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Abstract—Since the quality of compressed video is vulnerable
to errors, video transmission over unreliable Internet is very
challenging today. Multi-hypothesis motion-compensated predic-
tion (MHMCP) has been shown to have error resilience capability
for video transmission, where each macroblock is predicted by a
linear combination of multiple signals (hypotheses). B picture
prediction is a special case of MHMCP. In H.264/AVC, the
prediction of B pictures is generalized such that both of the two
predictions can be selected from the past pictures or from the
subsequent pictures. The multiple reference picture framework in
H.264/AVC also allows previously decoded B pictures to be used
as references for B picture coding. In this paper, we will discuss
the error resilience characteristics of the generalized B pictures in
H.264/AVC. Three prediction patterns of B pictures are analyzed
in terms of their error-suppressing abilities. Both theoretical
models (picture level error propagation) and simulation results
are given for the comparison.

Index Terms—Error propagation, error ratio, error resilience,
multi-hypothesis motion-compensated prediction.

I. Introduction

DELIVERING video of good quality over the Internet or
wireless networks is very challenging today, due to the

use of predictive coding and variable length coding (VLC) in
video compression [1], [2]. In the block-based video coding
method, if we use INTER prediction mode, each macroblock
(MB) is predicted from a previously decoded frame by motion
compensation. If data loss occurs during the transmission,
the corresponding frame will be corrupted, and this error
will propagate to the subsequent frames because of INTER-
prediction, until the next INTRA-coded frame is correctly
received. For example, a simple bit error in VLC can cause
desynchronization; as a result, all the following bits cannot be
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used until a synchronization code arrives. Due to these facts,
it is useful to develop some schemes to improve the error
resilience (ER) capability of the compressed video.

Several error resilience methods have been developed for
video communication. One such method is forward error
correction (FEC) coding, typically applied at the channel
coding stage. In this method, FEC codes are added to the
video stream by the encoder, and the decoder uses these codes
to correct some bit errors. FEC techniques can be jointly used
with other error resilience methods such as data partitioning
[3] and subband-based coders [4], [5]. It can also be used
to protect a region of interest using the new error resilience
tools provided by H.264/AVC [6], [7]. Another method for
error resilience is layered scalable coding (LC). LC refers to
partitioning the video stream into more than one layer. The
base layer is protected and transmitted with higher priority; it
contains the most important information for the video and can
be used to provide acceptable video quality. Each enhancement
layer incrementally improves the video quality [5], [8], [9]. LC
provides different video qualities according to channel band-
width, but the layers have to be obtained incrementally, leading
to inflexibility and low video quality when a lower layer is lost.
Contrary to this approach, multiple description coding (MDC)
divides the video stream into independently-encoded streams
(descriptions). These descriptions are sent to the destination
through different channels. If error occurs during the transmis-
sion, only a subset of the descriptions will be received by the
decoder, which can be used to reconstruct the video with lower
but acceptable quality [10], [11]. In addition to MDC, multi-
hypothesis motion-compensated prediction (MHMCP) has also
been proven to have error resilience capability, where each
MB is predicted by a linear combination of multiple signals
(hypotheses) [12], [13]. It is shown in [14] that MHMCP can
suppress the short-term error propagation more effectively than
the INTRA-refreshing scheme. Our proposed ER method is
motivated by this approach.

MHMCP was originally developed to improve the compres-
sion efficiency of video coding [15], [16]. Its error resilience
property is analyzed in [12], where two-hypothesis MCP is
used. In this approach, each picture (except I picture and the
first P picture) is predicted from its previous two pictures.
The error propagation model at the decoder side is analyzed,
which is combined with the encoder predictor to strike a
balance between compression efficiency and error resilience
capability. In [14], the authors extend two-hypothesis MCP by
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utilizing the concept of reference picture interleaving and data
partitioning. The parameters for each hypothesis, including the
motion vectors and the reference picture indices, are separated
into the bitstream to reduce the impact of a single picture
loss. In [14], the error propagation effect in the rate–distortion
performance in terms of the hypothesis number and hypothesis
coefficients is analyzed. It is shown that a hypothesis number
no larger than three is suitable at low bit rates.

We will focus on two-hypothesis MCP (2HMCP) in this
paper, to make a balance between the compression efficiency
and error resilience capability. In addition, 2HMCP can be
supported by the newest video coding standard H.264/AVC,
whereas three-hypothesis MCP is not standard compatible
[17]. In the older video coding standards, such as MPEG-
1/2/4, bidirectional temporal prediction is used to encode
B pictures. In this prediction mode, a block in a current
picture is predicted from a block in a previous picture using
forward prediction, as well as a block in a future picture
using backward prediction. Then a weighted average of these
two blocks is subtracted from the current block to generate
the residue [18]. In H.264/AVC, the prediction of B pictures
is generalized such that both of the two predictions can be
selected from the past pictures or from the subsequent pictures,
in addition to using the existing bidirectional prediction mode
in other standards such as MPEG-1/2/4. The multiple refer-
ence picture framework in H.264/AVC also allows previously
decoded B pictures to be used as references for B picture
coding [19]. Due to its generalized form, using B picture to
implement 2HMCP is H.264/AVC standard compatible, and
thus convenient for the application of error resilient video
coding.

In this paper, we will extend the previous works in [12]
and [14] to a more generalized one, i.e., the reference pictures
can be some distance from the current picture, instead of
only the immediately preceding ones. This is analogous to
the use of a long-term reference frame in multiple-reference-
frame video coding, which has been shown to have the
ability to improve both the compression efficiency and error
robustness of the encoded videos [20]–[22]. The authors in
[20] consider a rate-constrained motion-estimation framework
to select the temporal delay parameter (reference frame) and
motion vectors. In [21], the error propagation process in
multiframe motion compensation is modeled as a multiple
Markov chain. The authors use Markov chain analyses to
derive a rule to randomize the selection of the reference frame
and thus improve the robustness of the codec. In [22], a dual-
frame buffer, where one short-term frame and one long-term
frame are maintained as reference frames, is used together
with an INTRA/INTER mode switching algorithm to improve
the encoder’s compression efficiency and the robustness of
the compressed bitstream. In all these multiple-reference-
frame coding algorithms only one of the references (single
hypothesis) will be used to predict a MB, whereas a linear
combination of multiple signals (hypotheses) will be used to
predict a MB in MHMCP. We will focus on the latter one
in this paper. Three types of prediction patterns are proposed
and implemented by B pictures in H.264/AVC. In the case
of a single picture loss during the transmission, the induced

error propagation is analyzed at the picture level. Pixel level
analyses can be found in the literature, such as [23]–[25]. In
these works, the packet loss rate (P) is assumed to be available
at the encoder side, and the expected distortion in the decoded
video is estimated for each pixel.

This paper is organized as follows. In section II, we derive
the error propagation models of the three types of prediction
patterns for the case of a single picture loss. Simulation
results are given in section III to verify the correctness of
these models. The compression efficiencies and error resilience
capabilities of the three prediction types are also compared.
Section IV is the conclusion.

