
Serving Dynamic Groups
in Application-Level Multicast

Xing Jin Wan-Ching Wong S.-H. Gary Chan
Department of Computer Science,

The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon Hong Kong

Email: {csvenus, wwilliam, gchan}@cs.ust.hk
Tel: +852 2358-6990 Fax: +852 2358-1477

Abstract— We propose an ALM framework for dynamic
groups (such as stock-quote application) in this paper, where
users may hop from one multicast group to another quite
frequently even though the total pool of users in the system may
remain quite stable. Our approach efficiently maintains multiple
multicast trees for dynamic subsets of end-hosts, and hence is
called subset-ALM (SALM).

SALM first builds a relatively stable mesh consisting of all end-
hosts for control messaging, which is used to efficiently guide
the construction of dynamic overlay trees for data multicast.
We choose Delaunay Triangulation (DT) as an example for mesh
formation, and study various tree construction mechanisms based
on the degree of embedding of the tree branches in the mesh
(embedded, bypass and intermediate trees). Using simulation on
Internet-like topologies, we show that SALM achieves low costs
in terms of relative delay penalty and physical link stress, even
for large multicast groups (in excess of a thousand end-hosts).

I. INTRODUCTION

In order to overcome current limitations in IP multicast,
researchers have been focusing on enabling multicast at
the application layer, the so-called application-level multicast
(ALM). In some multicast applications such as stock quotes
and news-on-demand, programs are to be distributed to subsets
of a pool of potential end-hosts.1 Each program has a single
source which may be distributed in the network. While the
lifetime of the end-hosts in the system is relatively long (in
the order of hours or days) and hence the pool is rather stable,
users may hop from one program to another quite frequently
(e.g., in the order of once per minute). Since each program is
delivered to a dynamic subset of end-hosts, building efficient
multicast trees for these programs becomes an important issue.

One obvious but naive approach is to broadcast all the
programs to all the end-hosts and let them select the programs.
This is clearly not efficient in terms of bandwidth and message
delay, especially for those unpopular programs. Maintaining a
separate and distinct tree for each program using the traditional
mesh-based or tree-base ALM protocols appears to be another

This work has been supported, in part, by the Hong Kong Areas of
Excellence (AoE) Scheme on Information Technology of the University
Grant Council (AoE/E-01/99), and by grants of the Research Grant Council
(HKUST6199/02E & HKUST6156/03E) in Hong Kong.

1In this paper, we refer to an ”end-host” as a client machine where a user
sits at. It joins and leaves programs on the user’s behalf.

solution. However, the mesh-based approach (such as Narada
or NICE) would lead to too many meshes to be maintained
in the system [1], [2]. Furthermore, as users hop from one
mesh to another, mesh reformation would lead to high packet
loss. Similarly, using tree-based protocols (such as YOID or
HMTP) to build independent trees for each multicast group
is not efficient due to high control overhead to detect and
eliminate loops [3], [4].

To address the above problem, we propose a framework
which builds multiple trees based on a single shared overlay
mesh. The mesh is formed by all the end-hosts in the system
and hence is independent of joining and leaving events in
any groups. This relatively stable mesh is used for control
messaging and for efficiently guiding the formation of overlay
trees, which run on the top of the mesh for data delivery. Even
though the number of overlay trees is as many as the programs,
they can be efficiently constructed loop-free with the help of
the mesh. Since an overlay tree serves only a subset of end-
hosts in the network, we termed this framework Subset-ALM,
or SALM for short. Our framework may use any existing
mesh-based ALM protocol where the nodal relationship (i.e.,
whether a node is a child or the parent of another connected
node) can be determined easily.

In this paper, we use Delaunay Triangulation (DT) as an
example. We investigate the following two important issues in
SALM based on a DT mesh:

• Mesh formation and maintenance
The single mesh has to be formed and maintained effi-
ciently in order to reduce network control and delivery
overhead. Efficient estimation of the relative location
of hosts in the Internet is hence very important. Us-
ing Global Network Positioning (GNP) (or many other
equally good ones [5]–[8]), an efficient DT mesh with
low transmission overhead can be formed.

