
MixNStream: Multi-Source Video Distribution with

Stream Mixers∗

C.-H. Philip Yuen S.-H. Gary Chan
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Hong Kong, China

chyuen@cse.ust.hk gchan@cse.ust.hk

ABSTRACT

Many Internet streaming applications, such as distributed
surveillance, multimedia webcasting and video thumbnails
for Internet TV channel browsing, require videomixers where
streams are aggregated as a single stream before presenting
to users. We consider in this paper a multi-source streaming
network with distributed mixers, where streams originated
from multiple sources are mixed before presented to dis-
tributed users. We are interested in minimizing the worst-
case delay from the source to users via the mixers. We
propose an adaptive and distributed protocol called MixN-
Stream, which continuously reduces the network diameter in
the presence of churns. Through simulations on Internet-like
topologies, we show that MixNStream achieves substantially
better performance as compared with the state-of-the-art in
terms of network delay and network stress.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.2.2 [Computer-Communication Networks]:
Network Protocols

General Terms

Algorithms, Design, Performance

Keywords

Distributed protocol, mixers, multi-source, peer-to-peer net-
work, proxies

∗This work was supported, in part, by the General Re-
search Fund from the Research Grant Council of the
Hong Kong Special Administrative Region, China (611209),
and the Hong Kong Innovation and Technology Fund
(ITS/097/09FP).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVSTP2P’10, October 29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-4503-0169-5/10/10 ...$10.00.

1. INTRODUCTION
The Internet has become an important vehicle to carry

multimedia traffic. We have witnessed in recent years the de-
velopment and deployment of many Internet streaming ap-
plications, such as Internet TV, conferencing, surveillance,
etc. These applications often involve multiple video sources
generating streams to be distributed to users. These streams
may need to be aggregated as a single stream before present-
ing to users. Such aggregation can be done with a stream
mixer, which combines multiple incoming streams and out-
puts a single integrated stream on-the-fly (using techniques
such as sub-sampling and transcoding).

As streaming applications continue to grow with more
and more generating sources and distributed users, efficient
stream mixing from distributed sources becomes an impor-
tant issue. These “mixing” applications include:

∙ Distributed surveillance: For monitoring road traffic or
large enterprises (such as airports or campuses), many
distributed surveillance cameras may be set up. Some
of these video streams may need to be aggregated (i.e.,
“mixed”) and then streamed to many monitoring users
distributed in the network.

∙ Conference webcasting: In a conferencing session (such
as a share-holder meeting, discussion forum or panel),
people holding the session may be distributed in the
network. If the session is to be webcasted/broadcasted
to distributed viewers, the multimedia streams of these
people need to be mixed as a single stream before being
received by users.

∙ Video thumbnails for Internet TV channel browsing:
In a multi-channel Internet TV application, the streams
of the channels are usually generated by sources dis-
tributed in the network. To support a stream of video
thumbnails for channel browsing and selection, the streams
from these sources should be mixed before presenting
to users.

In a multi-source streaming network with distributed users,
proxies are often set up to serve local users. These rather
stable proxies play the role of better localizing/isolating the
adverse effect of user churns (joins, leaves and failures). If
the streams from different sources were to be aggregated at
a fixed mixer before distributing to the proxies, it would not
be network-efficient and vulnerable to single point of fail-
ure at the mixer (because streams have to first fan into the
mixer before fanning out again). To address this, we con-
sider the mixing function being embedded and implemented

77

Source Mixer

S
1

S
2

Mix(S
1
,S
2
)

S
2

S
1

Mix(S
1
,S
2
,S
3
)

Mix(S
1
,S
2
,S
3
)

S
3

S
3

Mix(S
1
,S
3
)

Mix(S
2
,S
3
)

Mix(S
1
,S
2
,S
3
)

Mix(S
1
,S
2
,S
3
)

Mix(S
1
,S
2
,S
3
)

Mix(S
1
,S
2
,S
3
)

User pool

User pool

User pool

User pool

Figure 1: A multi-source network with stream mix-

ing at proxies.

into the distributed proxies, so that stream mixing is done
at the proxy network. Such integration of mixer function
into proxies is not an issue because the proxies are usually
of high processing capability. We hence will use “proxy” and
“mixer” interchangeably in the remainder of this paper.