II. Three Prediction Patterns of B Pictures for

Error Resilience

A. Background

Suppose the picture at time m is ψ(m). In [12], each picture
has two hypotheses and picture ψ(m) is predicted by

ψ̂(m) = h1ψ̃(m − 1) + h2ψ̃(m − 2) (1)

where m ∈ [2, ∞) and h1 + h2 = 1. ψ̂(m) is the motion-
compensated prediction of ψ(m), and ψ̃(m − i) is the hypoth-
esis from the reconstructed picture at time (m − i), i = 1, 2.
The first two pictures ψ(0) and ψ(1) can be compressed as the
traditional I picture and P picture, respectively. Note that if
h1 = 1, the predictor in (1) becomes a conventional prediction
scheme. If h1 = 0, this is the same as the odd/even sub-
sampling method used in temporal MDC [26]. In the following
analyses, we restrict h1 and h2 to be within the range (0, 1)
for 2HMCP.

Consider the case of a single picture loss during the trans-
mission. By using some error concealment technique, this
picture can be reconstructed at the decoder side with some
error. Due to the use of motion compensation, this error will
propagate to the subsequent pictures. Suppose the loss occurs
at time m0. We define error ε(n) to be the difference between
the reconstructed (m0 + n)th picture at the decoder and the
reconstructed (m0 + n)th picture at the encoder. For the special
case of all the motion vectors (MVs) being zero, motion
compensation is just a copying process. Using the predictor
in (1), we can obtain{

ε(1) = h1ε(0),

ε(n) = h1ε(n − 1) + h2ε(n − 2), n ∈ [2, ∞).
(2)

From (2), we can get the error propagation model

ε(n) =
1 − (h1 − 1)n+1

2 − h1
ε(0). (3)

When n goes to infinity and h1 ∈ (0, 1), ε(n) will decrease
and converge at last. We define error ratio R0, to be the ratio of
converged value to the first error. So the error ratio of predictor
in (1) for a single picture loss is

R0 = lim
n→∞

ε(n)

ε(0)
=

1

2 − h1
. (4)
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One advantage of using 2HMCP is that the error ratio is
smaller than one, i.e., 1

2 < R0 < 1 for h1 ∈ (0, 1), which
means it can reduce the propagated error.

The above analysis does not consider the effect of spatial
filtering, which can be introduced by the deblocking filters, or
as a side effect of sub-pixel motion compensation with linear
interpolation [27], [28]. Spatial filtering can also attenuate the
propagated error energy. This effect is analyzed in [27] for the
case of traditional video coding, i.e., single hypothesis MCP,
and approximated by

D(n) =
D(0)

1 + γn
(5)

where D(n) is the variance of ε(n) and named the decoder
distortion in [12]. γ is a parameter describing the efficiency of
the loop filter to attenuate the error energy; typically γ ∈ (0, 1).
By combining (5) and previous analysis, we can obtain the
decoder distortion for the two hypotheses prediction

D(n) =

(
1 − (h1 − 1)n+1

2 − h1

)2
D(0)

1 + γn
. (6)

In (1), each picture is predicted from its previous two
pictures. A straightforward idea is to extend this prediction
pattern to a more generalized one

ψ̂(m) = h1ψ̃(m − a) + h2ψ̃(m − b) (7)

where b > a ≥ 1. But it turns out that getting the error
propagation model for (7) is very complicated. So we only
extend the prediction in (1) to the following three 2HMCP
prediction patterns:

2HMCP Type1: ψ̂(m) = h1ψ̃(m − c) + h2ψ̃(m − 2c); (8)

2HMCP Type2: ψ̂(m) = h1ψ̃(m − 2c) + h2ψ̃(m − 3c); (9)

2HMCP Type3: ψ̂(m) = h1ψ̃(m − c) + h2ψ̃(m − 3c). (10)

Here c is a constant, c ≥ 1, h1, h2 ∈ (0, 1) and h1 + h2 = 1.
If m < 2c in 2HMCP Type1, or m < 3c in 2HMCP Type2
and Type3, ψ(m) is predicted by (1). Note that the predictor
in (1) is a special case of 2HMCP Type1 with c = 1. As all
these three prediction patterns select two hypotheses from the
past pictures, they can be implemented by the generalized B
pictures in H.264/AVC. We define the error propagation func-
tion ε(n) for 2HMCP Type1, Type2, and Type3 to be ε1(n),
ε2(n), and ε3(n), respectively. Their error propagation models
will be analyzed and compared in the subsequent subsections.

B. Error Propagation Model for 2HMCP Type1 Prediction

From the predictors in (8), (9), and (10), we can recursively
define the error propagation functions ε1(n), ε2(n) and ε3(n)
for the condition of a single picture loss, similar as the one in
(2). Deriving the closed-form expressions of these functions
is useful in analyzing the error resilience characteristics of
2HMCP. For example, they can help us to estimate the
converged values of the propagated errors, so as to compare
the error suppressing abilities of different prediction schemes.
Actually as shown in this and the subsequent subsections, the
derived error propagation functions can be used as long as
error occurs within c consecutive pictures for 2HMCP Type1,

Type3 and within 2c consecutive pictures for 2HMCP Type2.
This is more general than the case of a single picture loss. The
following work is inspired by the famous problem of Fibonacci
numbers, which form a recursively defined sequence Fn. After
two starting values, F0 = 0 and F1 = 1, each number of this se-
quence is calculated by the sum of the two preceding numbers,
i.e., Fn = Fn−1 + Fn−2 for n ∈ [2, ∞) [29]. Before deriving
the closed-form expressions of ε1(n), ε2(n), and ε3(n), we first
give and prove two lemmas, both of which aim to derive the
closed-form expression of a recursively defined function
Lemma 1 Suppose a, b, and d are constant parameters;
a, b, d ∈ R and a function f (n) is recursively defined on
n ∈ N0.1⎧⎨

⎩
f (0) = 1,

f (1) = d,

f (n) = a f (n − 1) + b f (n − 2), n ∈ [2, ∞).
(11)

Then the closed-form expression of f (n) is f (n) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a + µ)n(2d − a + µ) − (a − µ)n(2d − a − µ)

2n+1µ
, � > 0

(a + ν)n(2d − a + ν) − (a − ν)n(2d − a − ν)

2n+1ν
, � < 0

(2dn − an + a)an−1

2n
, � = 0

(12)

where � = a2 + 4b, µ =
√

� and ν =
√−�j.

Proof:
First we define a function g(n) on n ∈ N0 as⎧⎨

⎩
g(0) = 1
g(1) = a

g(n) = a g(n − 1) + b g(n − 2), n ∈ [2, ∞).

With the definition, function g(n) generates a series of num-
bers recursively, which can be considered as a generalization
of the Fibonacci sequence [30], [31]. Suppose x1 and x2 are
the two solutions to equation x2 − ax− b = 0. We can express
x1 as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x2
1 = ax1 + b

x3
1 = x1(ax1 + b) = a(ax1 + b) + bx1 = (a2 + b)x1 + ab

x4
1 = x1((a2 + b)x1 + ab) = (a2 + b)(ax1 + b) + abx1

= (a3 + 2ab)x1 + (a2 + b)b

. . . .

