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Abstract— Application layer multicast (ALM) has been proposed to
overcome current limitations in IP multicast. We address, for the first
time, offering data confidentiality in ALM. To achieve data confidentiality,
data encryption keys are shared among the multicast group members.
Observe that in this system, a node may need to continuously re-
encrypt packets before forwarding them downstream. Furthermore, keys
have to be changed whenever there is a membership change, leading
to re-key processing overhead at the nodes. For a large and dynamic
group, these re-encryption and re-keying operations incur high processing
overhead at the nodes. We introduce a scalable scheme called Secure
Overlay Tree (SOT) which clusters ALM peers so as to localize re-keying
within a cluster and to limit re-encryption at cluster boundaries, thereby
minimizing the total nodal processing overhead.

We describe the operations of SOT and compare its nodal processing
overhead with two other basic approaches, namely, host-to-host encryp-
tion and whole group encryption. We show that there exists an optimal
cluster size to minimize the total nodal processing overhead. SOT achieves
substantial reduction in nodal processing overhead with little cost in
network performance in terms of network stress and delay.

I. INTRODUCTION

Networked multimedia applications such as real-time stock quotes,
Internet radio, video conferencing, etc., often require multicast
support to efficiently disseminate information to a large group of
distributed users. Many of these applications also require data confi-
dentiality for information protection and for charging purpose. In such
a secure multicast system, data should be encrypted by the source
and decrypted by the group members. A new member should not
be able to decrypt any data multicast before its joining (the so-called
backward secrecy). Similarly, a former member should not be able to
decrypt any data multicast after its departure (the so-called forward
secrecy). In order to offer both backward and forward secrecy, data
encryption key has to be changed (i.e., re-keyed) whenever there is
a membership change, and the corresponding decryption key has to
be made known to all the current members.

Providing confidentiality by network layer multicast has been
extensively studied (see, for examples, [1], [2]). However, network
layer multicast still has not been widely deployed. Therefore, recent
research has been focusing on enabling multicast at the application
layer, the so-called application layer multicast (ALM). In ALM, ap-
plication peers first self-organize into a logical overlay tree. Multicast
is achieved by transmitting data from one peer to another along
the tree edges using unicast connections. Therefore, ALM does not
require multicast-capable routers and hence potentially speeds up
the deployment of large-scale multicast-based services. Since data
in ALM may be read by a non-member using a network sniffer, the
data confidentiality issue is important in ALM.

This work was supported, in part, by the Competitive Earmarked Research
Grant (HKUST6156/03E) and Direct Allocation Grant (DAG02/03.EG41)
from the Research Grant Council in Hong Kong.

To offer data confidentiality, one may think of two straightforward
basic approaches:

• Host-to-host encryption: Each overlay connection on the data
delivery tree shares a unique data encryption key. In forwarding
packets from one host to another, each host has to first decrypt
the packets received from its parent, and then re-encrypt the
packets before forwarding them to each of its children using
the corresponding encryption key of the connection. Clearly, we
see that a node in this approach needs to continuously decrypt
and re-encrypt packets. This leads to continuous decryption/re-
encryption processing overhead depending on packet arrival rate.

• Whole group encryption: All group members share a universal
group key, and hence decryption/re-encryption processing is
not needed between peers. In this case, whenever there is a
membership change, a new group key is generated which has
to be communicated and made known to all the members. Such
re-key messages have to be processed by all the peers in the
network so as to agree on a common new group key. This leads
to re-key processing overhead depending on how often group
membership changes.

We see from above that the two basic approaches represent two
extremes in nodal processing overhead to offer data confidentiality:
one having high decryption/re-encryption overhead (host-to-host en-
cryption) while the other having high re-key messaging overhead
(whole group encryption). Therefore, for a given data rate and group
dynamics, either of the approaches would not perform well in terms of
processing overhead. A more efficient way is to use a hybrid scheme
where the group members are divided into clusters. Whole group
encryption is used within each cluster while host-to-host encryption
is used between clusters. This strikes a balance between the two
processing overheads, thereof achieving lower overhead at each node.
Such an overlay tree provides a simple and yet efficient way to offer
data confidentiality and, we term it Secure Overlay Tree (SOT).