• Construction of overlay trees for data delivery
Given the mesh, we study how source-specific trees for
data delivery can be efficiently constructed and main-
tained. We consider three ways to construct such an
overlay tree: 1) Embedded tree, where the tree branches
consist of the mesh edges, 2) Bypass tree, where only the
group members form the tree, and the mesh edges may

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

be bypassed, and 3) Intermediate tree, where some nodes
not belonging to the group may belong to the tree.
As compared to traditional tree-based protocols, SALM
achieves much lower control overhead. This is due to the
overlay mesh, which allows SALM to discover nodal re-
lationship easily. Furthermore, the network delay between
any two hosts can also be properly estimated given their
relative locations in the GNP space, thus saving much
overhead in delay measurement.

This paper is organized as follows. We discuss in detail how
to form and maintain the mesh in Section II. In Section III, we
present the construction of overlay trees on the mesh. Based on
Internet-like topologies, we illustrate representative simulation
results in Section IV. We conclude in Section V.

II. MESH FORMATION AND MAINTENANCE

In this section, we discuss in detail how SALM builds an
efficient overlay mesh on top of all end-hosts.

A. Accurate Estimation of Host Locations using GNP

In the traditional DT protocol, hosts first form a mesh based
on their geographical locations [9]. Compass routing, a kind
of local routing, is used to route a message from one point
to another. The strengths of this protocol are that: (i) a host
only needs to maintain the states of its immediate neighbors
to construct the overlay mesh; and (ii) a host exchanges
information only with its neighbors, and does not need to know
the states of other non-neighbor hosts.

However, DT estimates the host locations based on their
geographic coordinates. This may work well for wireless
networks, but not so for the Internet where the delay between
any hosts does not correlate well with their geographical
locations. A better estimation of the host location is hence
important.

SALM uses Global Network Positioning (GNP) to properly
estimate host locations in the Internet space (as mentioned
before, any other network positioning systems may be used).

GNP has been proposed in [5] as a way to estimate
the relative location of a host in the Internet such that the
difference between the locations of two hosts correlates well
with the round-trip time between them.

In GNP, a number of infrastructure hosts termed as land-
marks are used as reference points for measurement purposes.
The landmarks, after measuring the round-trip time among
themselves, forward the measurement results to one of the
landmarks, which uses the results to compute the landmark
locations in the GNP (or Internet) space by minimizing an
objective function. The locations are then disseminated back
to the respective landmarks.

Note that the landmarks of GNP in SALM are not likely to
be flooded with ping requests. According to [10], most of the
Internet routes are stable for a long time (about 80% routes
longer than a day). Therefore, a host does not needs to probe
landmarks frequently to estimate its location. Furthermore,
since computation of host coordinate is done locally at the
end-hosts, a landmark does not need to store any information
or perform computation upon the arrival of a new host.

B. Join Mechanism

A joining host, after obtaining its location (according to the
GNP mechanism given in Section II-A), sends a MeshJoin
message with its location to any host in the system (can
be the multicast source). MeshJoin is then sent back to the
joining host along the DT mesh according to compass routing.
Since the joining host is not a member of the mesh yet, it
can be considered as a partitioned mesh of a single host. As
the MeshJoin message is forwarded, it triggers the partition
recovery mechanism at a particular host on the periphery of
the DT mesh to connect the joining host to the mesh.

In Figure 1, we illustrate the mechanism involved in member
joining. Suppose that u is the joining host. The following are
the steps on how u joins the mesh:

1) u first retrieves the list of landmarks by querying a host
b with a GetLandmark message (Figure 1(a)).

2) Then u measures the round-trip time to those landmarks
(e.g., through ICMP messages) to estimate its location
(Figure 1(b)).

3) After that, u sends a MeshJoin message to b again
(Figure 1(c)).

4) The message is then forwarded from b to c with compass
routing (Figure 1(d)).

5) Since u falls inside �acd, c knows that u is on another
partitioned mesh, therefore c adds u into its neighbor
list Nc to recover the partition.
Note that the minimum internal angle of �auc and
�abc is less than that of �buc and �abu. Therefore
the connection from c to a violates the DT property,
and c will remove a from Nc (Figure 1(e)).

6) c then broadcasts its neighborhood information to its
neighbors with HelloNeighbor messages. Upon receiv-
ing them, b and d discover u and adds u into their
neighbor list. In the meantime, u also discovers b and d

and adds them into its neighbor list (Figure 1(f)).
7) Suppose that b is the next host to broadcast its neigh-

borhood information through HelloNeighbor messages.
Upon receiving the message, a discovers u, and adds u

into its neighbor list. Afterwards, a also notices that the
connection from a to c violates the DT property, and
hence removes c from its neighbor list. The resultant
overlay mesh thus satisfies the DT property after the
joining of u (Figure 1(g)).