We show in Figure 1 the multi-source network with stream
mixers under consideration, where Mix(S1, S2) means form-
ing a stream with streams S1 and S2. We will mainly fo-
cus on the mixer-tier with multiple sources. Note that the
user pool can be either a client-server or any peer-to-peer
(P2P) network, and can be associated with the mixers by
any joining protocol. Obviously for protocol simplicity and
scalability, we should not maintain individual tree rooted at
each source, but a single spanning tree among all the mixers
so that streams are always forwarded in the same tree. A
mixer sends to its mixer neighbor a mixed stream formed
by all of the other neighbors. A mixer or proxy aggregates
all the streams from its neighbors as a single stream before
forwarding it to its local users. (In this way, the sources do
not directly serve users. The mixers act as an intermediary
for user requests, which supports anonymity of the sources
and access control to the source streams.)
In the network, user delay is the sum of two parts: (1)

the delay for a mixer to get the streams from all the sources
in the mixer-tier; and (2) the path delay from that mixer
to the user. We study the protocol at the peers1 to min-
imize such delay subject to degree bounds of the mixers
(the maximum connections it can establish with the sources
and other mixers). Note that previous results on traditional
streaming networks (without mixers) cannot be directly ap-
plied here. This is because in our mixer network streams
are dynamically combined; consequently, incoming and out-
going bandwidths need to be accounted for differently. This
fundamentally changes the design of the streaming protocol.
The key contributions of this work are: (1) we consider

a mixer network and propose an adaptive and distributed al-
gorithm called MixNStream, which builds a low-delay stream-
ing network with mixers in the presence of churns (i.e., mixer
joins and leaves). MixNStream continuously achieves lower
overall delay with peers moving into better positions in a dis-
tributed fashion; (2) We conduct extensive simulation study

1In this paper, a “peer” means either the source or mixer.

on MixNStream. We show that MixNStream achieves sub-
stantially better performance as compared with an existing
approach (in terms of delay, stress, etc.).

We briefly discuss previous work below. Many algorithms
to reduce the network diameter are centralized in nature
(see, for examples, [3, 4, 8]). Therefore, they are not appli-
cable to large and dynamic group which we consider here. A
distributed algorithm for a single-source two-tier network is
presented in [2], which adapts the tree structure in upper-tier
in response to the change in lower-tier. However, the solu-
tion cannot be directly extended to a multi-source network
with mixers we consider here. STS (Shared Tree Streaming)
is a distributed algorithm to construct a multi-source degree-
bounded minimum-diameter spanning tree [1]. It adapts the
overlay only when peer joins or leaves. In contrast, MixN-
Stream continuously improves the overlay with peers mov-
ing into better positions in a distributed fashion. Although
many distributed algorithms for overlay construction have
been proposed (see, for examples, [1, 2, 5, 6, 7]), none of
them fully addresses the problem of how to adaptively build
a low-delay multi-source mixer overlay with peer churns.
Hence they cannot be directly applied in this setting.

The rest of this paper is organized as follows. In Section 2,
we define the terminology used in this paper. In Section 3 we
present how peer dynamic are handled in MixNStream, and
in Section 4 we present how MixNStream adaptively builds
an overlay to reduce delay. Illustrative simulation results
and comparison are discussed in Section 5. We conclude in
Section 6.

2. TERMINOLOGY
Denote S and ℳ the disjoint sets of all the sources and

mixers, respectively. We model the mixer overlay as an undi-
rected graph G = (V,E), where V is the set of vertex repre-
senting the participating nodes given by V = S ∪ℳ and E
is the set of overlay edges. Let lij be the latency of the edge
⟨i, j⟩ ∈ E. Denote D(u, v) the delay of the streaming path
from node u to node v. We show in Table 1 some important
symbols used in this paper.

Let T (V,ET) be the entire overlay tree constructed out of
G(V,E), where ET ⊆ E. Denote T⟨i,j⟩ (or T⟨j,i⟩) the partial
tree of T that contains mixer j (or i) after the removal of
the overlay link ⟨i, j⟩. Clearly,

T⟨i,j⟩ ∪ ⟨i, j⟩ ∪ T⟨j,i⟩ = T (V,ET). (1)

Further denote S⟨i,j⟩ and ℳ⟨i,j⟩ sets of all the sources and
mixers, respectively, in T⟨i,j⟩.

