifying entries. For our

implementation, we set T to 1/3 of the number of

qualifying entries in H.

4.3 Combination of the Optimizations

Multiple expansions and access locality can be integrated in

a single algorithm, TS_ME_AL for short, which maintains

two heaps H (sorted on count) and LH (sorted on lower-left

x coordinates). When an intermediate node n (pointed by e)

is visited, TS_ME_AL performs the same operations as

TS_ME, i.e., upon retrieving the content of n, it updates the

entries in H whose intersection lists contain e. On the other

hand, if a leaf node n is deheaped, the algorithm does not

access it immediately, but inserts it into the local heap LH,

so that it will be visited when it is deheaped from LH (i.e.,

after the size of LH reaches the threshold T ). During the

expansion of n (from LH), ME is applied only for the entries

in its intersection list that also reside in LH. For example,

consider that 1) A1 (pointing to a leaf node) is deheaped

from LH, 2) A1:IL ¼ ½B1 B2�, and 3) B1 is in LH, while B2 is

in H. TS_ME_AL will update the entries in the intersection

list of B1 but not of B2. The reason is that, since B2 is not

deheaped from H yet, and there are still leaf nodes in LH,

there is a chance that the algorithm will terminate without

having to expand B2.
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Fig. 8. Multiple expansions algorithm.

4. The experimental evaluation presented in [6] suggests that “fix-at-
root” is the most efficient method for processing closest-pair queries in trees
of different height. The same observation was verified by our experiments
for top-k SJ.

Fig. 7. Example of BST.



4.4 Top-k Spatial Semijoins

The top-k spatial semijoin retrieves the k objects from the
first data set with the largest intersection count. All the
previous algorithms and optimizations can be adapted for
this case. For the basic algorithm, the difference is that only
entries of the first data set are inserted into the H. Fig. 12
shows the content of the heap using the example of Fig. 1
after visiting the roots (first row—compare with Fig. 2) and
after expanding A1 (second row—compare with Fig. 3). In
order to apply multiple expansions, however, we also
maintain the intersection lists of entries in Rb, using binary
search trees for efficient access on the ID. Finally, the
application of the access locality is the same as in the case of
full joins.

5 EXPERIMENTS

In this section, we evaluate the efficiency of the proposed
algorithms using a Pentium 4 3.2GHz CPU. In our
experiments, we apply the real [29] and synthetic data sets
of Fig. 13: 1) MCB with 556,696 census block MBRs, 2) LAP
with 1,314,620 street centroids, and 3) SKEW with MBRs5

whose centroids follow a Zipf distribution (parameter
� ¼ 0:8) and side lengths range from 0 percent to 1 percent
of the data universe. For full join experiments, we convert
each point of LAP to an MBR with the same centroid, and
size length also in the range 0 percent to 1 perent (we call
the resulting data set LA). All the data sets are indexed by
R*-trees [2] with page size of 4KBytes, resulting in a
capacity of 204 entries per R*-tree node. The tree sizes are
16.2 MBytes for MCB, 37.9 MBytes for LA (LAP), and 80.3
MBytes for SKEW.

5.1 Comparison on Top-k Intersection Joins

The first experiment evaluates the algorithms in terms of
node accesses for full intersection joins (i.e., we retrieve the
top-k objects from either data set). Joins are performed
between 1) MCB� LA, and 2) SKEW� LA. MCB� LA
returns 16,477,244 intersecting pairs and the top-1 object
(from MCB) overlaps 9,300 objects in LA. SKEW� LA
results in 19,657,973 intersecting pairs and the top-1 object
(from SKEW) has intersection count 5,968. Note the large
output size of the conventional join, which motivates top-k
algorithms.

The proposed methods, TS (basic algorithm), TS_ME
(multiple expansions), TS_AL (access locality), and
TS_ME_AL (combination of all optimizations), are evalu-
ated in terms of node/page accesses and CPU cost. As a
benchmark, we also implemented the conventional R-tree
join (RJ) algorithm [5], including the space restriction and

plane sweep optimizations (discussed in Section 2). RJ first
synchronously traverses both R-trees to find all the
intersecting object pairs. It then sorts the pairs on object
IDs of one data set (assume A). Due to the large size of the
join result, external sorting is usually inevitable, which
involves writing and reading the pairs to/from secondary
memory. After finding the k objects from A with the largest
counts, the pairs are sorted again (externally), this time on
the IDs of the objects of B and the objects with the largest
number of intersections are also obtained. The final output
consists of the k objects with the highest counts among the
2 � k candidates. Assuming a buffer of 2,000 pages, the
overhead of materialization and external sorting is 257,467
and 307,162 page accesses for MCB� LA and SKEW� LA,
respectively. We consider that these accesses are sequential
and, in the following experiments, when node (page)
accesses are evaluated, we normalize 10 sequential accesses
to 1 random access.