Similar expressions can be obtained for x2. Then the relation
between x1, x2, and g(n) for n ≥ 1 can be written as{

xn+1
1 = g(n)x1 + b g(n − 1)

xn+1
2 = g(n)x2 + b g(n − 1)

which can be inductively proved using the definition of g(n).
Subtracting these two equations, we can obtain g(n) = (xn+1

1 −
xn+1

2 )/(x1 − x2).
We define another function h(n) on n ∈ N0 as h(n) = f (n +

1) − g(n + 1). It is easy to prove that h(n) = (d − a)g(n) for

1
N

0 is the set of nonnegative integers.
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n ∈ N0. So the relation between function f (n) and g(n) for
n ≥ 1 is f (n) = (d − a)g(n − 1) + g(n). From the closed-form
expression of g(n), we have

f (n) = (d − a)
xn

1 − xn
2

x1 − x2
+

xn+1
1 − xn+1

2

x1 − x2
.

By incorporating the solutions of x1 and x2 into this equation,
we can get the result in (12).

Lemma 2
Suppose a, b, c, and d are constant parameters; a, b, d ∈ R,
c ∈ N and a function f (n) is recursively defined on n ∈ N0⎧⎪⎪⎨

⎪⎪⎩
f (n) = sn, n ∈ [0, c − 1]

f (n) = d f (n − c), n ∈ [c, 2c − 1]

f (n) = a f (n − c) + b f (n − 2c), n ∈ [2c, ∞)

(13)

where s0, s1, . . . , sc−1 are known.
Then the closed-form expression of f (n) is f (rc + k) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a + µ)r(2d − a + µ) − (a − µ)r(2d − a − µ)

2r+1µ
sk, � > 0

(a + ν)r(2d − a + ν) − (a − ν)r(2d − a − ν)

2r+1ν
sk, � < 0

(2dr − ar + a)ar−1

2r
sk, � = 0

(14)

where r, k ∈ N0, k ∈ [0, c − 1], � = a2 + 4b, µ =
√

� and
ν =

√−�j.
Proof:

Based on the definition of function f (n), the range of f (n)
can be divided into c cosets, i.e., coset k contains f (k), f (c +
k), f (2c + k) . . . , k ∈ [0, c− 1]. Following from the definition,
the calculations of f (n) in different cosets are uncorrelated.
In other words, for r1, r2 ∈ [0, ∞) and k1, k2 ∈ [0, c − 1],
f (r1c + k1) and f (r2c + k2) can be independently determined
if k1 �= k2. Within a given coset k, k ∈ [0, c− 1], we can write
f (n) as f (rc + k) =⎧⎪⎨

⎪⎩
sk r = 0

d sk r = 1

a f ((r − 1)c + k) + b f ((r − 2)c + k) r ∈ [2, ∞).

Then lemma 1 can be used to derive the expression of
f (rc + k) for r ∈ N0.

For the 2HMCP Type1 predictor in (8), we can obtain its
error propagation function ε1(n) as⎧⎪⎨
⎪⎩

ε1(n) = en n ∈ [0, c − 1]

ε1(n) = h1ε1(n − c) n ∈ [c, 2c − 1]

ε1(n) = h1ε1(n − c) + h2ε1(n − 2c) n ∈ [2c, ∞)

where the first c errors e0, e1, . . . , ec−1 are assumed to be
known, i.e., en = ε1(n) for n ∈ [0, c − 1]. Note that ε1(n) is
in the form of function f (n) in lemma 2, with d = a = h1,
b = h2 = (1 − h1), and (a2 + 4b) = (2 − h1)2 > 0. Using (14)
we can obtain the closed-form expression of ε1(n)

ε1(rc + k) =
1 − (h1 − 1)r+1

2 − h1
ek (15)

where r, k ∈ N0 and k ∈ [0, c − 1]. From this result, we can
observe that the range of ε1(n) can be divided into c cosets,
i.e., coset k contains ε1(k), ε1(c+k), ε1(2c+k) . . . , k ∈ [0, c−1].
Using (15), the converged error in coset k can be obtained as

lim
r→∞ ε1(rc + k) =

ek

2 − h1
. (16)

For the same ek, as h1 ∈ (0, 1), a smaller h1 leads to a smaller
converged error. Note that if h1 ∈ (0, 1), the base (h1 − 1) of
the exponent part in (15) is less than zero, which means that
there will be some oscillations in the propagated error. We can
notice these phenomena from the simulation results of section
III. If h1 is allowed to be 1, then ε1(rc+k) = ek for r ∈ [0, ∞).
In this case, error will just propagate within the corresponding
coset and will not decrease. If h1 is allowed to be 0, then
ε1(2rc+k) = ek and ε1((2r + 1)c+k) = 0 for r ∈ [0, ∞). In this
case, erroneous pictures and correct pictures will be alternately
displayed, i.e., the propagated error will not converge.

C. Error Propagation Model for 2HMCP Type2 Prediction

Based on the predictor in (9), we can obtain the error
propagation function of 2HMCP Type2

⎧⎪⎪⎨
⎪⎪⎩

ε2(n) = en n ∈ [0, 2c − 1]

ε2(n) = h1ε2(n − 2c) n ∈ [2c, 3c − 1]

ε2(n) = h1ε2(n − 2c) + h2ε2(n − 3c) n ∈ [3c, ∞)

where the first 2c errors e0, e1, . . . , e2c−1 are assumed to
be known, i.e., en = ε2(n) for n ∈ [0, 2c − 1]. Note that for
n ∈ [3c, ∞), function ε2(n) can be expressed as ε2(n)−ε2(n−
c) = (−1)[ε2(n−c)−ε2(n−2c)]+(−h2)[ε2(n−2c)−ε2(n−3c)].
We define an auxiliary function δ(n) = ε2(n + c) − ε2(n). Then
δ(n) can be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ(n) = en+c − en n ∈ [0, c − 1]

δ(n) =
h1en−c − en

en − en−c

δ(n − c) n ∈ [c, 2c − 1]

δ(n) = (−1)δ(n − c) + (−h2)δ(n − 2c) n ∈ [2c, ∞).