Let Δ(m) be the worst-case delay from all the source(s)
directly attached to mixer m to m given by

Δ(m) = max
s:∀s∈S,⟨s,m⟩∈ET

lsm. (2)

Define �(m) the worst-case delay from any source in T to
mixer m given by

�(m) = max
s∈S

D(s,m). (3)

Clearly, Δ(m) ≤ �(m), ∀m ∈ ℳ. Further define �⟨i,j⟩(m)
the worst-case delay from any source in T⟨i,j⟩ to mixer m
given by

�⟨i,j⟩(m) =

{
maxs∈S⟨i,j⟩

D(s,m), if S⟨i,j⟩ ∕= ∅;
−∞, otherwise.

(4)

78

Table 1: Table of Nomenclature.

Symbols Meanings
T (V,ET) Entire overlay tree of G(V,E)
T⟨i,j⟩ Partial tree of T that contains mixer j

after the removal of the overlay link ⟨i, j⟩
D(u, v) Delay of the streaming path from node u to

node v
Δ(m) Worst-case streaming delay from the

source directly attached to mixer m to m
�(m) Worst-case streaming delay from any

source in T to mixer m
�⟨i,j⟩(m) Worst-case streaming delay from any

source in T⟨i,j⟩ to mixer m
Γ(m) Worst-case streaming delay from mixer m

to the user in its user-pool
(m) Worst-case streaming delay from mixer m

to any user in T
⟨i,j⟩(m) Worst-case streaming delay from mixer m

to any user in T⟨i,j⟩

Π(m) Worst-case delay of all the source-to-user
paths that pass through mixer m

Let Γ(m) be the worst-case delay from mixer m to the
user in its user pool. We define (m) the worst-case delay
from mixer m to any user in T given by

(m) = max
m∗∈ℳ

(D(m,m∗) + Γ(m∗)) . (5)

Further define ⟨i,j⟩(m) the worst-case delay from mixer m
to any user in T⟨i,j⟩ given by

⟨i,j⟩(m) = max
m∗∈ℳ⟨i,j⟩

(D(m,m∗) + Γ(m∗)) . (6)

Consider all the source-to-user streaming paths that pass
through mixer m. There can be two cases: (1) the user is
in mixer m’s user pool; and (2) the user is not in mixer m’s
user pool. We define �(m) worst-case delay of the paths in
case (1), which is given by

�(m) = �(m) + Γ(m). (7)

Further define �̂(m) the worst-case delay of the paths in case
(2), which is given by

�̂(m) = max
m∗:∀m∗∈ℳ,⟨m,m∗⟩∈ET

(
�⟨m∗,m⟩(m) + ⟨m,m∗⟩(m)

)
.

(8)
We define Π(m) the worst-case delay of all the source-to-user
paths that pass through mixer m, which is given by

Π(m) = max (�(m), �̂(m)) . (9)

We show in Figure 2 an illustration example of the above
symbols. In the figure, the delay on all the overlay links are
the same. The path for �(i) is shown in dashed line; the
path for (i) is shown in “-⋅-” line; the path for �⟨i,j⟩(i) is
shown in “-⋅⋅-” line; the path for ⟨i,j⟩(i) is shown in dotted
line; and the path for Π(i) is shown in double line.

3. JOINS AND LEAVES IN MIXNSTREAM
Peer traffic can be highly dynamic. A peer may join, leave

and failure at anytime. The overlay hence has to adapt to
this network dynamic.

Source Mixer User-pool

Mixer i

T
<i,j>

Mixer j

T
<j,i>

(i)

<i,j>
(i)

<i,j>
(i)

(i)

(i)

Figure 2: Terminology

3.1 Source
A joining source should connect to a mixer neighbor which

leads to low delay of all the users. Upon the arrival of a new
source s, it contacts a Rendezvous Point (RP) which returns
a random list of mixers as the potential mixer neighbors. Af-
ter receiving the list, the source s requests (m) of each of
the potential mixer neighbor m and evaluates ((m) + lsm).
It connects to the mixer neighbor m with available degree
of the lowest ((m) + lsm). It may request the mixer neigh-
bors from the list (through gossip). Then the above process
is repeated several times until a sufficiently good mixer is
found.

When a source is about to leave, it informs its attached
mixer. Upon detecting a source has left, the mixer it at-
tached to updates its set of neighbors.

3.2 Mixer
A newly arrived mixer should look for a mixer neighbor

which leads to low delay of all the source streams. Upon the
arrival of a new mixer m, it receives a list of potential mixer
neighbors from RP. It then requests �(m∗) of each of the
potential mixer neighbor m∗ and evaluates (�(m∗) + lmm∗)
with respect to each of them. It may get more candidates
through gossip. After computing the delays, m connects
to mixer neighbor m∗ with available degree of the lowest
(�(m∗) + lmm∗).

