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We study a streaming cloud formed by distributed proxies providing live video service to
diverse users (e.g., smart TVs, PCs, tablets, mobile phones, etc.). The proxies form a push-
based overlay network, with each proxy serving a certain video bitrate for users to join.
To form a proxy overlay serving heterogeneous bitrates, we consider that the video is
encoded into multiple MDC (Multiple-Description Coding) streams with the serving bitrate
of proxy i being ki description streams. In order to effectively mitigate stream disruption
due to node churns, proxy i also joins an additional ri redundant MDC streams (ri P 0)
in such a way that all the ðki þ riÞ streams are supplied by distinct parents. For live stream-
ing, the critical issue is how to construct the parent-disjoint trees minimizing the assembly
delay of the proxies.

We present a realistic delay model capturing important system parameters and delay
components, formulate the optimization problem and show that it is NP-hard. We propose
a centralized algorithm which is useful for a centrally-managed network and serves as a
benchmark for comparison (PADTrees-Centralized). For large network, we propose a sim-
ple and distributed algorithm which continuously reduces delay through overlay adapta-
tion (PADTrees-Distributed). Through extensive simulation on real Internet topologies,
we show that high stream continuity can be achieved with push-based trees in the pres-
ence of node churns. Our algorithms are simple and effective, achieving low loss and low
delay.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

We have witnessed in recent years the proliferation and
penetration of Internet-ready multimedia-capable smart
devices such as tablets, notebooks, PCs, smart TVs,
set-top boxes, etc. These devices have different screen res-
olution and processing capabilities. In order to serve these
devices, a streaming application has to meet heteroge-
neous bandwidth requirements ranging from, for example,
500 kbps for tablets to several Mbps for smart TV.
There has been increasing interest in providing live
streaming services (such as Internet TV) offering heteroge-
neous bitrate to these smart devices. To achieve scalability
and low delay, we consider a streaming cloud formed by
distributed proxies placed close to user pools.1 The proxies
are light-weight content servers deployed by the content
provider in the public Internet across multiple ISPs.
They form an overlay, and each serves streams of a certain
bitrate. Users on different devices join the proxies in
their proximity of corresponding bitrate requirements to
be served directly.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2014.08.019&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2014.08.019
mailto:tonyren@cse.ust.hk
mailto:wwongaa@cse.ust.hk
mailto:gchan@cse.ust.hk
http://dx.doi.org/10.1016/j.comnet.2014.08.019
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


Fig. 1. An example of live overlay streaming with heterogeneous
requirements, showing the constituent underlying delivery trees.
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In this work we focus on the cloud formed by the proxy
overlay, and address its design and optimization issues. In
order to efficiently support different bitrates of the proxies,
the live video is encoded with Multiple-Description Coding
(MDC) into K streams of similar bandwidth [1–7]. All the
description streams are first generated at the source, and
then pushed down to proxies via multiple delivery trees.
Each description is distributed by a unique delivery tree.
Note that these trees may not span all the proxies in the
network. Proxy i receives some subset of the description
streams ki (ki < K; ki 2 Zþ) according to its bitrate require-
ment. After receiving ki description streams, the proxy
re-assembles the descriptions into a full video, and then
serves it to its users.

We consider the realistic case that the overlay network
may be dynamic, i.e., the nodes may churn at any time (i.e.,
be introduced, removed or fail). Whenever there is a churn,
the video at the downstream nodes will be disrupted. In
order to offer high continuity, node i receives an additional
ri description streams as redundancy (ri P 0). In this way,
the requirement can be met as long as node i receives ki

streams or more from the streams delivered. In other
words, in case of packet loss due to node churn, the redun-
dancy streams are used to meet the rate requirement. It is
clear that the total number of MDC streams encoded is the
highest proxy requirement, i.e., K ¼maxiðki þ riÞ. Due to
the use of MDC and redundancy, video quality would only
be gracefully degraded if fewer than ki streams are
received at node i. The cost due to node churn is an
increase in bandwidth because of the extra ri streams a
node receives.

To further protect stream continuity against unex-
pected node churns, all the ðki þ riÞ description streams
of proxy i are supplied by distinct parents. The challenge
is hence how to construct the K parent-disjoint description
trees in order to minimize source-to-end delay due to
stream assembly while meeting the heterogeneous rate
requirements of the proxies. We tackle this problem by
presenting a realistic node model on delay, formulating
the optimization problem, analyzing its complexity, and
designing effective optimization algorithms (centralized
and distributed).