In this paper, we present a framework on how to build SOT
among application peers and compare its performance with the
two aforementioned basic approaches. Our results show that, SOT
achieves substantially lower overhead (by many factors) with little
cost in network performance (in terms of physical link stress and
relative delay penalty).

We briefly discuss previous related work here. Traditional multicast
protocols such as DVMRP, CBT and PIM-DM, requires the use of
multicast-capable routers, making the global deployment of multicast
service difficult. Moving the multicast functionality to the application
layer, the so-called Application Layer Multicast (ALM), eases the
deployment. Many ALM protocols have been proposed in recent
years in this regard, [3]–[8]. However, their main concerns are
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Fig. 1. Only members in the same cluster share the same cluster key. Re-
encryption is only necessary when transferring data across different clusters.

connectivity, failure recovery, scalability, etc. None of them addresses
the data confidentiality issue.

Logical key hierarchy (LKH) is often used to offer data confiden-
tiality in IP multicast [1]. However, LKH cannot be directly applied
in ALM, mainly due to the fundamental difference in overhead
accounting. LKH assumes a multicast-capable network, and hence
sending one re-key message to all members accounts for only one
overhead. Therefore, the re-key message overhead for member joining
and leaving is O(logk N) and O(k logk N), respectively, where k is
the degree of the key tree and N is the group size. However, in ALM,
the total overhead of sending one re-key message to all members
is O(N) which is clearly much larger than LKH for large group.
Directly applying the key tree structure of LKH in ALM is hence
not efficient in terms of network bandwidth usage and this calls for
a different design.

Another approach to offer confidentiality in IP multicast is Iolus
[2]. Iolus divides the members into subgroups, each of which is
managed by a Group Security Agent (GSA). The subgroup has its
own subgroup key; hence, re-keying needs to be performed only
where a member joins or leaves. SOT is based on a similar idea.
However, Iolus has not considered the impact of subgroup size and
nodal processing overhead, which we consider and study here.

This paper is organized as follows: In Section II, we describe the
two basic approaches and SOT in details. Then, we show in Section
III-A that there exists an optimal cluster size in SOT. In Section
III, we first describe our simulation, then we present our results and
comparisons. Finally, we conclude in Section IV.

II. SCHEME DESCRIPTION

In this section, we first describe in detail the two basic schemes,
followed by our proposed SOT scheme.

A. Basic Schemes

We model the topology of the overlay tree of N nodes (hosts) as
T = (V, E), where the data source is located at root R. Each node
vi ∈ V represents a user in the group and each ei ∈ E represents
a unicast connection between the two end-point users.1 We use the
notation Ek{data} to denote the encryption of “data” using key
“k”. As mentioned before, one may conceive the following two basic
approaches to offer data confidentiality:

1In this paper, “host,” “node,” “member” and “peer” are used interchange-
ably.

Host-to-host encryption: Two connected members vi and vj agree
upon a symmetric key called neighbor key kij using key-encrypted-
key mechanism (i.e., vi generates kij and makes the key known to vj

by encrypting it using vj’s public key). Clearly, a neighbor key has
only local significance, i.e., it is associated between a pair of peers
only. In this case, data is encrypted as Ed{data}||Ek{d} where d is
a symmetric key randomly generated by the data source and k is any
neighbor key between two peers on the data path. Thus, re-encryption
is done by decrypting and re-encrypting d rather than the whole data
packet. Upon receiving a packet from a member vi, a member vj

first decrypts Ekij{d} using kij and decrypts Ed{data} for its use.
It then re-encrypts d using kjk and forwards Ed{data}||Ekjk{d} to
the downstream child vk. By this approach, whenever a member joins
or leaves the system, only its parent and children are required to re-
key. However, this approach requires per-packet processing on every
node for re-encryption. Therefore, the nodal processing overhead is
expected to be high for high-bandwidth applications.

Whole group encryption: In contrast to host-to-host encryption,
only the source does data encryption using a universal group key
g. When a member receives a data packet, it simply relays it to its
children without any re-encryption (it certainly needs to decrypt the
packet with g for its own consumption). However, whenever one of
the group members joins or leaves, the group key has to be changed.
This incurs O(N) re-key messages to all the existing N members,
who are required to process the re-key messages. Clearly, the nodal
processing overhead is expected to be high for dynamic group.