When a mixer is about to leave, it initiates a leave message
to all of its source neighbors and mixer neighbors, asking
them to re-join the network. In order to guarantee connec-
tivity in the spanning tree after the re-join process, we put
a special node, termed virtual root, in the mixer-tier net-
work which acts as the root of mixer-tier (the virtual root
may be co-located with the RP). The virtual root connects
to exactly one of the mixers and will not leave the network
(like RP). The only responsibility of the virtual root is to
send the Root-Path which contains its identity to its mixer
neighbor m. Mixer m will then concatenate its identity to
the Root-Path and send to its mixer neighbors. Keeping the
Root-Path is important as in the re-join process, the poten-
tial mixer neighbors returned by RP may be a descendant

79

Source Mixer User-pool

Mixer i Mixer j

<
<i,j>
(k),

<i,j>
(k),l

ik
>

Mixer hMixer k

<
<i,j>
(h),

<i,j>
(h),l

ih
>

MRM(TTL=3) MRM(TTL=2) MRM(TTL=1)

Figure 3: An example of mixer adaptation

of the repairing client. A loop will exist if a client takes
its descendant as its parent. The repairing client eliminates
looping (hence overlay disconnection) in the re-join process
by examining whether the Root-Path of the potential parents
contains its own identity or not.
A mixer may fail at anytime. To handle this, each mixer

regularly sends its heartbeat to its neighbors. When a peer
finds its neighbor fails, it runs the repair process.

4. ADAPTATION AND CONTROL MESSAG-

ING
We define an adaptation as a peer moving into better po-

sitions (i.e., achieving lower delay) in the mixer-tier. Each
peer periodically runs the adaptation algorithm to reduce
delay. An adaptation is performed if and only if the worst-
case source-to-end delay can be reduced.

4.1 Source Adaptation
A source s, which is attached to a mixer m, periodically

requests (m∗), wherem∗ is the neighbors ofm. It evaluates
((m∗) + lsm∗). The source picks the mixer neighbor with
the lowest delay by disconnecting from mixer m and takes
mixer m∗ as its mixer neighbor.

4.2 Mixer Adaptation
A mixer m floods a Migration Request Message (MRM) to

its mixer neighbors with a time to live (TTL) value which
is decremented by 1 each time it is forwarded until it hits 0.
Upon a mixer m̂ receiving MRM, it repliesm with a GRANT
message which is a tuple of

〈
�⟨m,m∗⟩(m̂), ⟨m,m∗⟩(m̂), lmm̂

〉

if it has available degree, wherem∗ is m’s 1-hop mixer neigh-
bor. We show in Figure 3 an example of this case.
Mixer m may receive a number of GRANT messages. For

each replier m̂, mixer m considers a new mixer network con-
structed by replacing ⟨m,m∗⟩ with ⟨m, m̂⟩, and calculates
Π(m) for the network using the information in the tuple.
The mixer neighbor which yields the smallest Π(m) is cho-
sen as the new neighbor.

4.3 Control Messaging
Peers gather the required information for making adapta-

tion decisions using the idea in Distributed Aggregation Tree
[9]. Each peer periodically sends its neighbors a control mes-
sage for aggregation. As an example of aggregating �(m),

Table 2: Baseline Parameters.

Parameters Baseline Values
� 2 req./minute
1/� 50 minutes
Adaptation interval 1 minute
Degree-bound 5
TTL 5
Number of sources 8
Diameter of user-pool Truncated normal with mean

30 msec and standard deviation
(s.d.) 20 msec

mixer m first collects lsm from each of its source neighbors s.
Mixer m hence computes Δ(m) according to Equation (2).
Afterward, mixer m collects �⟨m,m∗⟩(m

∗) and lmm∗ from its
mixer neighbor m∗, and computes

�⟨m,m∗⟩(m) = �⟨m,m∗⟩(m
∗) + lmm∗ . (10)

After computing �⟨m,m∗⟩(m) with respect to each of its mixer
neighbor m∗, it computes

�(m) = max

(

Δ(m), max
m∗∈m’s mixer neighbors

�⟨m,m∗⟩(m)

)

.

(11)
Mixers gather other information (for example, Equations (5)

and (9)) and compute the tuple in the GRANT message us-
ing similar mechanism.