Push-based overlay live streaming has been shown to
achieve substantially lower delay than pull-based approach
[8,9]. However, there has not been work on the design and
optimization of a push-based overlay with proxies of
heterogeneous rates. Our approach is shown to achieve
low delay with high continuity. Previous approaches are
often based on a random pull-based mesh, where a node
continuously searches for neighbors (using gossip) and
pulls content from them. This rather uncoordinated
ad-hoc connectivity clearly is not bandwidth-efficient and
may not even meet heterogeneous requirements. Further-
more, as the major objective of pull-based approach is to
aggregate a full video, it seldom optimizes source-to-end
delay, leading to unsatisfactory delay and resource (band-
width) utilization. On the other hand, much of the previous
tree-based overlay work has not sufficiently considered
MDC with redundant streams to achieve stream continuity.
We propose and optimize a push-based overlay structure
composed of multiple trees and redundancy streams to
mitigate node churns. Our overlay meets heterogeneous
bitrate requirements of proxies with high stream
continuity.

Fig. 1 shows an example of our streaming overlay with
three MDC streams, i.e., K ¼ 3. Nodes A to F serve videos
with different rate requirements: ki ¼ 2 for nodes A to D,
and ki ¼ 1 for nodes E and F. They all receive one more
description stream as redundancy. Nodes A;B and C are
directly connected to the streaming server where they
receive all their streams. Because the streaming server is
stable, they do not need any redundant stream. On the
other hand, because node D is not served by the streaming
source, it connects to distinct parents in order to achieve
fault-tolerance in streaming, i.e., D receives from three par-
ents three descriptions with one as redundant stream.
Nodes E and F both receive two descriptions from distinct
parents while they require only one for viewing.

Because a proxy can decode and serve the video only
after it assembles all the required streams, its delay from
the source is the slowest path out of all the ðki þ riÞ trees
(i.e., the maximum-delay path). Such delay increases
quickly if the trees are not constructed properly. The chal-
lenge is how to construct the parent-disjoint trees to
achieve minimum delay. We propose algorithms, termed
PADTrees (Parent-Disjoint Trees), to construct highly effi-
cient trees achieving low delay and high continuity while
meeting heterogeneous bitrate requirements.

The contributions of our study are:

� Delay model, problem formulation and its complexity
analysis: Given K MDC streams, we present a
rather realistic and comprehensive delay model
for a node capturing all the major network and
delay components such as scheduling delay (due
to fanout of a node), edge bandwidth, end-to-end
bandwidth, propagation delay, etc. With the
model, we formulate the delay optimization prob-
lem which is to design MDC trees that minimize
the diameter (i.e., worst-case delay) of the overlay
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network given heterogeneous proxy bitrate
requirements. We show that the problem is
NP-hard.

� PADTrees-Centralized: Because the problem is
NP-Hard, we propose a heuristic to construct par-
ent-disjoint delivery trees to achieve low delay.
The heuristic, termed PADTrees-centralized, can
be computed by a controller for a centrally-
managed network. It also inspires the design of
the distributed algorithm, and serves as a bench-
mark for the comparison of various algorithms to
show the benefit of central planning.

� PADTrees-Distributed: For a large distributed net-
work, we propose PADTrees-Distributed, a distrib-
uted algorithm for each node to search for ðki þ riÞ
distinct parents to achieve low delay. Our algo-
rithm is simple, efficient (i.e., low overhead), and
maintains high stream continuity in the presence
of node churns. It adapts to network conditions
with nodes adjusting their positions in the trees
to reduce its delay. Such adaptation is proved to
converge to some steady value.

The organization of the paper is as follows. After dis-
cussing related work in Section 2, we formulate the optimi-
zation problem and its complexity analysis in Sections 3.
The centralized and distributed versions of PADTrees are
discussed in Sections 4 and 5, respectively. Illustrative sim-
ulation results are presented in Section 6. We conclude in
Section 7.

2. Related work

Single-tree overlay structure was initially proposed to
distribute streams, where all nodes are arranged into a tree
rooted at the source [10–13]. Although these approaches
are simple and achieve low delay, the streaming rate can-
not be guaranteed as it is limited by the lowest bottleneck
bandwidth in the tree. Furthermore, the failure of a node
leads to stream disruption of all its descendants. Therefore,
single-tree approach cannot be applied in our setting with
node churns.