By expanding ε2(n) as ε2(n) = ε2(n − c) + δ(n − c) = ε2(n −
2c) + δ(n − 2c) + δ(n − c) = . . . = ε2(n − rc) +

∑r
i=1 δ(n − ic),

we can obtain the relation between ε2(n) and δ(n)

ε2(rc + k) =
r−1∑
i=0

δ(ic + k) + ek (17)

for r, k ∈ N0 and k ∈ [0, c−1]. By using lemma 2, the closed-
form expression of δ(ic + k) can be derived for i ∈ [0, ∞),
k ∈ [0, c − 1]. Substituting this result for δ(ic + k) into (17),
ε2(rc + k) can be derived, i.e., ε2(rc + k) =
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(1 − ρr

2)(2α + 1 + ρ)

1 − ρ2
− (1 − ρr

3)(2α + 1 − ρ)

1 − ρ3

)
ec+k − ek

2ρ
+ ek

if h1 ∈ ( 3
4 , 1),

(
(1 − τr

2)(2α + 1 + τ)

1 − τ2
− (1 − τr

3)(2α + 1 − τ)

1 − τ3

)
ec+k − ek

2τ
+ ek

if h1 ∈ (0, 3
4 ),

(
(−1

2
)r((12α + 6)r − 4α − 8) + 4α + 8

)
ec+k − ek

9
+ ek

if h1 = 3
4

(18)

where r, k ∈ N0, k ∈ [0, c−1], α = (h1ek−ec+k)/(ec+k−ek), ρ =√
4h1 − 3, ρ2 = (−1 + ρ)/2, ρ3 = (−1 − ρ)/2, τ =

√
3 − 4h1j,

τ2 = (−1 + τ)/2 and τ3 = (−1 − τ)/2. Note that in 2HMCP
Type2, there are three cases, depending on the range of h1.
Although τ is a complex number when h1 ∈ (0, 3

4 ), it is easy
to prove that the imaginary part of (18) is zero, i.e., ε2(rc + k)
is a real number.

Similar to 2HMCP Type1, the range of ε2(n) can be divided
into c cosets, i.e., coset k contains ε2(k), ε2(c+k), ε2(2c+k) . . . ,
k ∈ [0, c − 1]. By (18), the converged error in coset k can be
obtained (the same for the three cases) as

lim
r→∞ ε2(rc + k) =

ek + ec+k

3 − h1
. (19)

For the same ek and ec+k, as h1 ∈ (0, 1), a smaller h1 leads
to a smaller converged error. If h1 is allowed to be 1, then
ε2(2rc + k) = ek and ε2((2r + 1)c + k) = ec+k for r ∈ [0, ∞). In
this case, error will just propagate within the corresponding
coset and will not decrease. If h1 is allowed to be 0, then
ε2(3rc+k) = ek, ε2((3r+1)c+k) = ec+k and ε2((3r+2)c+k) = 0
for r ∈ [0, ∞). In this case, erroneous pictures and correct
pictures will be alternately displayed, i.e., the propagated error
will not converge.

D. Error Propagation Model for 2HMCP Type3 Prediction

Based on the predictor in (10), the error propagation func-
tion of 2HMCP Type3 can be obtained as⎧⎪⎨
⎪⎩

ε3(n) = en n ∈ [0, c − 1]

ε3(n) = h1ε3(n − c) n ∈ [c, 3c − 1]

ε3(n) = h1ε3(n − c) + h2ε3(n − 3c) n ∈ [3c, ∞)

where the first c errors e0, e1, . . . , ec−1 are assumed to be
known, i.e., en = ε3(n) for n ∈ [0, c − 1]. Note that for n ∈
[3c, ∞), function ε3(n) can be written as ε3(n) − ε3(n − c) =
(−h2)[ε3(n−c)−ε3(n−2c)]+(−h2)[ε3(n−2c)−ε3(n−3c)]. We
define an auxiliary function

.
δ(n) = ε3(n+c)−ε3(n). Then using

lemma 2 and a similar deriving process to 2HMCP Type2,
we can get the closed-form expression of

.
δ(n). Note that for

h2 ∈ (0, 1), h2
2 − 4h2 < 0, so the condition of (a2 + 4b) < 0

is satisfied in (14). In addition

ε3(rc + k) =
r−1∑
i=0

.
δ(ic + k) + ek

for r, k ∈ N0 and k ∈ [0, c − 1]. By combining this with the
expression of

.
δ(ic + k), we can get

ε3(rc + k) =

(
(1 − ωr

2)(h1 + 1 + ω)

1 − ω2
− (1 − ωr

3)(h1 + 1 − ω)

1 − ω3

)
× (h1 − 1)ek

2ω
+ ek

(20)

where r, k ∈ N0, k ∈ [0, c − 1], ω =
√

3 − 2h1 − h1
2j, ω2 =

(h1 − 1 + ω)/2 and ω3 = (h1 − 1 − ω)/2. Similarly as 2HMCP
Type2, although ω is a complex number, it can be proved that
the imaginary part of (20) is zero, i.e., ε3(rc + k) is a real
number.

The range of ε3(n) can also be divided into c cosets, i.e.,
coset k contains ε3(k), ε3(c + k), ε3(2c + k) . . . , k ∈ [0, c − 1].
The converged error in coset k is

lim
r→∞ ε3(rc + k) =

ek

3 − 2h1
. (21)

For the same ek, as h1 ∈ (0, 1), a smaller h1 leads to a smaller
converged error. If h1 is allowed to be 1, then ε3(rc+k) = ek for
r ∈ [0, ∞). In this case, error will just propagate within the
corresponding coset and will not decrease. If h1 is allowed
to be 0, then ε3(3rc + k) = ek, ε3((3r + 1)c + k) = 0 and
ε3((3r + 2)c + k) = 0 for r ∈ [0, ∞). In this case, erroneous
pictures and correct pictures will be alternately displayed, i.e.,
the propagated error will not converge.

E. Error Ratios and Decoder Distortions
for the Three Prediction Patterns

From (16), (19), and (21), we can see that the converged
error can be represented as a function of the initial error(s)
and parameter h1 for all the three prediction patterns. With
fixed initial error(s), when h1 decreases, the converged error
decreases. This means that we can decrease h1 to improve
the error resilience property of the compressed video. On the
other hand, when h1 decreases, the compression efficiency will
decrease, due to the larger weighting parameter for the long-
distance reference frame. We need to select a proper h1 to
make a balance between the compression efficiency and error
resilience capability. More discussions for the value of h1 will
be given in Section III.

As in Section II-A, suppose only one picture is lost and
e0 is the initial error introduced by the lost picture [ψ(m0)].
By the definitions of 2HMCP Type1 and Type3, we can see
that the predictions of the subsequent (c − 1) pictures are not
related to ψ(m0), as a result ek = 0 for k ∈ [1, c−1]. Similarly,
ek = 0 for k ∈ [1, 2c−1] in 2HMCP Type2. This means that in
all of these prediction patterns, the error incurred by a single
picture loss will only affect part of the subsequent pictures:
one erroneous picture followed by (c−1) correct pictures, with
a cycle equal to c pictures. One exception is picture ψ(m0 +c)
in 2HMCP Type2, which may not be erroneous as it is not
predicted from ψ(m0).

Since the constant c makes the error propagation periodic,
we will use c = 1 in the following analyses. Based on (16),
(19), and (21), we can calculate the error ratios for the three
types of prediction patterns (R1, R2, R3)

R1 =
1

2 − h1
; R2 =

1

3 − h1
; R3 =

1

3 − 2h1
. (22)
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When h1 ∈ (0, 1), it can be easily proved that R2 < R3 < R1.
This means 2HMCP Type2 is better than Type1 and Type3, in
terms of the error suppressing ability. We will verify this by
the simulation results in Section III. To help to explain why
2HMCP Type2 can achieve a smaller error ratio, we list the
errors in the first three pictures from the time the loss occurs
(with the same initial error e0 and parameter h1)

2HMCP Type1 : e0, h1e0, (h2
1 + h2)e0, . . .