Fig. 14 shows the number of node accesses as a function
of the number k of reported objects (ranging from 1 to 32).
The cost of RJ6 (78,194 for MCB� LA, and 103,843 for
SKEW� LA) is independent of k. On the other hand, all the
other algorithms are output sensitive and achieve signifi-
cant gain for the tested values of k. TS_ME has the best
performance because the multiple expansions minimize the
number of visits to the same node. However, their
combination with access locality (TS_ME_AL) incurs some
performance deterioration since, as discussed in Section 4.3,
some expansions (for entries that do not reside in the
locality heap) are deferred. The basic algorithm (TS)
performs slightly better than TS_AL because there is no
LRU buffer to utilize access locality and the application of
this heuristic may delay the expansion of the most
promising node pairs.

Note that the number of node accesses increases faster
(as a function of k) in Fig. 14a than in Fig. 14b. This happens
because, for MCB� LA, the intersection counts of the
output objects ranges from 9,300 (for k ¼ 1) to 3,244 (for
k ¼ 32), while for SKEW� LA, the counts range from 5,968
to 4,544. The large variation in the first case leads to better
pruning for small values on k. In general, the proposed
algorithms achieve high performance gains (often an order
of magnitude) with respect to RJ when the count values for
the individual objects are skewed and the value of k is
relatively small. If the counts are similar and the output size
is large, then the proposed algorithms eventually degen-
erate to RJ with, however, the additional overhead of
maintaining the heap.
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5. The cardinality of SKEW ranges between 1 and 5 million MBRs, with
the default value set to 3 million. We use this synthetic data set in order to
evaluate the effect of cardinality.

6. Whenever we evaluate performance with respect to k, we include the
cost of RJ in the corresponding figure caption (instead of the diagram)
because 1) it is usually very high compared to the proposed algorithms and
2) it is independent of k.

Fig. 9. Example of asymmetric expansion.



Fig. 15 shows the CPU time of the algorithms as a
function of k. RJ is again the most expensive algorithm
(24.24 and 28.67 seconds) due to the computation of entry
intersections in all qualifying node pairs and the over-
head of sorting. The proposed methods have to compute
fewer intersections but, in addition, they have to maintain
the heap. The main difference with respect to Fig. 14 is
that TS_ME has the worst performance among the
proposed algorithms because multiple expansions involve
searching and updating the content of heap, which is a

CPU-demanding operation. Although the method mini-
mizes the number of node accesses, it also performs some
redundant work by updating the intersection lists of
entries that will be pruned anyway (without having to be
expanded). On the other hand, TS_ME_AL has the best
CPU performance. This can be explained by the fact that
it provides a trade off between TS_ME and TS: It only
expands the entries in the locality heap, i.e., the ones that
will be considered shortly and may quickly lead to some
actual results. The relative performance of TS and TS_AL
is the same as in Fig. 14; TS is slightly better as it
performs a smaller number of node accesses.

In order to evaluate the total cost of the algorithms, we
employ an LRU buffer that accommodates 10 percent of
each R-tree. For fairness, we measure the maximum heap
size and allocate the same amount of memory to RJ as extra
LRU buffer (in addition to the 10 percent cache). In case of
MCB� LA, the maximum heap consumption occurs for
TS_ME and k ¼ 32, where there are 7,262 entries in the heap
and its size is 3.1 MBytes. For SKEW� LA, the maximum
heap size (TS_ME and k ¼ 32) is also 3.1 Mbytes, but for
9,347 entries (recall that each entry has an intersection list
with variable length).

Fig. 16 shows the total cost in seconds (summation of I/O
and CPU costs after charging 10ms to each page fault) as a
function of k. TS_ME_AL is the winner for both joins
because it reduces the node accesses and takes the
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Fig. 10. Concept of access locality optimization.

Fig. 12. Application of TS on semijoins.

Fig. 11. Pseudocode of TS AL.