To address the weaknesses of single-tree structure,
using forest of multiple trees (or a push-based mesh) was
proposed [14–16]. Multiple interior node-disjoint trees
are constructed to mitigate single parent failure. However,
they have not addressed the issues of node churns and het-
erogeneous bandwidth requirements [17]. The works in
[18,19] study the scalable video services for different clas-
ses of devices, but have not studied the optimization of the
forest structure. We formulate the construction of multiple
trees as an optimization problem, and our proposed algo-
rithms lead to a highly optimized overlay. The multiple
delivery trees accommodate heterogeneous bandwidth
requirements while achieving low delay and high continu-
ity in spite of node churns.

Another body of work uses pull-based approach for data
exchange [20,21]. In this approach, nodes continuously
search for and connect to their closest neighbors using gos-
sip to pull data. The work in [22] proposes an age-based
membership protocol for participating nodes, which is
adaptive to node churns. The work in [23] studies the com-
plementary nature of node joining and leaving to handle
churn problem in a pull-based network. Despite its sim-
plicity, this approach often leads to high delay and poor
resource utilization (due to its random connectivity). It
also has high control overhead (due to message and bitmap
exchange). We show that push-based overlay can achieve
stream continuity with much lower source-to-end delay.

Multiple description coding (MDC) has been widely
used in media streaming to address bandwidth heteroge-
neity. The video source encodes data into multiple descrip-
tions. At the receiver, the streaming quality depends on the
number of descriptions received [1–4,24]. The work in
[8,25] discusses using MDC in overlay video streaming to
meet heterogeneity requirement. However they have not
studied how to minimize delay in the presence of node
churns. Our previous work in [26] discusses how to con-
struct multiple spanning trees for homogeneous users with
FEC. And there are other studies the error recovery and sys-
tem resilience for overlay video streaming [27]. Our work
advances from it by considering heterogeneous user require-
ments. Such requirement leads to a different problem
formulation and algorithmic approaches to construct
multiple parent-disjoint trees to meet heterogeneity and
stream continuity requirements. We further present a cen-
tralized heuristic as a benchmark for comparison and to
inspire the design of distributed algorithm. There are
works on the overlay construction for users with heteroge-
neous bitrate requirement as well as upload capacity
[28,29]. However they only consider stable nodes and
overlays. In this paper we study how to achieve stream
continuity in a dynamic node environment.

3. Problem formulation and complexity analysis

Consider an overlay network modeled as a directed
graph G ¼ ðV; EÞ, where V is the set of vertices representing
the nodes in the overlay (including the server) with n ¼ jVj,
and E ¼ V � V is the set of overlay edges between nodes.
Let s 2 V represents the source. The edge cost of hi; ji,
denoted as dij, represents the unicast delay from node i
to node j, which equals to the sum of the propagation delay
dp

ij and the scheduling delay ds
ij from node i to node j, i.e.,

dij ¼ dp
ij þ ds

ij. Some of the important symbols used in the
paper are given in Table 1.

The source video is split and encoded into K MDC
streams of similar bandwidth. Each node has its own
streaming rate requirement ki, which is the number of
description streams it requires. To provide error tolerance
against churns, let ri be the additional number of descrip-
tion streams that node i receives (ri P 0). Clearly,
K ¼maxi2Vðki þ riÞ. To mitigate the adverse effect of node
churn, all the K streams are distributed using distinct deliv-
ery trees in such a way that each proxy is served by ki þ ri

distinct parents. Note that proxies directly connected to the
source receive all the ki streams from the source (as the
source is assumed to be reliable) and no redundant stream
is needed. A delivery tree is rooted at s and contains all the
nodes that is receiving a specific stream. Denote the full set
of K MDC trees as K. Further let Pi be the set of all ðki þ riÞ
parents of node i.



Table 1
Important symbols used in the paper.

Symbol Meaning

n Number of proxies in the network (including the server)
K Number of MDC streams (¼maxiðki þ riÞ)
ki The required number of MDC streams of node i
ri The additional number redundant streams for node i
s The source node
V The set of nodes in the overlay
E The set of edges between nodes
Gl The set of nodes in (partial) delivery tree l;1 6 l 6 k
K The set of all K MDC trees
Pi The set of ki þ ri parents of node i
Ci The set of children of node i
b Bit rate of a substream, the bandwidth unit (kb/s)
C Video segment size (bits)
ui Bandwidth of node i (unit)
ci Number of streams that node i is pushing
wij End-to-end throughput of edge i; jh i (units)
dij Delay from node i to j (seconds)

ds
ij Scheduling delay from node i to j (seconds)

dp
ij

Propagation delay from node i to j (seconds)

Dl
i

Delay of node i in tree l;1 6 l 6 K (seconds)
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We refer b as the basic unit of network bandwidth,
which is the bandwidth reserved by the parent for a single
end-to-end connection (i.e., parents stream to each of their
children at rate b).