III. CONSTRUCTION OF DATA DELIVERY TREES

In this section, we present three algorithms to construct
overlay trees for data delivery on top of the SALM mesh. We
then describe how SALM maintains its loop-free property.

A. Embedded, Bypass and Intermediate Trees

We study three algorithms to build trees in SALM. The first
is so-called Embedded Tree, which builds an overlay tree such
that all edges are part of the overlay mesh. Clearly, in forming
the tree, non-member nodes may be included. The second
one builds an overlay tree such that it covers only the group
members without having to use the mesh edges. Since the

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

b

c
u

L1

L3

a

d

L2

GetLandmark

(a)

L2

ICMP
message

message

L3

ICMP

message
ICMP

L1

c

b

u

a

d

(b)

MeshJoin

b

c

L1

u

L3

a

d

L2

(c)

MeshJoin

MeshJoin

c

b

u

L3

a
L2

d

L1

(d)

HelloNeighbor

HelloNeighbor

HelloNeighbor
L3

d

L2

u

a
b

c

L1

(e)

HelloNeighbor

HelloNeighbor

HelloNeighbor

c

b
L1

u

L2
a

L3

d

(f)

c

b
L1

L3

u

a

d

L2

(g)

Fig. 1. Example scenario of host joining.

tree bypasses the non-member nodes and mesh edges to form
direct connections with only the group members, we term such
a tree Bypass Tree. The third one is termed Intermediate Tree,
which lies between embedded and bypass tree where some
non-member nodes may be included in the tree. We define
any non-leaf node in the overlay tree as forwarder, which
needs to forward data messages to its children. We elaborate
the mechanism in detail in the following.

• Embedded Tree
To form an embedded tree, a joining host first sends
a TreeJoin message to the source along the DT mesh
using compass routing. All hosts along the path become
forwarders no matter whether they are interested in the
program or not. We explain how the TreeJoin message is
handled in a host in the mesh: A host first adds the joining
host into its children table for the specified program. Then
it checks whether it is already a forwarder of the program
as specified in the TreeJoin message. If so, it suppresses
the forwarding of the message. Otherwise, it turns itself
into a forwarder and relays the TreeJoin message to the
program source.

• Bypass Tree
Recall that all forwarders in a bypass tree are interested in
the data from the program source. A joining host sends a
TreeJoin message upstream to the source using compass
routing. A non-member host receiving the message sim-
ply relays the message to the next hop (using compass
routing) without turning itself into a forwarder. On the
other hand, if the host is a member of the program, it
adopts the joining host as its child by adding the joining
host into its children table and suppresses the forwarding
of the message.

• Intermediate Tree
Observe that embedded tree requires the participation

of non-member hosts, i.e., a host may need to serve
other hosts of different multicast groups. Therefore, as
compared to bypass tree, it demands more local resources.
Moreover, it consumes more network resources and has
longer delay, especially for sparse groups. On the other
hand, a node in a bypass tree may suffer from high nodal
degree and hence loading (a star-like topology rooted at
the source for sparse group).
Therefore we propose intermediate tree which builds a
tree between embedded tree and bypass tree by including
in the tree those non-member nodes receiving more than
a certain number of join messages. This is done so in
order to keep both nodal degree and delay low. More
specifically, a host handles the request according to the
bypass tree if the number of request received is less than a
certain threshold; otherwise, the host forwards the request
according to embedded tree.

B. Loop-Free Maintenance

Traditionally, maintaining a loop-free overlay tree can be
quite costly. In the event of joining and leaving, a loop is
formed if a host accepts a connection request from its ancestor.
One approach to avoid looping is that, before adopting a
node as its child, a host sends control messages to trace the
path from itself to the root. If the node appears on the trace
path, the host rejects it. We show an example in Figure 2,
where arrows represent the parent-child relationship. Suppose
a sends a connection request to e to be its child. Before
e accepts the request, it traces the path to the root (i.e.,
e → d → a → s). Since a is on the path, e rejects the
connection request. Clearly, though this algorithm works, it
introduces much control message overhead.