Fig. 13. Three data sets in the experiments. (a) MCB (556,696 MBRs), (b) LA (1,314,620 MBRSs), and (c) SKEW (default cardinality 3,000,000).



advantage of the LRU buffer through access locality. TS_ME
is the second best (despite its high CPU cost) due to the
small number of node accesses. TS_AL consistently outper-
forms TS because of its visiting order strategy. Finally,
although TS has the worst performance among the
proposed algorithms, it is better than RJ, which takes
around 6 minutes to terminate for MCB� LA, and more
than 7 minutes for SKEW� LA.

To study the scalability of our methods, we measure the
total cost of SKEW� LA as a function of the cardinality of
SKEW ranging from 1M objects to 5M objects. We fix k ¼ 4
and apply the same settings as in Fig. 16 (i.e., we allocate the

maximum heap size to RJ as extra LRU buffer). The cost of
RJ (included in Fig. 17) grows fast with the cardinality
because of the increasing number of intersection pairs (since
the distribution remains the same). On the other hand, the
performance of the proposed techniques is rather constant
and, in some cases, it even improves with the increasing
cardinality. This is because the high density leads to large
differences between intersection counts and, therefore, to
early pruning of the heap entries.

Finally, as discussed in Section 3.2, the proposed
algorithms can be easily applied to aggregate structures
that maintain summarized information in the intermediate
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Fig. 14. Node accesses versus k (full join). (a) MCB� LA (RJ accesses = 78,194). (b) SKEW� LA (RJ accesses = 103,843).

Fig. 15. CPU time versus k (full join). (a) MCB� LA (RJ CPU time = 24.24s). (b) SKEW� LA (RJ CPU time = 28.67s).

Fig. 16. Total cost versus k (full join, 10 percent cache). (a) MCB� LA (RJ total cost = 357s). (b) SKEW� LA (RJ total cost = 456s).



entries. Fig. 18 repeats the experiment of Fig. 16 assuming
that the data sets are indexed by aR-trees. Because of the
additional aggregate information at the intermediate nodes,
the capacity of the aR-tree drops to 170. The utilization of
the aR-trees reduces the cost of the proposed algorithms,
but deteriorates the performance of RJ due to the smaller
node capacity. Similar to Fig. 16, TS_ME_AL is still the
winner, confirming the advantage of combining multiple
expansion and access locality in full joins.

In summary, even the basic algorithm (TS) achieves
significant gains with respect to RJ for practical (i.e., small)
values of k. The optimizations lead to further improvements

depending on the value of k and the presence of an LRU
buffer. Furthermore, our techniques scale well with the data
cardinality and can be easily applied with aggregate R-trees.

In the next section, we evaluate the generality of these
observations by experimenting with top-k containment
semijoins since they are equally important in practice as
full joins, and exhibit some different properties (due to
the containment relationship and the asymmetry of the
join operator).

5.2 Comparison on Top-k Containment Semijoins

Semijoins are performed between MCB� LAP and
SKEW� LAP, i.e., we retrieve the k objects from MCB
and SKEW that contain the largest numbers of points from
LAP. In this case, RJ sorts the output of the Euclidean join
only once (according to the object IDs in the first data set),
while the implementation of the proposed algorithms
follows the description of Section 4.4. The top-1 object from
MCB (SKEW) contains 6,703 (4,398) points of LAP.

Fig. 19 investigates the number of node accesses for
different values of k. The relative performance of the
algorithms is the same to that of full joins, but the cost is
now lower due to the elimination of the second sorting for
RJ and the smaller heap size (and, consequently, fewer
expansion operations) for the proposed algorithms.

Fig. 20 presents the CPU cost as a function of k.
Compared to the full join case (Fig. 15), TS_ME is still the
most CPU-intensive algorithm, but the difference with
respect to the rest is reduced because of the smaller number
of expansions that are performed. On the other hand,
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Fig. 17. Total cost versus SKEW cardinality (full join, 10 percent cache,

k ¼ 4).

Fig. 19. Node accesses versus k (semijoin). (a) MCB� LAP (RJ accesses = 35,383). (b) SKEW� LAP (RJ accesses = 66,208).

Fig. 18. Total cost versus k (aR-tree, full join, 10 percent cache). (b) MCB� LA (RJ total cost = 373s). (b) SKEW� LA (RJ total cost = 482s).