For every node i in V, it has an uplink bandwidth of ui

units (ui 2 Zþ), which represents the maximum total num-
ber of children it can serve in all spanning trees. We con-
sider all nodes have enough downlink bandwidth to
receive the video streams. The end-to-end throughput of
the edge i; jh i is denoted as wij 2 Zþ, which is the maximum
number of substreams that can simultaneously accommo-
date in edge i; jh i. For any node in V, if it gets an aggregate
of ki out of the ki þ ri streams from its parents, we call the
node fully served. In other words, if node i receives ki

streams from all K spanning trees, it is fully served and
can play back the video with continuity. Note that s has
an uplink bandwidth of us units and has no parent.

The worst-case scheduling delay from node j to node i,
denoted as ds

ji, is given by

ds
ji ¼

X

k2Cj

L
minðwjk;ujÞb=tjk

; ð1Þ

where L (kbits) is the segment size used in streaming, and
tjk is the number of concurrent streams on edge j; kh i.
minðwjk;ujÞb is the maximum rate (in kbps) that node j
can stream to node k. Therefore L=ðminðwjk;ujÞb=tjkÞ repre-
sents the time needed to transmit one segment in every
substreams that goes from j to k. This delay is the total
amount of time that a node needs to wait until a segment
is fully delivered by its parent. The transmission delay
between the parent and the node is included in ds

ji as well.
Our problem is to minimize the worst-case delay of the

network. Consider a packet transmitted from s at time 0 via
a delivery tree l, where l 2 K. Node i gets its packet from its
parent in tree l. Denote the delay of the packet to node i
through its parent j as Dl

i, which is obviously given by

Dl
i ¼ Dl

j þ dji: ð2Þ
Denote Di as the maximum delay (including recovery
stream) for the packet to arrive at node i. By definition,

Ds ¼ 0: ð3Þ

The maximum delay of node i, i.e. the time taken for a
node to aggregate the entire stream before playback, is
determined by the slowest path, i.e.,

Di ¼max
l2K

Dl
i: ð4Þ

Minimum Delay Robust Trees Problem (MDRT): The MDRT
problem is to construct a streaming overlay with dynamic
nodes with K delivery trees rooted at the source and each
node i having ki þ ri distinct parents (ki source parents
and ri redundant parents) so that the worst-case delay of
the nodes is minimized, i.e.,

min max
i2V

Di: ð5Þ
Claim. MDRT problem is NP-Hard.

Proof. Travelling salesman problem (TSP) is reducible to
MDRT in polynomial time. An input to TSP is a weighted,
undirected complete graph GðV; EÞ and a vertex s 2 V. The
TSP is to find a tour of minimum cost through all vertices
exactly once (Hamiltonian cycle) such that s is both the
starting point and ending point.

First of all the MDRT problem is in NP. The maximum
delay of a mesh can be calculated in polynomial time.
Therefore given a graph GðV; EÞ, and the min–max delay of
the problem, we can verify whether the mesh is the
optimal solution. Now we prove that TSP can be reduced
into MDRT problem. The polynomial time transformation
is as follows. Let G0ðV0; E0Þ be the graph of a TSP instance.
We transform G0ðV0; E0Þ into GðV; EÞ by adding a vertex Send

and 0 cost edges from all vertices to Send. In this way, the
vertices in V represent nodes and the weight on edges is
the delay between two adjacent nodes. We let S be the
source, and consider the special case that the uplink
bandwidth of each node is b, and Send has zero uplink
bandwidth. Consider also the streaming rate for all nodes
to be b and they do not seek redundant parents, i.e.,
ki ¼ 1; ri ¼ 0;8i 2 V. In this way the resulting overlay
topology must be a chain starting at S and ending at Send.
maxi2VDi equals to the delay of Send which is the sum of all
delays preceding it. Hence it is obvious that maxi2VDi in G
is minimum if and only if the cost of a tour in G0 is
minimum. Therefore, TSP is polynomial reducible to MDRT.
The complexity of a similar problem is proved to be NP-
Hard in [15]. h
4. PADTrees-centralized: a centralized heuristic and its
run-time complexity