SALM does not rely on such a trace-back to avoid looping,
because the tree formed by compass routing is inherently loop-
free all the time. This is due to the fact that compass routing

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

a
b

s

c
d

e

f

Fig. 2. A loop in a data delivery tree.

in DT is a greedy algorithm — the GNP distance to a host
from the source strictly decreases along the path [11]. In other
words, in a data delivery tree, the GNP distance from a host
to the source is always shorter than that from its offspring.
This important property leads to the loop-free characteristic
in SALM.

The loop-free proof is by contradiction as follows. Suppose
a loop exists in the delivery tree with source (root) s, say,
going from a host i to some node j before going back to i

again. For the path i to j, the property above states that the
GNP distances si < sj (since i is an intermediate node from
s to j). However, for the path j to i, the property above states
that sj < si (j is an intermediate node from s to i). This is
clearly a contradiction, meaning that SALM is loop-free.

Besides the loop-free characteristics, SALM tree construc-
tion also achieves low measurement overhead. Most traditional
ALM protocols rely on sending frequent probes to measure the
network delay between hosts, so that the overlay trees can be
built with short edges. In SALM, the distance between two
hosts can be estimated based on the difference between their
GNP coordinates. This greatly reduces the overhead for tree
optimization without compromising much of its performance.

IV. ILLUSTRATIVE NUMERICAL RESULTS

A. Simulation Setup

We generate Transit Stub topologies with GT-ITM [12].
The parameters used for topology generation are according
to the study of the traditional DT protocol in [9]. The gener-
ated topologies are a two-layer hierarchy of transit networks
(with four transit domains, each with 16 randomly-distributed
routers on a 1024 × 1024 grid) and stub networks (with
64 domains, each with 15 randomly-distributed routers on a
32× 32 grid). A host is connected to a stub router via a LAN
(of 4×4 grid). The delay of LAN links is 1ms while the delay
of core links is computed by the topology generator.

For GNP, we select a number (20) of landmarks based on N -
cluster-median criterion as given in [5]. For each DT mesh, we
randomly select a host as the source which multicasts packets
along the DT mesh to all members with compass routing. We
are interested in the following performance metrics:

• Relative delay penalty (RDP), defined as the ratio be-
tween overlay delay to underlay delay of a host from the

16 32 64 128 256 512 1024
1

1.5

2

2.5

3

3.5

4

4.5

5

Group Size (N)

A
ve

ra
ge

 R
D

P

Average RDP vs. Group Size

DT with geographic location
Narada
DT with network coordinates

a) Average RDP.

16 32 64 128 256 512 1024

1.5

2

2.5

3

3.5

Group Size (N)

A
ve

ra
ge

 L
in

k
S

tr
es

s

Average Link Stress vs. Group Size

Narada
DT with geographic location
DT with network coordinates

b) Average link stress.

Fig. 3. Performance comparison of DT mesh formation using GNP,
geographic location, and Narada.

source;
• Physical link stress, defined as the number of identical

packets passing through a link, given the packet passes
through the link.

Unless otherwise stated, the parameters we use are N =

1024 (a total of 1024 end-hosts in the system), G = 128 (128
of them belong to the same multicast group), K = 8 (the
maximum fanout of a host is 8), and R = 8 (in intermediate
tree, a non-member host handles requests according to the
bypass tree if the request number is less than 8; otherwise, it
acts according to the embedded tree).

B. SALM Performance

We first compare SALM performance with a traditional
scheme, Narada. Because traditional schemes have not consid-
ered subset multicast, for fair comparison, we have set N = G.
In this case, SALM is the same as DT. We further compare
the cases with network coordinates (GNP) and without (i.e.,
using geographic location). Figure 3(a) shows the average RDP

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

16 32 64 128 256 512
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Group Size (G)

A
ve

ra
ge

 R
D

P

Average RDP vs. Group Size

Embedded Tree
Intermediate Tree
Bypass Tree

a) Average RDP.

16 32 64 128 256 512

1.5

1.6

1.7

1.8

1.9

2

2.1

Group Size (G)

A
ve

ra
ge

 L
in

k
S

tr
es

s

Average Link Stress vs. Group Size

Intermediate Tree
Bypass Tree
Embedded Treeb) Average link stress.