B. Secure Overlay Tree (SOT)

As clear from above, either host-to-host encryption or whole group
encryption may not perform satisfactorily given a certain data rate
and group dynamics. A more efficient way is to group members into
non-overlapping clusters of size m a shown in Fig. 1. We call the
tree formed Secure Overlay Tree (SOT). Instead of sharing a group
key among all members, members in a cluster share a “cluster key.”
Whenever a member joins or leaves the group, it actually joins or
leaves a cluster. Hence, re-key messages are only delivered within
a cluster. Therefore, only O(m) re-key messages are processed for
each join/leave. SOT loosely maintains its cluster size by splitting
and merging. In order not to incur too much splitting and merging
overhead while keeping a rather uniform cluster size, SOT bounds the
size of each cluster between m/2 and 2m. Packets are re-encrypted
only when they cross the boundary of clusters, and only takes place
at the ingress and egress nodes of a cluster. In other words, SOT
uses “whole cluster encryption” within clusters and “host-to-host
encryption” between clusters.

Members are logically organized into two layers in SOT as shown
in Fig. 2: 1) Leader layer and 2) Member layer. Every cluster has
a cluster leader, which constitute an overlay network for control
messaging, and for coordinating operations such as joining, merging
and splitting. Cluster leaders themselves also belong to the Member
layer. Note that the protocol suggested here is a framework, hence,
the overlay network formed by leaders and those within clusters can
be implemented by any existing ALM protocols.2 The protocol details
are described as follows:

1) Internet Coordinate System: We suggest applying an Internet
coordinate system like GNP, VL [9], [10], etc. to map the Internet
locations of peers into a coordinate system, so that mutual distances
between peers can be calculated more easily. Furthermore, cluster

2Since SOT is a flexible framework, we intentionally leave out some
implementation details here.
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Fig. 2. Two layers are formed in SOT: Leader layer and Member layer. S
is the source of data stream. Intra-cluster trees are formed within the clusters
while an inter-cluster tree is formed via the connections between ingress and
egress nodes.

leaders can summarize the cluster location by calculating the centroid
of all member coordinates within its cluster. (If an Internet coordinate
system is not available, peers can still use ping to determine their
network distances.) Accurate measurements of network distance can
improve the efficiency of the data path in terms of latency and
bandwidth consumption as well as other maintenance operations such
as joining, splitting and merging, etc.

2) Member Joining: A new member can contact any cluster leader
to join the group. This can be bootstrapped by a server or Rendezvous
Point (RP) keeping the location information of some cluster leaders.
When a cluster leader receives a JoinRequest which contains the new
member coordinates, it first finds out whether any other neighboring
leader is closer to the new member. If so, it forwards the request
to that closer leader. The process continues until the closest leader
to the joining member is found. This determines which cluster the
new member belongs. Then, the JoinRequest is passed down to the
Member layer where the new member forms an ALM tree with the
cluster members. The joining process, hence, can be viewed as two
independent joining processes, first on the Leader layer and then on
the Member layer.

Once the new member x attaches itself on the overlay tree, it
forms a secure channel with each of its neighbors using asymmetric
encryption. It sends its public key px in the JoinRequest to its
neighbor y. y then generates a symmetric key kxy and sends back
a JoinReply which contains Epx{kxy}. Then, x and y can share the
same secret key kxy which is used for updating the cluster key. At
the same time, the cluster leader generates a new cluster key k′.
It multicasts the re-key message Ek{k′} in the cluster where k is
the old cluster key. When a peer finds that its downstream peer is a
new member, it re-encrypts k′ using the secret key shared with the
downstream peer. So that, the new member can also obtain k′.

3) Member Departure: The departure of a member can be known
by either 1) a Goodbye message from the member to its neighbors
(i.e., a graceful leave); or 2) an absence of several HeartBeat
messages to its neighbors (i.e., an ungraceful leave). Whenever a
peer detects the leaving of its neighbor, it informs its cluster leader
to trigger the re-keying mechanism. After the cluster leader generates
the new cluster key k, it multicasts k within the cluster along the
overlay tree using host-to-host encryption, i.e., members re-encrypt
k using neighbor keys before forwarding it.