Because MDRT problem is NP-hard, in this section we
propose and present a simple and effective centralized
heuristic to construct a overlay with minimum delay given
ki source parents, ri redundant parents for each node i 2 V,
and the server capacity us, the maximum number of nodes
that the server can support. The heuristic is suitable for a
small centrally-managed network, and can also serve as
the benchmark for our study of distributed algorithm.
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The algorithm constructs the K delivery trees iteratively
by putting nodes one at a time into a partially constructed
tree. Let the set of nodes in K partially constructed trees be
labeled as G1;G2; . . . ;Gk. Our algorithm is initialized as fol-
lows. The source s is first added to all the K trees. We asso-
ciate with each of the those nodes a priority score, which
determines which ones to connect to the source. Obviously
those high-bandwidth nodes close to the server should be
connected to the server with higher priority. To balance
between the bandwidth and distance, the score of node i
is calculated as ui=dsi (this has been shown to be effective
from [15]). Nodes with the highest scores become the chil-
dren of s and hence are added to all the trees to get the
streams. Note that in order to give each MDC stream sim-
ilar availability in the overlay, the streaming server ran-
domly distribute the K streams to the nodes.

After the initialization steps, we push one node into one
delivery tree in each iteration. Define dl

i as the delay of
node i in tree l at the current stage, i.e.,

dl
i ¼ dl

j þ dji; ð6Þ

where j is the parent of i in tree l and, by definition, ds ¼ 0.
Let Cl

i be the set of candidate parents of node i in tree
l;1 6 l 6 K , and Pi be the set of current parents of node i.
Clearly,

Cl
i ¼ Gl n Pi: ð7Þ

Let ci be the number of streams that node i is streaming
to its children at the current stage of the algorithm. The
residue bandwidth of i then equals ui � ci. Nodes with
higher residue bandwidth and close to the partial trees
should have higher priority in entering the trees. Define
the priority score of node i connecting to j in l as
pl

ij;1 6 l 6 K , which is given by

pl
ij ¼

ui � ci

dl
j þ dji

: ð8Þ

The max priority score of node i in delivery tree l is then
defined as the pl

i, i.e.,

pl
i ¼max

j2Cl
i

pl
ij: ð9Þ

The algorithm is shown in Algorithm 1. We calculate
the priority scores for all nodes in all partial trees, and
selects the node î with maximum score to push into the
overlay with the corresponding parent and tree, i.e.,

î ¼ arg max
i2VnGl ;16l6K

pl
i: ð10Þ

The scheduling delay is updated accordingly. This pro-
cess ends when all participating nodes obtain the required
number of streams, i.e.,

jPij ¼ ki þ ri; 8i 2 V: ð11Þ

The complexity of the algorithm is as follows. It takes
OðnÞ time for a node to calculate its priority score in one
tree. There are n� 1 nodes and K trees in total, so it takes
us OðKn2Þ time to calculate the all scores in one iteration.
Since there are OðKnÞ iterations in total, the construction
time for K delivery trees is OðK2n3Þ.
Algorithm 1. Centralized Algorithm

Require: Input K;V.
Ensure: Output K delivery trees G1;G2; . . . ;GK all

rooted at the source s.

1:
 L ¼ sorted list of i 2 V n fsg in descending order

of ui=dsi
2:
 x ¼ 0

3:
 while us > cs do

4:
 while LðxÞ is not fully served do

5:
 Randomly select a tree l; LðxÞ R l

6:
 Push LðxÞ into Gl
7:
 end while

8:
 end while

9:
 while Not all nodes are fully served do
10:
 x ¼ currently the best node to enter

11:
 y ¼ the potential parent for x

12:
 for l ¼ 1 to k do

13:
 for all i not yet fully served do

14:
 for all j 2 Gl not yet fully served do

15:
 Calculate pl

ij

16:
 end for

17:
 if pl

i > pl
x then
18:
 x ¼ i

19:
 y ¼ j

20:
 end if

21:
 end for

22:
 end for

23:
 Push x into Gl with parent y

24:
 end while
5. PADTrees-distributed: a distributed algorithm to
construct low-delay streaming overlay

The centralized heuristic works well to minimize delay
for a centrally-managed network. However in a distributed
proxy streaming network, we do not have global knowl-
edge. Furthermore, nodes may arrive and leave at any time.
The distributed algorithm should be adaptive to node
churns. In this section, we present a simple and fully dis-
tributed algorithm which is scalable to large group to
reduce mesh delay. There are four operations of the
algorithm.