2HMCP Type2 : e0, 0, h1e0, . . .

2HMCP Type3 : e0, h1e0, h2
1e0, . . . .

There is an error-free picture in 2HMCP Type2 after the loss
position, which will be used as the reference for the subsequent
pictures and thus can help to suppress the propagated errors.

The previous analyses assume that all the motion vectors
are zero. Suppose Di(n) is the variance of εi(n), i = 1, 2, 3.
By incorporating the spatial filtering in (5) into (15), (18),
and (20) and setting c = 1, we can get the decoder distortion
functions for a single picture loss in (23).

III. Simulation Results

In the simulation, we compare both the compression ef-
ficiencies and error resilience abilities of the three types
of prediction patterns, using the H.264/AVC reference soft-
ware version 10.2 (main profile) [32]. The video sequences
Carphone (QCIF, 300 frames), Foreman (QCIF, 300 frames),
Mother Daughter (QCIF, 300 frames), Mobile (CIF, 300
frames), and News (CIF, 150 frames) are used for the testing,
encoded at 30 frames/s. Due to its generalized form, we
use B picture in H.264/AVC to implement 2HMCP Type1,
Type2, and Type3 with c = 1, 2, 3, 4. In particular, the first
picture of a video sequence is encoded as an I picture,
and the second one is encoded as a P picture; then all the
subsequent pictures are encoded as B pictures. During the
motion estimation/compensation process, a weighted average
of two hypotheses is used to predict each block in a B
picture, and the reference picture is selected according to
the prediction type and the value of distance parameter c.
The search range in motion estimation is [−32, 32] for QCIF
sequences and [−64, 64] for CIF sequences. The weighted
prediction mode for B picture is enabled to carry out different
weighting parameter h1, which goes from 0.125 to 0.875. In
Table I, we list the major parameter values used for the encoder
configuration. Note that although Random INTRA-MB Refresh
is not used, additional INTRA-MB can be encoded if it has a
lower RD cost in the encoder mode-decision procedure.

A. Compression Efficiency

Table II lists the comparisons between the three types of
encoders, with c = 1 and different weighting parameter h1.
Fixed QPs are used to encode the sequences: 28 for I picture
and 30 for P (B) pictures. The average PSNR and the bit
rate (kbit/s) are listed. To analyze the compression efficiency,
we can use the method proposed in [33] and approximate the
relation between �PSNR and �Bitrate by 0.05 dB � 1%.
From the table we can see that the compression efficiency of

TABLE I

The Major Parameter Values in the Encoder Config. File

Parameter Name Value Comment
NumberReferenceFrames 2–12 Number of previous frames used for

INTER motion search
RandomIntraMBRefresh 0 Number of forced INTRA-MBs per

picture
SearchRange 32/64 Maximum search range for ME
RDOptimization 1 R/D optimization enabled
DirectModeType 1 Direct mode type (spatial)
BReferencePictures 1 B pictures are used as references
WeightedBiprediction 1 Weighted prediction for B picture is

used (explicit mode)
SymbolMode 1 Entropy coding method is CABAC
PicInterlace 0 Frame coding
UseConstrainedIntraPred 0 INTER pixels can be used for

INTRA-MB prediction
LoopFilterDisable 0 Enable loop filter in slice header

2HMCP Type3 is closer to Type2 than to Type1 for a small
h1 (i.e., h1 = 0.125), and closer to Type1 than to Type2 for
a large h1 (i.e., h1 = 0.875). In most cases, 2HMCP Type1
compresses best and 2HMCP Type2 compresses worst. This is
reasonable since 2HMCP Type1 uses the closest two pictures
as the references so that the prediction is better. On the other
hand, the references of 2HMCP Type2 are farther than those
of 2HMCP Type1 and Type3, which can lead to a worse
prediction and larger residue. The common characteristic for
these three methods is that increasing h1 can lead to a better
compression efficiency. One exception is the Mobile sequence,
in which 2HMCP Type3 compresses better than Type1 for a
larger h1, i.e., h1 ≥ 0.5, and increasing h1 does not always
improve the compression efficiency. This is mainly due to
the sub-pixel motion vectors of the pixels in the calendar. In
other words, if the motion estimation/compensation of such
a pixel is performed in the immediately previous reference
picture, interpolation is needed to get the reference pixel
at a sub-pixel location. On the other hand, if the motion
estimation/compensation is performed in a farther reference
picture, the reference pixel may lie on an integer-pixel location
and thus have a better quality than the interpolated one. In
such cases, using a long-distance reference picture may have
a better compression efficiency than using a neighboring one.

B. Oscillation and Transition Time of the Propagated Errors

As explained in Section II that when c = 1, the propagated
error due to a single picture loss will decrease and converge at
last, if the effect of spatial filtering is not considered. In this
section, we will discuss the fluctuation in the reconstructed
video quality caused by this error propagation. Due to the
use of 2HMCP, the propagated error will stabilize after some
oscillations. We define the time needed for this stabilization
to be Error Transition Time and compare it for the three
prediction patterns. As we know, the perceptible quality of
a video sequence is bad when good pictures and bad pictures
are alternately displayed, even when the average PSNR is high.
So a shorter Error Transition Time helps to improve the visual
quality of the decoded video. The Decoder Distortion models
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1(n) =

(
1 − (h1 − 1)n+1

2 − h1

)2
D1(0)

1 + γn
.

D2(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − (1 − ρn

2 )(1 − 2h1 + ρ)

2ρ(1 − ρ2)
+

(1 − ρn
3 )(1 − 2h1 − ρ)

2ρ(1 − ρ3)

)2
D2(0)

1 + γn
if h1 ∈ ( 3

4 , 1),

(
1 − (1 − τn

2 )(1 − 2h1 + τ)

2τ(1 − τ2)
+

(1 − τn
3 )(1 − 2h1 − τ)

2τ(1 − τ3)

)2
D2(0)

1 + γn
if h1 ∈ (0, 3

4 ),

(
4 + (− 1

2 )n(3n + 5)

9

)2
D2(0)

1 + γn
if h1 = 3

4 ,

where ρ =
√

4h1 − 3, ρ2 = (−1 + ρ)/2, ρ3 = (−1 − ρ)/2, τ =
√

3 − 4h1j, τ2 = (−1 + τ)/2
and τ3 = (−1 − τ)/2.

D3(n) =

(
1 +

h1 − 1

2ω

(
(1 − ωn

2 )(h1 + 1 + ω)

1 − ω2
− (1 − ωn

3 )(h1 + 1 − ω)

1 − ω3

))2
D3(0)

1 + γn
,

where ω =
√

3 − 2h1 − h1
2j, ω2 = (h1 − 1 + ω)/2 and ω3 = (h1 − 1 − ω)/2.