TS_ME_AL is slightly better, but does not exhibit the large
gains as in the case of full joins. The best algorithm in terms
of CPU performance is TS, followed by TS_AL.

In Fig. 21, we evaluate the total cost of the algorithms as a
function of k by fixing the cache size to 10 percent of the two
R-trees. Similar to full joins, we measure the maximum
heap size of the proposed algorithms and allocate the same
amount of memory to RJ in addition to the 10 percent cache
size. TS_ME now outperforms all the other algorithms
because: 1) it has the smallest number of node accesses;
2) the LRU buffer is more effective for semijoins. The second
factor is analyzed as follows: The node accesses consist of
visits to the deheaped nodes (n) and the nodes in the
intersection list of n. Since in semijoins the deheaped nodes
are only from the first data set, it is more likely that
subsequent nodes are close in space and intersect similar
nodes from the second data set (so that these nodes are
more likely to be in the buffer). On the other hand, in full
joins, the deheaped nodes alternate from both data sets and
may be scattered in the data universe. The order of the other
algorithms is the same as full joins (i.e., TS_ME_AL
outperforms TS_AL, which outperforms TS). We also
repeated the experiment for the case that the data sets are
indexed by aR-trees; the costs of the proposed algorithms
decrease (similar to Fig. 18), but their relative performance
remains as shown in Fig. 21 (and the diagrams are omitted).

Finally, in order to evaluate the effect of cardinality, we
apply the same settings (i.e., including the LRU buffer with
the extra allocation to RJ) and measure the cost of SKEW�
LAP as a function of the cardinality of SKEW (k ¼ 4) in

Fig. 22. Similar to Fig. 17 (for full joins), with the exception
of TS, the proposed methods are insensitive to the
cardinality, whereas the cost of RJ increases linearly.

6 CONCLUSIONS

This paper proposes the top-k spatial (semi) join, a query
type which is interesting from a research point of view and
has practical relevance for several multidimensional appli-
cations. The processing of such queries by conventional
spatial join algorithms incurs high overhead because we
only require a small percentage of the output (as opposed to
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Fig. 20. CPU time versus k (semijoin). (a) MCB� LAP (RJ CPU cost = 5.5s). (b) SKEW� LAP.

Fig. 21. Total cost versus k (semijoin, 10 percent cache). (a) MCB� LAP (RJ total cost = 102s). (b) SKEW� LAP (RJ total cost = 197s).

Fig. 22. Total cost versus SKEW cardinality (semijoin, 10 percent cache,

k ¼ 4).



the entire set of intersection pairs). Instead, we develop a
basic algorithm (TS) and two optimizations based on the
concepts of multiple expansions (ME) and access locality
(AL). TS_ME_AL (the combination of the two optimiza-
tions) is the best method for full joins since it utilizes the
LRU buffer, while TS_ME is preferable for semijoins
(because the visited nodes are more likely to be already
clustered). Our algorithms can also process bottom-k
queries (retrieving the k objects with the smallest intersec-
tion count), by simply sorting the entries in the heap with
respect to the minimum possible count. We chose not to
experiment with this version, since for most geographic
joins there are numerous objects that do not intersect any
other object (and, therefore, the output is not very
interesting). There may exist, however, applications where
such queries are important.

Directions for future work include several variations of
the problem. For instance, the proposed algorithms can be
easily extended for the top-k distance (semi) join, which
given two data sets A, B and a range e, it returns the
k objects of A that are within distance e from the largest
number of objects of B. Moreover, since our methods are
independent of the underlying data structure, they can also
be used to process moving objects indexed by TPR-trees
[30], or other spatio-temporal access methods. Another
interesting problem concerns top-k nearest-neighbor (semi)
joins. In this case, the goal is to return the k objects of A that
are the closest neighbors to the largest number of objects of
B. Consider, for instance, that A is a set of facilities, B is a
set of clients, and that each client is serviced by the closest
facility. The output of the top-k nearest-neighbor semijoin
would represent the k facilities that serve the highest
number of customers. A possible processing method
involves 1) computing the nearest neighbors (in A) of all
objects of B, 2) sorting the resulting pairs (ob, oa), where
oa 2 A is the NN of ob 2 B, with respect to oa, and
3) reporting the top-k objects of A. This technique is
expected to be very expensive because the number of
NN queries equals the cardinality of B. Alternative
algorithms are possible, based on a methodology similar
to that of top-k spatial joins.
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