5.1. Node join

A new arrival, say node i, has to have ki þ ri parents to
assemble a playable video in a dynamic network environ-
ment. To achieve that, it contacts a rendezvous point (RP)
which returns a number of nodes in the overlay as the pool
of candidate parents. It may enlarge the pool by requesting
neighbors from these nodes.

Node i then checks the delay dji with each candidate j. In
addition to network distance, node i also asks j for source-
to-end delay Dl

j in each spanning tree l and the amount of
its available bandwidth (which is simply uj minus the
number of children that j has). In other words, the nodes
in the overlay compute their delays according to Eq. (4).
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Given a delivery tree l, node i selects the node with the
minimum delay among the candidates (i.e., minjðDl

j þ djiÞ)
and connects to it to retrieve the stream. The selected par-
ent is removed from the pool and node i repeats the pro-
cess for the remaining delivery trees. In this way, it joins
all ki þ ri delivery trees to fulfill the streaming rate
requirement.

5.2. Node departure and failure

Each proxy in the network periodically sends its ‘‘heart-
beat’’ to its parents and children. Upon detecting that a
parent of tree l has left, the child node contacts RP to
retrieve a new list of proxies, and tries to rejoin tree l by
selecting a new parent from the proxy list. During the
rejoin process, In the mean time if the lost parent serves
one of the ki source streams, the affected nodes use the
redundant streams to recovery the lost data.

5.3. Adaptation

In a distributed environment, there is no specific a priori
joining and leaving order of nodes. As a result, a node may
need to adapt to the dynamic network condition to move
to a better position in the mesh to reduce delay. This is
especially important when a high-bandwidth node joins
the network at a later time. Node movement to better posi-
tion is the design objective of tree adaptation.

Fig. 2 shows the flow diagram of the adaptation process
of a node in the network. The adaptation consists of three
steps:

� Request: A child i periodically inspects its residual
bandwidth. If this is greater than the streaming
rate, i sends its parents a REQUEST for adaptation.
The REQUEST message contains its available band-
width and a time-to-live field (TTL) indicating the
Fig. 2. A flow diagram of
scope of the REQUEST is to be flooded. When a
node receives a REQUEST message, if the TTL field
is greater than zero, it decrements TTL and for-
wards the REQUEST message to its neighbors
including parents and children (except the one
from which the message comes from).

� Grant: Upon receiving a REQUEST message, the
candidate checks whether its uplink bandwidth is
less than the residual bandwidth of the requester
i, the request originator. If this is the case, the can-
didate sends the requester i a GRANT response
which contains its delays (which may be in hops)
in each delivery tree. The GRANT message indicates
that the adaptation between the requester and the
candidate is permitted. Note that our adaptation
mechanism can also use the quality fluctuation as
an indicator for node adaptation. In this work we
focus on the network re-arrangement of the
adaptation mechanism, and uses available band-
width as indicator for simplicity.

� Accept: Child i then chooses the slowest tree l from
all ki þ ri spanning trees to adapt. At this stage,
child i may have received a number of GRANT
messages from different ancestors. Among the
ancestors (upstream nodes) who have sent GRANT
messages to it, child i accepts the ancestor j that
satisfies the following conditions: (i) Dl

j < Dl
hþ

dhi < Dl
i, where h is the parent of j in tree l (i.e., i

can improve its delay by changing parent to h);
and (ii) available uplink bandwidth of node j is less
than i. Obviously, h-i-j does not form any parent–
child relationship in the original tree. After such j
is found, i replaces its existing parent in the tree
with h. In addition, j connects to i to get the sub-
stream l. This is possible because the conditions
guarantee both i and j still retains the property
of distinct parents. Moreover, the second condition
a node adaptation.



Table 2
Baseline parameters.

Parameter Value

ui 4 Mbps (average)
b 500 kps
K 10
ki 2–8
k 1 req/s
1=l 480 s
Parent search time 0–15 s
C 100 kbits
Target loss rate 6%
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Fig. 3. Worst-case loss rate versus t.
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makes sure that we are moving high-bandwidth
nodes to a position above the low bandwidth ones.
In summary, child i takes up the position of the
ancestor j in tree l and in turn provides the sub-
stream l to j. It is clear that after the process, the
delay of the slowest tree is reduced.