4) Cluster Split and Merge: A cluster leader periodically ex-
changes with its neighboring leaders in the Leader layer ClusterInfo,
which contains cluster size and member information. SOT keeps the
size of each cluster within the range from m/2 to 2m. When a

cluster C becomes too large (i.e., greater than 2m), the leader x
triggers the spitting mechanism. As x stores all member locations,
it can perform any centralized clustering algorithm based on these
locations to split the original cluster C into two parts, C1 and C2,
each of which containing m members. Suppose x is in C1 after
clustering. It then randomly picks a member y from C2 as the leader
of that cluster and sends to y a LeaderTransfer message containing
information about C2 members, so that y can promptly possess all
its member information for management.

On the other hand, when a cluster C1 shrinks and becomes too
small (i.e., less than m/2), it has to merge with some suitable
neighboring clusters. A cluster is considered to be suitable if, after
merging, 1) the resultant cluster size is within the size range; or 2)
the resultant cluster can then be split into smaller clusters whose sizes
are within the range. Once the target cluster C2 is identified, x sends
a MergeRequest containing its member information, to the leader y
of C2. y then selects the closest pair: a member s from the member
list in the MergeRequest and a member t in its cluster, and informs
t to connect to s for member discovery according to the underlying
ALM implementation. x then becomes the leader of the combined
cluster.

5) Leader Election: Cluster leaders also periodically sends Heart-
Beat messages to its neighbors, indicating its presence. Any member
finding that its leader has left the group declares itself as the new
leader by broadcasting a NewLeader message within the cluster. It is
possible that more than one member declare themselves as the new
leader. In this case, tie is broken by their network addresses.

6) Data Path and Ingress/Egress Selection: An inter-cluster over-
lay connection is formed by connecting egress and ingress nodes,
which are selected by the cluster leaders according to the member
locations. Inside each cluster, tree is built and the ingress node is
treated as the source of the data stream. The underlying ALM protocol
implementation determines how such inter- and intra-cluster trees are
built. For example, a DT protocol implementation may make use of
compass routing [5]. The inter-cluster tree, together with the intra-
cluster trees, form a Secure Overlay Tree (SOT).

In the inter-cluster tree, i.e., the tree connecting all clusters. The
leader x of a parent cluster periodically look for suitable members to
serve as egress nodes in its cluster for each of its children clusters.
According to member locations, the member reasonably close to a
child cluster is chosen as the egress node. x then sends an EgressList
message containing the locations of several good candidates to the
leader y of its child cluster. Upon the receipt of EgressList, y then
finds a good egress-ingress pair and call the ingress node to make a
connection with the egress node. After that, the egress-ingress pair
establishes an inter-cluster key for re-encryption.

III. SIMULATION AND ILLUSTRATIVE RESULTS

In our simulation, we compare the performance of SOT with the
two basic schemes and a recently proposed ALM protocol, namely
Delaunay Triangulation (DT) [5], [6]. In our simulation, we use DT
for our implementation of SOT in both Leader layer and Member
layer.

In our experiments, we first generate a network topology by GT-
ITM according to the Transit-Stub model with 1024 routers [11].
Members arrive according to Poisson process with rate λ req./s and
stay in the system with exponential holding time of mean T seconds.
(Clearly, the average number of users in the system is ρ = λT .) The
hosts are randomly assigned to any one of the routers. The source is
randomly chosen among the hosts. Each packet is of constant size p
bits and the data stream is of rate R bits/s.
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A. Optimal Cluster Size

In SOT, the members are divided into clusters. Clearly, each re-
keying in SOT requires O(m) re-keying messaging overhead while
each multicast packet requires O(N/m) re-encryption overhead,
where m is the cluster size and N is the group size. Therefore,
to minimize processing overhead, m should be as small as possible
for dynamic groups. On the other hand, m should be as large as
possible for high-bandwidth applications. Intuitively, there exists a
balance point in cluster size (1 ≤ m∗ ≤ N ) such that the total
processing overhead for an application can be minimized. Hence, we
conduct experiments that estimating the nodal processing overhead
for SOT using different cluster sizes.

We estimate the nodal processing overhead for encryption and
decryption used in re-keying and re-encryption in a node. In esti-
mating processing overhead, we normalize each symmetric encryp-
tion/decryption as one unit.3 As symmetric cryptographic operations
are often three to five orders of magnitude faster than their asymmet-
ric counterparts, we introduce two factors α and β defined as follows
(α, β > 0):

α =
Time for asymmetric encryption
Time for symmetric encryption

;

and

β =
Time for asymmetric decryption
Time for symmetric decryption

.