(23)

TABLE II

Comparison Between the Encoders

PSNR Bit Rate
h1 0.125 0.25 0.375 0.5 0.625 0.75 0.875 0.125 0.25 0.375 0.5 0.625 0.75 0.875

Capphone (QCIF)
Type1 35.01 34.93 34.92 34.84 34.84 34.85 34.82 152.02 146.52 139.96 139.24 133.82 133.46 131.60
Type2 35.09 35.06 35.05 34.97 34.98 34.99 34.99 173.32 168.62 163.34 162.26 159.08 160.56 160.58
Type3 35.10 35.04 35.00 34.88 34.86 34.85 34.86 168.34 160.94 151.76 147.88 140.58 138.74 134.80
Foreman (QCIF)
Type1 34.41 34.39 34.39 34.30 34.30 34.27 34.24 147.06 142.26 135.26 135.06 128.46 127.18 123.78
Type2 34.47 34.47 34.49 34.44 34.45 34.42 34.38 175.26 170.10 164.56 163.04 158.88 158.88 157.62
Type3 34.51 34.48 34.46 34.35 34.34 34.28 34.23 171.54 163.48 154.10 149.54 140.46 136.12 129.52
Mother Daughter (QCIF)
Type1 36.16 36.04 36.08 35.86 35.95 35.95 35.97 51.18 49.80 46.66 45.96 43.68 43.06 40.50
Type2 36.25 36.20 36.24 36.04 36.15 36.10 36.15 64.82 63.36 60.64 59.82 58.36 58.48 56.86
Type3 36.26 36.17 36.14 35.88 35.96 35.89 35.92 62.10 59.58 55.02 52.72 49.42 47.64 43.70
Mobile (CIF)
Type1 31.94 31.91 31.88 31.87 31.83 31.85 31.84 1288.39 1216.22 1151.94 1170.46 1139.85 1182.20 1230.24
Type2 32.02 32.02 32.00 31.98 31.97 31.96 31.96 1369.35 1296.19 1235.00 1252.10 1224.31 1268.36 1322.16
Type3 32.01 31.98 31.95 31.91 31.87 31.86 31.85 1344.46 1252.63 1173.43 1174.81 1133.86 1169.88 1217.73
News (CIF)
Type1 37.20 37.15 37.15 36.99 37.07 37.05 37.07 242.71 233.91 222.58 219.81 208.30 203.74 195.07
Type2 37.25 37.22 37.24 37.09 37.18 37.17 37.20 287.53 280.11 271.73 270.89 263.05 262.57 259.87
Type3 37.25 37.20 37.20 36.98 37.08 37.01 37.02 279.28 265.76 250.61 242.54 225.60 217.06 203.82

and Error Ratios derived in section II-E are also verified in this
section. Carphone (QCIF) sequence is used for the simulation,
compressed as in Table II with c = 1.

To verify the Decoder Distortion models, the condition of
a single picture loss at time m0 is simulated. The lost picture
is error concealed by copying the previous correctly decoded
picture. Then the Mean Square Errors (MSEs, compared to the
error-free decoded pictures) at the decoder after that picture
are obtained and shown in Fig. 1, Fig. 2, where m0 = 20.
The distortion calculated by the theoretical model in (23) is
also plotted, where Di(0) is assigned to be the decoder MSE
at the loss position (time m0), i = 1, 2, 3. Parameter γ is
trained to fit the curves, which is in the range of [0.03, 0.04].
From the figures we can see that the theoretical model can
approximate closely to the decoder distortion. To give more
illustrations, the differences between the theoretical distortions

and the actual decoder MSEs are calculated for the 50 pictures
after loss. Their mean and variance (VAR) are obtained and
listed in Table III. Except for 2HMCP Type3 with h1 = 0.75,
the absolute value of the mean difference is always less than 1.
The variance of the difference is also small, around 2.18, 0.43,
and 1.12 for 2HMCP Type1, Type2, and Type3, respectively.

When we define Error Ratio in Section II-A, we assume all
the motion vectors are zero, i.e., the spatial filtering effect is
not considered, since the main focus here is on analyzing the
error resilience characteristics introduced by different motion
compensation schemes. Based on this assumption, error will
converge after a long enough time, i.e., at time (m0 + nc).
Multiplying the initial error by the Error Ratio, we can get
this converged error, which can be combined with the spatial
filter in (5) to get the Decoder Distortion at time (m0 + nc):
Di(nc) � (Ri)2Di(0)/(1+γnc), i = 1, 2, 3. From this result, we
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Fig. 1. Error propagation curve of Carphone for a single picture loss (c = 1). The three types of prediction patterns are listed in the three columns, and the
range of the weighting parameter h1 is [0.125, 0.875], from the top to the bottom. In each plot, the horizontal axis is the frame number after the loss position,
and the vertical axis is the Decoder Distortion, represented as MSE. This figure only shows the plots for h1 ∈ [0.125, 0.5]; the remaining ones are listed in
Fig. 2.
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Fig. 2. To continue Fig. 1 for h1 ∈ [0.625, 0.875].

can roughly calculate the Error Ratios from the simulation
data using Ri =

√
Di(nc)(1 + γnc)/Di(0), i = 1, 2, 3. Di(0)

and Di(nc) are the decoder MSEs at time m0 and (m0 + nc),
respectively. The obtained results are plotted in Fig. 3 with
γ = 0.035 and nc = 50. Theoretical Error Ratios calculated by
(22) are also plotted, which are very close to those obtained
from the simulation data. From (22) we can see that the Error
Ratios of Type2 and Type3 are close for a small h1 (i.e.,
h1 = 0.125), while the Error Ratios of Type1 and Type3 are
close for a large h1 (i.e., h1 = 0.875). In addition, increasing
h1 can make the Error Ratio larger. All these properties can
be verified by the curves in Fig. 3.

A common characteristic of 2HMCP Type1, Type2, and
Type3 is that the Decoder Distortion will decrease after some
oscillations. To give a rough explanation for these phenomena,
we suppose the state of each picture to be an element of

set {G, B, M}, where G, B, and M represent good quality,
bad quality, and median quality, respectively. Since the loss
occurs at time m0, picture ψ(m0) will be in state B and the
past pictures are all in state G. Suppose the two hypotheses
of picture ψ(m) are ψ̃1(m) and ψ̃2(m), which may come from
different reference pictures according to the predictors in (8),
(9), or (10). If we know the states of ψ̃1(m) and ψ̃2(m), by
using predictor ψ̂(m) = h1ψ̃1(m) + h2ψ̃2(m), we can roughly
estimate the state of ψ(m).

1) For small h1 and large h2, ψ(m) would be in the same
state as ψ̃2(m).

2) For large h1 and small h2, ψ(m) would be in the same
state as ψ̃1(m).

3) For similar h1 and h2, ψ(m) would be in state M if
ψ̃1(m) and ψ̃2(m) have different states; otherwise, ψ(m)
would be in the same state as ψ̃1(m).
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TABLE III

The Difference Between the Theoretical Distortion and the

Actual Decoder MSE

h1 0.125 0.25 0.375 0.5 0.625 0.75 0.875
Type1 µm 0.34 −0.18 0.56 0.97 0.81 0.63 −0.34
Type1 σ2 2.18 1.47 1.73 1.95 2.97 2.38 3.74
Type2 µm 0.46 0.22 0.48 0.30 0.25 −0.51 0.39
Type2 σ2 1.26 0.57 0.43 0.32 0.37 0.36 1.48
Type3 µm 0.70 0.30 0.33 0.36 −0.73 −1.36 −0.88
Type3 σ2 1.93 0.67 0.47 0.70 1.12 1.92 4.52

Fig. 3. Error ratio verification (c = 1).