6. Simulation environment and illustrative results

We carry out simulations to evaluate the performance
of the proposed algorithms. For comparison purpose, we
also simulate one state-of-the-art scheme TOMTree [30],
as well as two traditional scheme, namely, closest parent
and random parent. TOMTree is a multi-tree based topology
that minimize the average height of sub-stream trees and
the average propagation latency in each tree. In the closest
parent scheme, nodes look for the closest parents for
streaming. Since this scheme captures locality among
nodes, it (or its variant) is widely adopted for overlay
streaming with satisfactory performance [31,11]. While
the random parent scheme randomly chooses parents for
newly-arrived nodes. This scheme does not capture the
locality of the nodes, thus streaming mesh constructed in
this way is often of high delay.

6.1. Simulation setup and metrics

In the simulation, nodes arrive at the overlay according
to a Poisson process at rate k (request/s) and then remains
in the overlay for an exponential length of time (seconds).
During their life-time, proxies follow the proposed algo-
rithms to search for parents. The node holding time is
according to an exponential distribution with rate l
(requests/s). We have used other distribution and the
results are qualitatively the same. There are 480 nodes on
average in our baseline setting. To be fair in comparison,
Each node in all schemes looks for the same number of par-
ents to achieve the same level of streaming quality. The
bandwidth requirements are 2, 4, 6, 8, with the same num-
ber of nodes. We use a video encoded by H.264 with a res-
olution of 1280 � 960, and the bandwidth requirements are
320 � 240, 640 � 480, 960 � 720, 1280 � 960 respectively.

Our simulation is carried out on a real Internet topology
provided by CAIDA [32], which was collected on June 12th,
2011 and contains 1747 routers and 3732 links. The round
trip times (RTTs) between inter-connected routers are also
given in the topology. We use Distance-vector routing to
compute the latencies between any two routers in the net-
work. Nodes are randomly attached to the routers. Unless
otherwise stated, we have used the baseline parameters
as shown in Table 2. Note that ui is normally distributed
with mean 4 Mbps and standard deviation 1 Mbps (We
only take the positive values). The search time for a new
parent is uniformly distributed continuous random vari-
able from 1 s to 15 s. The performance metrics of interest
are:

� Delay: The primary concern of our protocol is the
source-to-end delay of the proxies. It is measured
by summing all the link delays on the overlay path
from the source to the proxy. Because there are
multiple paths to reach a node, the maximum
delay of all the paths is taken as the measure.
Delay is measured according to Eqs. (2)–(4). We
are interested in the average, maximum and distri-
bution of the source-to-end delay in the overlay.

� Loss rate: When ancestors of a node leave the net-
work, the proxy may experience data loss. In our
scheme, each node i obtains ri more streams for
redundancy in the streaming overlay besides its
ki source streams. As long as ki out of these
ki þ ri streams are received by the node, it is able
to recovered full video and will not be affected
by the node leave. If a node i receives less than ki

stream in total, its video quality will be partially
affected. Its residual video quality equals to num-
ber of MDC streams received after recovery
divided by ki; and the loss rate equals to one
minus residual video quality. The overall loss rate
of a node is equal to its average loss rate over time.
We define the worst-case loss rate of the network
as the largest overall loss rate among all nodes.

6.2. Illustrative simulation results

We choose ri for each proxy according to its streaming
rate requirement ki and the target loss rate. Fig. 3 shows
the loss rate of nodes with different requirements given



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Arrival rate (requests/second)

M
ax

 D
el

ay
 (

se
co

nd
s)

 

 
Closest
Random
TOMTrees
PADTrees−Distributed
PADTrees−Centralized

Fig. 6. Maximum delay versus arrival rate.

60 D. Ren et al. / Computer Networks 74 (2014) 53–63
different number of redundant streams in PADTrees-
Distributed. The loss rate significantly drops with the
increase of the number of redundant streams. Therefore
given a target loss rate, we can decide how many redun-
dant streams each proxy needs to obtain in order to meet
this continuity requirement. In our study we set the target
loss rate as 6% maximum. Therefore all nodes only need to
find one more extra parent for redundant.

We show in Fig. 4 the loss rate distribution of PADTrees-
Distributed. We observe that with one redundant stream,
most of the proxies achieve very high stream continuity
(More than 90% of the proxies have a loss rate less than
2%). Only a few nodes suffer from larger losses.