We measure the speed of commonly-used cryptographic operations
on a 800MHz Pentium III Linux workstation using the optimized
implementations of the OpenSSL utility program [12]. We find that,
e.g., for Rijndael-256 and RSA-1024, α = 1000 and β = 17285.

B. Performance Metrics

In our simulation, we study the following three performance
metrics:

• Average nodal processing overhead: We estimate the average
nodal processing overhead H for re-keying and re-encryption in
the systems. This metric is defined as:

H =

∑
i∈G Hi

ρ
,

where Hi is the processing overhead per second incurred in node
i, which is a member of group G. The nodal processing overhead
is incremented by one when a node performs a symmetric
encryption/decryption, by α for each asymmetric encryption and
β for each asymmetric decryption. We use this value to measure
the processing overhead required per second for a node.

• Physical link stress (PLS): This metric is commonly used in the
literature for comparing the network performance of different
ALM schemes. PLS is defined as the number of identical packets
transmitted over a physical link when a packet is multicast.

• Relative delay penalty (RDP): RDP is another commonly used
metric and is defined as the ratio of the delay in the overlay
path between a host and the source to the delay in the unicast
path.

C. Results

We have chosen a video conferencing application as our baseline
system, with parameters R = 256 kbps, p = 1000 bytes, T = 30 min.,
ρ = 105, m = 100, α = 1000 and β = 17285.

3Encryption and decryption are the same operation in symmetric cryptog-
raphy.
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Fig. 3. Nodal processing overhead against cluster size for high-quality video
streaming application.

TABLE I
OPTIMAL CLUSTER SIZE OF DIFFERENT APPLICATIONS.

(p = 1000 bytes).

Application Average holding
time (T )

Data rate
(R)

Optimal cluster
size (m∗)

stock quote
system 30 min. 5 kbps 30

Internet radio 2 hrs. 16 kbps 50

video
conferencing 30 min. 256 kbps 100

high-quality
video

2 hrs. 1 Mbps 500

In Fig. 3, we plot H against m in our system. Clearly, it first
decreases (due to a reduction in re-encryption overhead) and then
increases again (due to an increase in rekeying messaging overhead).
There is an optimal cluster size m∗ to minimize H . Thus, in our
baseline system, m should be set around 100.

We find in our study that m∗ in fact depends on specific application
parameters, i.e., R, p and T . In Table I, we summarize m∗ for
different applications. We see that m∗ can range from as few as
tens of nodes to as many as hundreds of nodes.

We next explore H with respect to ρ, given m (m = 100). We
compare SOT with the two basic schemes (host-to-host and whole
group encryption) in Fig. 4. The overhead for host-to-host encryption
is independent on ρ while that of whole group encryption increases
with ρ. SOT achieves the minimum overhead and remains at a
substantially lower level when ρ increases even to a large value.
In our experiments, the gain in average nodal processing overhead
can be as much as one to two order of magnitude depending on the
values of α and β.

On the other hand, in Fig. 5 and 6, we show that the network
performance of SOT in terms of PLS and RDP is comparable to
that of the improved version of DT. When the group size is smaller
than the cluster size, SOT in fact maintains the whole group as one
cluster. Therefore, the network performance is the same as DT. When
the group size increases, more overlay paths share the physical links,
hence the PLS increases slowly. Also, the paths from the source to
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the peers become longer, hence the RDP increases slowly too. Note
that though the physical link stress appears higher than the values as
presented in other literature, it is reasonable because we are studying
a much larger system (of group size in the order of 1000 rather than
100).

IV. CONCLUSION

In this paper, we address the data confidentiality issue in ap-
plication layer multicast (ALM) for the first time. We design a
protocol called Secure Overlay Tree (SOT) to provide data security
in ALM. SOT is based on clustering members into subgroups of
optimal cluster size, which strikes a balance between the re-keying
and re-encryption overhead. Compared with the two basic schemes,
SOT can achieve much better performance in terms of average nodal
processing overhead with comparable network performance (in terms
of physical link stress (PLS) and relative delay penalty (RDP)).
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