Fig. 4. Performance comparison of embedded, bypass and intermediate trees
(K = 8, R = 8).

versus group size (N = G). In general RDP increases with
the group size. SALM with GNP performs the best. This
is because GNP coordinates correlate well with the relative
location of hosts in the Internet. The SALM mesh formed
using GNP is hence better than the one based on geographic
locations. As the group size increases, the performance margin
is more remarkable. For a medium group size (≈ 128–256

members), RDP is markedly lower than Narada. Regarding
link stress (Figure 3(b)), SALM with network coordinates
performs better than Narada. It also performs better than using
geographic location for sparse network. For dense group, using
geographic location may perform better. This is because the
higher the member density, the higher is the probability that
the SALM mesh with GNP have “small angles.”. This means
that end-to-end connections are more likely to pass through
the same underlay link, leading to high stress.

We compare the performance of embedded, bypass, and
intermediate trees versus group size in Figure 4. We show
RDP in Figure 4(a). The RDP of bypass tree is significantly

lower than that of embedded tree, while the intermediate tree
lies between them. For small groups, bypass tree skips nearly
all mesh edges; therefore, its RDP is close to one. The RDP
for embedded tree is rather independent to the group size as
it forms trees covering the mesh edges.

Figure 4(b) compares link stress for the three schemes. The
embedded tree has the lowest stress, because the forwarding
load is distributed among all the nodes in the network. Bypass
and embedded trees suffer higher stress due to their higher
nodal fanout (node stress), the number of identical packets
replicated by a given host. The intermediate tree has slightly
higher stress than bypass tree, mainly due to high stress in
some nodes.

In summary, the figures suggest that, overall, bypass tree
works well; it achieves low RDP and intermediate stress
performance. For intermediate tree, its RDP lies between
bypass and embedded trees, especially for small to medium
group size. (It is difficult to design an intermediate tree which
lies between bypass and embedded trees for all metrics due to
subtle trade-offs among the metrics.)

V. CONCLUSION

In application-layer multicast (ALM), users may hop from
one group to another quite frequently. In this paper, we propose
a novel ALM framework for dynamic groups termed subset-
ALM (SALM). SALM supports multiple multicast groups and
efficiently distributes data to dynamic subsets of a pool of end-
hosts. It first builds a shared overlay mesh for all the end-hosts
in the system. This rather stable mesh is then used to guide the
construction of overlay trees for data delivery to each group.
We study three ways of constructing the trees. Our simulation
results on Internet-like topologies show that SALM achieves
low RDP and link stress, even for large groups (more than
hundreds of hosts).

REFERENCES

[1] Y. hua Chu and S. G. R. S. S. H. Zhang, “A case for end system
multicast,” IEEE JSAC, vol. 20, pp. 1456–1471, Oct. 2002.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast,” in Proc. SIGCOMM’02, pp. 205–217, Aug. 2002.

[3] P. Francis, P. Radoslavo, R. Lindell, and R. Govindan, “Your own
internet distribution YOID.” http://www.isi.edu/div7/yoid/.

[4] B. Zhang, S. Jamin, and L. Zhang, “Host multicast: A framework for
delivering multicast to end users,” in Proc. INFOCOM’02, 2002.

[5] T. S. E. Ng and H. Zhang, “Predicting Internet network distance with
coordinates-based approaches,” in Proc. INFOCOM’02, June 2002.

[6] L. Tang and M. Crovella, “Virtual landmarks for the Internet,” in Proc.
IMC’03, Oct. 2003.

[7] H. Lim, J. Hou, and C.-H. Choi, “Constructing Internet coordinate
system based on delay measurement,” in Proc. IMC’03, Oct. 2003.

[8] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in Proc. SIGCOMM’04, Aug. 2004.

[9] J. Liebeherr, M. Nahas, and W. Si, “Application-layer multicasting with
delaunay triangulation overlays,” IEEE JSAC, vol. 20, pp. 1472–1488,
Oct. 2002.

[10] Y. Zhand, V. Paxson, and S. Shenker, “The stationarity of internet path
properties: routing, loss and throughput,” Tech. Rep., ACIRI, May 2000.

[11] E. Kranakis, H. Singh, and J. Urrutia, “Compass routing on geometric
networks,” in Proc. CCCG9́9, pp. 51–54, Aug. 1999.

[12] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” in Proc. INFOCOM 1996, 1996.

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