We compare PADTrees with other schemes by plotting
the average and maximum delay versus proxy arrival rate
k in Figs. 5 and 6. In general, the delay increases with the
arrival rate. This is because the system population increases
with arrival rate, which leads to longer overlay diameter
and hence delay. Clearly, the PADTrees-Centralized per-
forms the best due to its complete knowledge. There is some
performance loss in PADTrees-Distributed since it is a
distributed protocol. Nevertheless, PADTrees-Distributed
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performs significantly better than TOMTrees, as well as
the traditional Closest parents scheme and random parents
scheme. Given the best performance of PADTrees-
Centralized, having global information is beneficial. The
PADTrees-Centralized can position the nodes effectively.
This achieves much better delay, which stays low even
when the number of nodes increases. The Closest parent
scheme, despite its forming close-neighbor groups among
proxies, performs the worst. There are two reasons for this.
First, it has not considered source-to-end delay. Each node
only greedily selects parents with shortest RTT to it. On
the other hand, PADTrees achieves low delay by putting
nodes closer to the source. Second, Closet neighbor does
not consider how many children a node is serving, thus
often leads to a parent node overwhelmed and with high
scheduling delay. Random parents scheme does not have
good delay performance either because it has not consid-
ered the locality of the nodes.
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Fig. 7 shows the performance of PADTrees on proxies
with different requirements. We observe that PADTrees
generally outperforms the state-of-the-art scheme TOM-
Trees. The maximum delay of the proxies increases with
ki þ ri, which means proxies with larger streaming rate
requirement suffer from longer delay from the source.
Recall from Eqs. (2) and (4), the delay of a node is deter-
mined by the slowest path of all streams. Nodes with high
requirement obtain more description streams, and hence
they have larger delay than the nodes with low streaming
rate.

In Fig. 8 we show the comparison of delay distribution
between PADTrees and other schemes. Clearly, PADTrees
outperforms other schemes with more low-delay nodes.
In general, PADTrees-Centralized performs the best since
it has complete knowledge of the network. The perfor-
mance of PADTrees-Distributed is also very well when
most proxies achieve low delay (0.9–1.5 s). The worst-case
delay is not much larger than the other nodes. It demon-
strates that PADTrees is able to arrange the overlay in a
way that most of the nodes in the overlay share rather sim-
ilar delays, and the worst-case delay is optimized.
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Fig. 9 shows the worst-case loss rate versus the arrival
rate of the proxies. When arrival rate increases, the partic-
ipating nodes in the streaming network increases. The
height of the delivery trees grows larger and the continuity
of the nodes is more easily affected by the churns of their
ancestors. Therefore the loss rate increases with the proxy
arrival rate.

Fig. 10 shows the worst-case loss rate versus average
holding time of the proxies. The loss rate decreases as
the holding time increases. This is because when the hold-
ing time is larger, nodes stay connected to their parents
longer and hence experience less interruption, and loss
rate therefore improves. However when the holding time
is greater than some value (550 s), there is no obvious
improvement in loss rate. This is because the number of
proxies in the streaming overlay increases with holding
time and thus the tree depth also gets higher. Each proxy
will have a larger hop count to the source and hence much
easier to be affected by the churns of its ancestors.
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Fig. 11 shows the dynamic of a proxy’s number of par-
ents during its lifetime. We trace the continuity of a repre-
sentative node i with different quality requirement ki ¼ 8.
Node i in Fig. 11 has ri ¼ 1. It is able to reassemble the
video at required quality as long as it receives 8 description
streams or more. Therefore node i only experiences the
reduce of quality twice for very short time when its num-
ber of parents drops to 7.

7. Conclusion

In this work, we have studied low-delay and high-con-
tinuity live streaming overlay formed by proxies with het-
erogeneous bitrate requirements. The video stream is
encoded into K description streams. Node i obtains ki

streams according to its own bitrate requirement and ri

redundant streams to meet its target loss rate. To offer
error resilience, all the ðki þ riÞ streams are pushed by dis-
tinct streaming parents in multiple trees. We have
addressed the overlay design problem, which is to form a
minimum-diameter network given ki and ri for all nodes.
We show the problem NP-hard, and propose a simple cen-
tralized heuristics which can be implemented by a control-
ler and used for benchmarking purpose. We also propose a
scalable and distributed algorithm that adaptively con-
structs parent-disjoint trees to achieve low delay and high
video continuity.

We have conducted extensive simulation on Internet
topologies to study the performance of our algorithms.
The results show that a centrally-managed network can
construct a much better overlay network. The distributed
version achieves much lower source-to-end delay as com-
pared with the traditional closest parent and random
schemes. It also achieves high stream continuity despite
the dynamic behavior of the network. The results show
that push-based trees are effective to meet heterogeneous
bitrate requirements, even under network dynamics.
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