Based on this, the states of the pictures from time m0 can
be obtained as:

Type1 with small h1 : BGBGBGB . . .

with large h1 : BBBBBBB . . .;
Type2 with small h1 : BGGBGGB . . .

with median h1 : BGMMMMM . . .

with large h1 : BGBGBGB . . .;
Type3 with small h1 : BGGBGGB . . .

with large h1 : BBBBBBB . . ..

An alternating occurrence of State B and State G leads to
the oscillations in the propagated error, whereas a continual
occurrence of the same state means stabilization. As illustrated
in Figs. 1 and 2, for 2HMCP Type1 and Type3, when h1 is
larger, the oscillation is less severe, i.e., the Error Transition
Time is shorter, but the converged error is larger. For 2HMCP
Type2, the least severe oscillation occurs when h1 is 0.625;
the converged error is small for all the values of h1. More
illustrations for the relationship between the distortion and
parameter h1 can be found in Section III-C. As shown in each
row of the figures, for a fixed h1 and similar initial distortion
D(0), 2HMCP Type2 can always obtain a smaller distortion
than Type1 and Type3 after the oscillations.

We also use some schemes to find the theoretical Error
Transition Time, to give a clearer illustration for the oscillation
effects. As stated previously, the loss occurs at time m0 and
ε(n) is the error at the (m0 + n)th picture. Suppose N is
a constant to specify a time interval with length (2N + 1)
and σn is the error variance in this period, i.e., σn =∑n+N

i=n−N (ε(i) − µn)2/(2N + 1) and µn =
∑n+N

i=n−N ε(i)/(2N + 1).
Then we expect the Error Transition Time to be n if σn−1 >

Tstable and σn ≤ Tstable, where Tstable is a threshold. Based on

Fig. 4. Theoretical Error Transition Time (c = 1). The time is counted by
the number of pictures.

(15), (18) and (20), the numerically obtained Error Transition
Time is plotted in Fig. 4, where c = 1, ε(0) = 1, N = 2
and Tstable = 10−4. Similarly as the results in Figs. 1 and 2, a
larger h1 achieves a shorter Error Transition Time for 2HMCP
Type1 and Type3, whereas the shortest Error Transition Time
for 2HMCP Type2 is achieved when h1 is around 0.625.

C. Error Resilience Property

Suppose the compressed video is transmitted though a
random packet loss channel and one packet contains the
information of one picture. Then the loss of one packet will
lead to the loss of one entire picture. Two error concealment
algorithms are used to reconstruct the lost pictures.

1) Copy: The lost pictures are error concealed by copying
the previous correctly decoded picture.

2) OptiFlow: The lost pictures are error concealed based on
multiframe optical flow estimation [34]. In particular,
the optical flow of the lost picture is estimated first,
where the constant velocity model and median filter are
used to provide both temporal and spatial regularization
of the motion vector field. Then the previous picture
is projected onto the lost one based on this estimated
information. For more details please refer to [34].

PSNR is used as the objective video quality measurement,
which is computed using the original (uncompressed) video
as reference. Given a packet loss rate P, the video sequence
is transmitted 300 times, and the average PSNR for the 300
transmissions is calculated at the decoder side.

In Fig. 5, we test the effect of weighting parameter h1 on the
performance of the three types of predictions, where h1 goes
from 0.125 to 0.875. Carphone (QCIF) and Mobile (CIF) are
used as the testing sequences, compressed as in Table II. The
packet loss rate is P = 3%, and OptiFlow is used to error-
conceal the lost pictures. We can observe from the figure that
Type2 and Type3 perform similarly for a small value of h1

(i.e., h1 = 0.125), and Type1 and Type3 perform similarly for
a large value of h1 (i.e., h1 = 0.875). This is consistent with the
results in Fig. 3. In addition, decreasing h1 can make the Error
Ratio smaller, thus leading to a larger decoder PSNR. On the
other hand, when h1 decreases, the compression efficiencies of
these prediction patterns may decrease accordingly, due to the
smaller weighting parameter for the closer reference picture
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Fig. 5. Average PSNR at the decoder side with different weighting parameter h1 (c = 1 and P = 3%).

Fig. 6. R–D curves of the three prediction patterns (h1 = 0.5, c = 1, and P = 3%).

(hypothesis). This can be observed from the results in Table II.
For example, with the same set of QP values in Type1 of
Carphone, when h1 decreases from 0.875 to 0.5 and from 0.5
to 0.125, the bit rate increases about 6% and 9%, respectively.
To make a balance between the compression efficiency and
error resilience capability, generally a moderate value of h1

(e.g., h1 = 0.5) can be used. One exception is the Mobile
sequence, in which h1 = 0.375 and h1 = 0.625 tend to have a
better compression efficiency than the other values of h1, as
discussed previously. In addition, we can observe from Fig. 5
that the prediction with h1 = 0.375 also has a good error
resilience ability. Using Type1 prediction as an example, the
decoder PSNR with h1 = 0.375 is 1.8 dB higher than that
with h1 = 0.875, but only 0.3 dB lower than h1 = 0.125. This
indicates that h1 = 0.375 is a good choice for Mobile. For the
sake of simplicity, we will just use h1 = 0.5 for all the testing
sequences in the remaining simulations.

Fig. 6 shows the Rate–Distortion (R–D) curves of the three
prediction patterns under packet loss rate P = 3%, h1 = 0.5,

and c = 1. OptiFlow is used to error-conceal the lost pictures.
The R–D curves at the encoder side are also plotted to give
a comparison between the compression efficiencies. From the
figure we can see that for sequences Carphone and Mobile,
the decoder R–D curve of Type2 always lies above those of
Type1 and Type3, and Type1 lies at the bottom. In addition,
the gain of Type3 over Type1 is much obvious than that of
Type2 over Type3. Note that in Mobile, the encoder R–D
curves of Type1 and Type3 almost overlap with each other,
whereas the decoder R–D curve of Type3 is more than 1dB
higher than that of Type1. For a sequence with relatively
simple and small motions, or with a large static background,
such as Mother Daughter, the decoder R–D curve of Type1
is higher than those of Type2 and Type3 at a low bit rate.
When the bit rate increases, the curve of Type3 becomes
higher than those of Type1 and Type2. The reason is that
when packet loss occurs, error concealment can work well in
such sequences and the propagated error is small in all these
three prediction types. As a result, the advantage of Type3
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Fig. 7. Average PSNR at the decoder side with different loss rate P (h1 = 0.5 and c = 1).

Fig. 8. Average PSNR at the decoder side with different distance parameter c (h1 = 0.5 and P = 3%).

(Type2) over Type1 (Type3), in terms of the error suppression
ability, is not obvious in such situations, but the corresponding
bit rate is much larger.