5. ILLUSTRATIVE SIMULATION RESULTS
We have carried out simulation to compare the perfor-

mance of MixNStream with STS (Shared Tree Streaming)
[1]. Note that STS does not consider the diameter in user-
pools, and adapts the overlay only when peer joins or leaves
(instead of continuously as in MixNStream). We first present
the simulation environment and performance metrics in Sec-
tion 5.1, followed by illustrative results in Section 5.2.

5.1 Simulation Setup and Metrics
In the simulation, we use Brite to generate a two-level

top-down hierarchical topology consisting of 8 autonomous
systems each of which has 625 routers. This gives us a total
of 5,000 routers and about 20,000 links. Peers are attached
to the routers randomly. Mixers arrive according to a Pois-
son process with rate � (req./minute), and the sojourn time
of the mixers are exponentially distributed with mean 1/�
(minutes). Clearly, the number of mixers in the system is
Poisson with mean �/�. Unless otherwise stated, we use the
baseline values of the parameters according to Table 2.

We use the following evaluation metrics for our compari-
son with the previous work of STS [1]:

∙ Source-to-end delay: Source-to-end delay is the path
delay from multiple sources to a mixer’s user pool. We
are mainly interested in its maximum (i.e., diameter)
among all the mixers in this paper.

∙ Network stress: Network stress is defined as the aver-
age number of streams in an used underlay link.

80

12.5 25 50 100 200
300

350

400

450

500

550

600

650

1/µ (min)

M
a
x
im

u
m

 s
o
u
rc

e
−

to
−

e
n
d
 d

e
la

y
 (

m
s
e
c
)

STS

MixNStream

Figure 4: Maximum source-to-end delay versus 1/�.

5.2 Illustrative Results
We plot in Figure 4 the maximum source-to-end delay

against average holding time 1/� (because � fixed, the x-
axis is also proportional to the average number of mixers).
The delay in MixNStream remains rather constant and low
as 1/� increases. This is because even the expected num-
ber of mixers in the system (�/�) increases, MixNStream
effectively pushes mixers with larger diameter closer to the
sources. The delay in STS is substantially higher. This
is because its lack of consideration of user diameter. This
shows that MixNStream is very effective in achieving low de-
lay, due to its more optimized connections and connection
improvements through periodic adaptation in the overlay.
We plot in Figure 5 the network stress against 1/�. The

stress in all schemes increase as number of mixers increases.
This is because the number of connections increases when
the network size increases. The stress in MixNStream is sub-
stantially lower than that of STS. This is because in MixN-
Stream, mixers continuously move into better positions in
the mixer-tier. This eliminates many long connections and
saves much bandwidth in the network. More efficient rout-
ing leads to lower network stress.
We plot in Figure 6 the maximum source-to-end delay

against the s.d. of the diameter of user pool. Note that when
the s.d. is 0, the problem becomes minimizing the delay in
mixer network, and the two schemes achieve similar perfor-
mance, showing the effectiveness of MixNStream. When the
s.d. increases, the diameter in user pool has more variations.
MixNStream pushes mixers with larger diameter closer to
the sources, which makes the delay in MixNStream remains
rather low. Without considering the diameter in user pools,
the diameter in STS increases dramatically. This shows that
MixNStream is effective in putting mixers in appropriate po-
sition in the network to achieve low delay.
We plot in Figure 7 the maximum source-to-end delay

against the mean of the diameter in user-pool. The delay
in two schemes increase as the mean increases. However,
the growth rate of the delay in MixNStream is substantially
lower than that of STS. This is due to routing efficiency of
MixNStream in the mixer network. Without considering the

12.5 25 50 100 200

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1/µ (min)

N
e
tw

o
rk

 s
tr

e
s
s

STS

MixNStream

Figure 5: Network stress versus 1/�.

0 10 20 40 80

400

600

800

1000

1200

1400

1600

Standard deviation of diameter in user−pool (msec)

M
a

x
im

u
m

 s
o

u
rc

e
−

to
−

e
n

d
 d

e
la

y
 (

m
s
e

c
)

STS

MixNStream

Figure 6: Maximum source-to-end delay versus

standard deviation of diameter in user pool.

diameter in user-pools, the delay in STS increases with the
rate approximately the growth rate of the mean.