Fig. 7 compares the performance of the three prediction
patterns under different packet loss rate, P = 1% ∼ 11%.
The testing sequences are Foreman (QCIF) and News (CIF),
compressed as in Table II with h1 = 0.5 and c = 1. From the
figure we can see that no matter whether Copy or OptiFlow is
used to error-conceal the lost pictures, the curve of 2HMCP
Type2 always lies above Type3, and Type3 lies above Type1.
This is consistent with the previous analysis that R2 < R3 <

R1 for 0 < h1 < 1. In addition, as the loss rate increases,
the PSNR differences between the three prediction patterns
increase accordingly. For example, when P goes from 1% to
11% in Foreman with OptiFlow, the gain of Type3 over Type1
increases from 0.71 dB to 2.07 dB, and the gain of Type2 over
Type3 increases from 0.22 dB to 0.56 dB. Note that as shown
previously in Table II, with h1 = 0.5 and the same set of QPs
in Foreman, the bit rate increases about 10.7% from Type1 to
Type3 and 9% from Type3 to Type2. This indicates that with
a similar percentage of bit rate increase, the gain of Type3
over Type1 is much larger than that of Type2 over Type3.

In Fig. 8, we investigate the effect of distance parameter c

on the performance of 2HMCP. Sequences Foreman (QCIF)
and Mobile (CIF) are encoded with h1 = 0.5 and fix QPs (28
for I picture and 30 for P, B pictures), and then transmitted
with packet loss rate P = 3%. At the encoder side, the
PSNRs for Foreman and Mobile are around 34.5 dB and
32 dB, respectively. When c increases from 1 to 2, the bit rate
increases a lot, e.g., about 29% for 2HMCP Type3 of Foreman
and 17% for Mobile. For a larger increment of c, the increase
in bit rate is smaller, e.g., around 9% for Foreman when c goes

from 3 to 4. Although increasing c leads to a larger bit rate, it
effectively helps to suppress the propagated error, as shown in
the figure. For example, when c goes from 1 to 2 for 2HMCP
Type3 of Mobile with OptiFlow, a 17% redundancy in the bit
rate can give us about 2.28dB gain at the decoder side. When
c goes above 2, the increment in decoder PSNR is not as large
as that when c goes from 1 to 2. As a result, it is reasonable
to use a small c, i.e., c = 1, 2, to make a balance between the
compression efficiency and error resilience capability.

In previous simulations, the encoded video stream is sup-
posed to be transmitted through a random packet loss channel.
In Table IV, we compare the performance of the three predic-
tion patterns under the condition of burst errors. The two-state
Markov chain model has been employed to simulate packet
losses. The average burst length Lb (in terms of consecutive
packet losses) goes from 1 to 5, and the packet loss rate is
P = 5% and P = 20%. Foreman (QCIF) and News (CIF) are
used as the testing sequences, encoded with h1 = 0.5 and fix
QPs (28 for I picture and 30 for P, B pictures), c = 1, 2, 3. Copy
is used to error-conceal the lost pictures. We can observe from
the table that when the burst length increases, the PSNR gain
of 2HMCP Type2 over Type3 will decrease on the whole, and
Type2 may even become worse than Type3 with c = 1 and a
large Lb. This is different from the previous results for random
packet losses. As unlike prediction Type3, the references of
Type1 and Type2 are two consecutive pictures when c equals
1, it is more likely that both of these reference pictures are
lost when Lb increases. We can also observe from the table
that the decoder PSNR usually decreases with increasing Lb,
as expected. However, this is not always true, especially for
c = 1. One reason is that with c = 1 and a large Lb, when a
picture is received after a burst error, all its previous pictures
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TABLE IV

The Average Decoder PSNR for the Condition of Burst Errors

P = 5% P = 20%
Lb 1 2 3 4 5 1 2 3 4 5

Foreman (QCIF) Type1 26.64 26.03 26.11 26.43 26.78 20.88 19.70 19.55 19.67 19.75
c = 1 Type2 29.30 27.48 27.00 27.13 27.33 23.93 21.22 20.62 20.46 20.39

Type3 28.40 27.41 27.11 27.22 27.52 22.44 21.18 20.68 20.61 20.53
Foreman (QCIF) Type1 29.69 28.32 27.97 27.89 28.23 24.29 22.02 21.24 21.07 20.92

c = 2 Type2 31.68 30.27 29.52 29.28 29.38 26.72 24.24 23.02 22.66 22.28
Type3 31.07 29.78 29.17 29.03 29.05 26.05 23.72 22.83 22.51 22.21

Foreman (QCIF) Type1 30.85 29.61 28.98 28.78 28.84 25.95 23.61 22.53 22.22 21.91
c = 3 Type2 32.52 31.49 30.70 30.38 30.32 28.64 26.21 24.84 24.27 23.76

Type3 31.89 30.81 30.22 29.93 29.92 27.53 25.18 24.11 23.72 23.35
News (CIF) Type1 32.97 32.66 32.55 32.94 33.08 27.58 26.88 26.80 27.17 27.19

c = 1 Type2 34.71 33.59 33.04 33.33 33.33 29.74 27.95 27.55 27.82 27.70
Type3 34.12 33.51 33.08 33.29 33.29 28.72 27.85 27.54 27.81 27.73

News (CIF) Type1 34.85 33.85 33.29 33.42 33.42 30.30 28.38 27.79 27.87 27.70
c = 2 Type2 35.95 35.05 34.24 34.14 34.02 32.38 30.13 29.18 28.92 28.52

Type3 35.57 34.72 34.07 34.03 33.94 31.62 29.62 28.99 28.87 28.57
News (CIF) Type1 35.54 34.63 33.94 33.87 33.80 31.58 29.53 28.68 28.57 28.15

c = 3 Type2 36.25 35.67 35.07 34.86 34.69 33.26 31.52 30.65 30.23 29.76
Type3 35.98 35.34 34.84 34.72 34.62 32.56 30.86 30.27 30.08 29.72

have been seriously deteriorated. As the error in the decoded
picture is very large, the reconstructed video quality can be
equally bad for a small variation of Lb. On the other hand, with
the same loss rate P , the frequency of burst errors will decrease
when Lb increases. As a result, the average decoder PSNR
can become larger with a larger Lb. Similar to the results
in Fig. 8, increasing c can help to improve the reconstructed
video quality, but the improvement from c = 2 to c = 3 is
not as obvious as that from c = 1 to c = 2, especially for a
small value of Lb. For a sequence with small motions such as
News, 2HMCP with c = 1 is enough to suppress the propagated
errors. For Foreman, c = 1 or c = 2 can be used, depending
on the available bit rate budget.

IV. Conclusion

In this paper, we extend the two-hypothesis motion compen-
sated prediction in [12] to three more generalized ones, which
are H.264/AVC standard compatible and can be implemented
by the generalized B pictures in H.264/AVC [19]. The error
propagation models of these prediction patterns are derived
for the case of a single picture loss. In addition to this, the
convergence time of the propagated error and its oscillation
effect are also discussed. Simulation results are given to
compare both the compression efficiencies and error resilience
abilities of these three prediction patterns.
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