We plot in Figure 8 the graph of source-to-end delay against
degree-bound. The delay decreases as degree-bound increases.
This is because a larger degree-bound yields an overlay less
“deep” and hence lower the delay. The delay of MixNStream
is substantially lower than that of STS. This is because
each peer in MixNStream periodically performs adaptation
to move into better positions in the mixer-tier, while STS
adapts the overlay only when peer joins or leaves.

We plot in Figure 9 the maximum source-to-end delay
against TTL (flood scope). The delay decreases as TTL
increases. This is because the larger TTL is, the better
can the adaptation decision be made. Note that the case of
TTL=2 corresponds to the gossip-based adaptation, while
the case with TTL=∞ is the centralized scheme. Given
that the delay reduction is not significant (about 10% in the
figure), for simplicity and overhead consideration, TTL does
not need to be high to achieve good performance.

81

10 20 30 40 50
300

350

400

450

500

550

600

650

700

Mean of diameter in user−pool (msec)

M
a
x
im

u
m

 s
o
u
rc

e
−

to
−

e
n
d
 d

e
la

y
 (

m
s
e
c
)

STS

MixNStream

Figure 7: Maximum source-to-end delay versus

mean of diameter in user-pool.

3 4 5 6 7
300

350

400

450

500

550

600

650

Degree−bound

M
a

x
im

u
m

 s
o

u
rc

e
−

to
−

e
n

d
 d

e
la

y
 (

m
s
e

c
)

STS

MixNStream

Figure 8: Maximum source-to-end delay versus

degree-bound.

6. CONCLUSIONS
Many Internet streaming applications require video mix-

ing from multiple sources. We consider in this paper a multi-
source streaming network with distributed mixers serving lo-
cal users, where streams originated from all the sources are
aggregated before forwarding to users. We have studied how
to minimize the network diameter (in terms of the worst-case
source-to-end delay) by first formulating the problem. We
propose and present an adaptive and distributed protocol
called MixNStream, which continuously reduces the network
diameter in the presence of peer churns. Simulation results
show that MixNStream indeed achieves substantially lower
network delay and network stress as compared with an ex-
isting approach of STS (Shared Tree Streaming).

2 5 10 inf
295

300

305

310

315

320

325

330

335

TTL

M
a
x
im

u
m

 s
o
u
rc

e
−

to
−

e
n
d
 d

e
la

y
 (

m
s
e
c
)

Figure 9: Maximum source-to-end delay versus

TTL.

7. REFERENCES
[1] T. Baduge, A. Hiromori, H. Yamaguchi, and

T. Higashino. A distributed algorithm for constructing
minimum delay spanning trees under bandwidth
constraints on overlay networks. Systems and
Computers in Japan, 37(14):15–24, 2006.

[2] S. Banerjee, C. Kommareddy, K. Kar,
B. Bhattacharjee, and S. Khuller. OMNI: an efficient
overlay multicast infrastructure for real-time
applications. Computer Networks, 50(6):826–841, 2006.

[3] N. Bansal, R. Khandekar, and V. Nagarajan. Additive
guarantees for degree bounded directed network design.
In Proceedings of the 40th annual ACM symposium on
Theory of computing, pages 769–778. ACM, 2008.

[4] F. Huang, B. Ravindran, and V. Kumar. An
Approximation Algorithm for Minimum-Delay
Peer-to-Peer Streaming. In Ninth International
Conference on Peer-to-Peer Computing, 2009.

[5] M. Khan, G. Pandurangan, and V. Kumar. Distributed
algorithms for constructing approximate minimum
spanning trees in wireless sensor networks. IEEE
Transactions on Parallel and Distributed Systems,
pages 124–139, 2008.

[6] Y. Li, D. Ren, S. Chan, and A. Begen. Low-delay mesh
with peer churns for peer-to-peer streaming. In IEEE
International Conference on Multimedia and Expo,
2009. ICME 2009, pages 1546–1547, 2009.

[7] D. Ren, Y. Li, S. Chan, et al. Fast-mesh: a low-delay
high-bandwidth mesh for peer-to-peer live streaming.
IEEE Transactions on Multimedia, 11(8), 2009.

[8] K. Vik, P. Halvorsen, and C. Griwodz. Multicast tree
diameter for dynamic distributed interactive
applications. In Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM),
pages 1597–1605. Citeseer, 2008.

[9] B. Yu, J. Li, and Y. Li. Distributed Data Aggregation
Scheduling in Wireless Sensor Networks. In IEEE
INFOCOM. IEEE, 2009.

82

